
CSCI 699: Robot Learning
Problem Set #2: Due Sun, Oct 8, 11:59PM

Introduction
The coding portion of the homework assignment will be completed using Google Colab. Starter code for this
problem set can be downloaded from https://github.com/USC-Lira/CSCI699_RobotLearning_HW2.git.
The notebook should contain the code for installing all the necessary Python dependencies.

Submission instructions:
You will submit your homework to Gradescope. Your submission will consist of (1) a single pdf with your
answers for the short answer questions () and (2) a zip folder containing the Colab notebooks for the
programming questions ().

Your answers to the written portion must be typeset with a word processor or LATEX.

1

https://github.com/USC-Lira/CSCI699_RobotLearning_HW2.git

Fall 2023

Problem 1 [20 points]
1a) [5 points] Prove the following inequality involving two real-valued functions f and h:

|max
z

f(z)− max
z

h(z)| ≤ max
z

|f(z)− h(z)|

1b) [5 points] Using the property in 1a, prove the following inequality:

||TV − T V̄ ||∞ ≤ α||V − V̄ ||∞

where T is the Bellman operator used to update the value function, V is the state-value function, and
α ∈ [0, 1).

TV (s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)
Here is a breakdown of each component of the Bellman operator:

• TV (s) is the value of the Bellman operator applied to state s.

• V (s) is the value function at state s.

• A is the set of all possible actions.

• S is the discrete state space.

• R(s, a) is the immediate reward received when taking action a in state s.

• γ is the discount factor.

• P (s′|s, a) is the probability of transitioning from state s to state s′ upon taking action a.

1c) Policy Iteration [10 points]
Consider a simple Markov Decision Process (MDP) with three discrete states and two actions defined below:

S = {A,B,C}
A = {X,Y }

R =

 5 −2
1 2
−1 0

PX =

0.3 0.6 0.1
0.7 0.2 0.1
0.4 0.4 0.2

PY =

0.2 0.4 0.4
0.1 0.6 0.3
0.3 0.3 0.4

γ = 0.9

where R[i, j] represents the reward for taking action j in state i, e.g. R[1, 1] = 5 represents the reward for
taking action X in state A. PX [i, j] represents the probability of transitioning from the state in row i to the
next state in column j when action X is taken. For example, PX [1, 2] = 0.6 is the probability of transitioning
from state A to state B when action X is taken. PY is similarly defined for action Y .

Start with the policy π(s) = X for all s ∈ S. Perform one step of policy evaluation; calculate the state-value
function V (s) for the initial policy that prescribes the action X for all states.

Iteratively perform policy improvement to determine the optimal policy π∗ and policy evaluation. Clearly
show your work for two iterations of the algorithm, including the Bellman equations used for the policy
evaluation and the Q-values for policy improvement.

2

Fall 2023

Problem 2: Actor Critic Methods1 [40 points]
In class, we surveyed a few different reinforcement learning algorithms. Many reinforcement learning algo-
rithms approximate the value function using a finite set of parameters θ, i.e., V(s) ≈ V π(s) or Qθ(s, a) ≈
Qπ(s). For large state and action spaces, an exciting new approach involves approximating these functions
using neural networks.

In this problem, we will first dive deep into so-called policy gradient methods, that directly learn policies
without explicitly learning value functions. Then, we will address the high-variance issue of policy gradient
methods by reintroducing the value function in the learning process as part of the ’actor-critic’ method. By
the end of this problem, you will implement the critic component of an actor-critic algorithm, and see how
your actor-critic solves a classic cart-pole (aka inverted pendulum) problem.

In case you’re not familiar with the cart-pole problem, your objective is to move the cart on the bottom just
right to make the pole stand upright without going off screen. By the end of this problem, you will have a
controller that successfully solves this problem.

Run the first cell in the Colab notebook (p2_a2c.ipynb) to visualize a simple rollout in the cart-pole
environment.

Policy Gradient Methods
Let’s define a parameterized policy πθ(at|st) as a probability distribution over actions given a state of the
system. Now recall that the objective of reinforcement learning is to find parameters (θ) of that policy such
that they maximize an objective function J . More specifically, for this question, we will define our objective
function as the expected reward over a finite horizon T given a Markov chain episode τ .

J(θ) = Eτ∼πθ(τ)[r(τ)], (1)

where

r(τ) =

T−1∑
t=0

r(st, at), (2)

and

πθ(τ) = p(s0)πθ(a0|s0)
T−1∏
t=1

p(st|st−1, at−1)πθ(at|st) (3)

Policy gradient methods are a popular class of reinforcement learning methods that attempt to learn such
policies by directly taking the gradient of this objective.

We can show

∇θJ(θ) = Eτ∼πθ(τ)[∇ log πθ(τ)r(τ)] (4)

≈ 1

N

N∑
i=1

∇ log πθ(τi)r(τi) (5)

=
1

N

N∑
i=1

(
T−1∑
t=0

∇θ log πθ(ait|sit)

)(
T−1∑
t=0

r(sit, ait)

)
. (6)

The core of policy gradient is to maximize performance, so we update our parameters using gradient ascent,
i.e.,

θt+1 = θt + α∇̂θJ(θt). (7)

Note that ∇̂θJ(θt) is a stochastic estimate of our gradient. All methods that follow this general idea are
called policy gradient methods. By adding in the additional assumption of ’causality’ that roughly says that
the action at time t′ cannot affect the reward at time t when t < t′ (the Markov property from the underlying
MDP), we can improve our estimate of the gradient by modifying it to

∇θJ(θt) ≈
1

N

N∑
i=1

(
T−1∑
t=0

∇θ log πθ(ait|sit)

(
T−1∑
t′=t

r(sit′ , ait′)

))
, (8)

(note the change in the starting index of the sum of rewards).
1This question is based on a question from Stanford CS237B.

3

Fall 2023

Variance Reduction
In practice, the above estimate of the objective’s gradient can be quite noisy, i.e. have a high variance.
We will therefore make two modifications to the estimate to reduce this variance. These changes have
more principled explanations as well, but those explanations are beyond the scope of this class. The first
modification we will make is to add a discount factor γ < 1 to our estimate of the ’reward-to-go’

∇θJ(θt) ≈
1

N

N∑
i=1

(
T−1∑
t=0

∇θlog πθ(ait|sit)

(
T−1∑
t′=t

γt′−tr(sit′ , ait′)

))
, (9)

Next, we will add a ’baseline’ reward estimate

∇θJ(θt) ≈
1

N

N∑
i=1

(
T−1∑
t=0

∇θlog πθ(ait|sit)

((
T−1∑
t′=t

γt′−tr(sit′ , ait′)

)
− Vπθ,φ(sit)

))
, (10)

The baseline we added is referred to as an approximation of the ‘reward-to-go’ function, or our best estimate
of V π parameterized by φ.

Vπθ,φ(sit) ≈
T−1∑
t′=t

E[r(st′ , at′)|st]. (11)

(i) [5 points] We skipped a few steps between Equation (1) and Equation (4). Show:

∇θJ(θ) = Eτ∼πθ(τ)[∇log πθ(τ)r(τ)].

(ii) [7 points] Show that the expression on the right-hand side of Equation (8) is equivalent to that of
Equation (6).
Hint: Start from Equation (6). Write the outer-most summation (and 1/N) as an expectation (as in
Equation (4)). For the remaining two summations, move the second one inside the first one with the
new time index t′. Expand it to two separate summations over t′: one will go from 0 to t− 1, and the
other from t to T − 1. Finally, you will use Markov property for the former (the one that goes from 0
to t− 1) and prove that term is equal to 0.

(iii) [3 points] Justify why Equation (8) works. In particular, comment on the direction/magnitude of
updates in Equation (8). We are only looking for some discussion/justification here – you already did
the formal proof in part (ii).

(iv) [5 points] Given the intuition developed in part (iii), explain why policy gradient is susceptible to
high variance.

(v) [5 points] When we added the discount factor γ to our gradient estimate in Equation (9), we made
sure to specify this one must be smaller than 1 (i.e. γ < 1). Why is that? For a given time t on episode
i, think about how γ scales the different rewards for t′ > t.

Actor-Critic methods
Actor-critic methods are a sub-class of policy gradient methods that split the policy gradient task into two
function approximation tasks. One of them is the learning of a good policy πθ, referred to as the ’actor’,
and the other is the learning of the reward-to-go function Vπθ,φ(s), referred to as the ’critic’. Imagine you’re
learning to add two numbers a and b with a TA. In the beginning, you don’t have any knowledge about this
problem, so you solve stochastically. For your first problem (’episode’), say a = 1, b = 1, your action could
be ’−12’. A good TA would give you a negative reward to this action, and you would adjust your policy on
how to answer this question accordingly. After a few trials, you perform a good action (in this case ’2’) to
gain a positive reward from your TA. You would adjust your policies to learn how to perform addition, and
then receive a new problem (say, a = 2, b = 3). Your learning episode continues until your learning is com-
pleted. In this example, you’re an actor who is consistently adjusting your best guess of the optimal policy
(an action a that will maximize your reward r given state s), and the TA is the critic. In real world, how-
ever, we don’t have a TA, or knowledge of true optimal values, so we train both the actor and critic in parallel.

There are lots of different ways of accomplishing either tasks leading to the multiple variants of actor-critic
methods. Here, we will ask you to implement an algorithm that implements the critic part of an actor-critic
method using the temporal difference error. In your implementation, you’re free to explore, but please keep
Actor intact to ensure your Homework 4 code runs without any issue.

Taking our estimate of ∇θJ , we can rewrite the estimate of the reward-to-go as(
T−1∑
t′=t

γt′−tr(sit′ , ait′)

)
− Vπθ,φ(st) ≈ r(st, at) + γVπθ,φ(st+1)− Vπθ,φ(st). (12)

The quantity on the right is referred to as the temporal difference error or TD error

TDerror := r(st, at) + γVπθ,φ(st+1)− Vπθ,φ(st) (13)

4

Fall 2023

Roughly speaking, the Bellman equation says that the TD error of a valid ‘reward-to-go’ function must equal
zero. It is therefore possible to train a function approximator by minimizing the TD error. This can be done
in various ways, but we choose to generate ’labels’

yt = r(st, at) + γVπθ,φ(st+1) (14)

and minimize the squared error of those predictions

min
φ

∑
i,t

(Vπθ,φ(sit)− yit)
2. (15)

Equipped with our TD error, we can now train our two function approximators quite efficiently. Let’s
summarize. Actor-critic is a type of policy gradient method. Specifically, we run two neural networks in
parallel to learn V π and πθ simultaneously. The actor is a neural network that learns �� to minimize J. The
critic is a neural network that learns φ to approximate Vπθ

by minimizing the squared TD error. Now we’re
ready to look at the code.

(vi) [5 points] Take a look at the Actor class in p2_a2c.ipynb. How many layers are there in the
Actor neural network? What type of activation functions were used?

In p2_a2c.ipynb, have a look at the function train_actor_critic. The first thing it does is initialize an
environment using OpenAI’s gym package13 that you saw in the beginning of this problem. The cart-pole
environment has a state space as well as an action space. The cart-pole’s state space is a four dimensional
vector corresponding to the cart’s position (x), the cart’s velocity (ẋ), the pole’s angle (θ) and the pole’s
angular velocity (θ̇), in that order.

[x, ẋ, θ, θ̇]

The possible actions that can be applied to the environment are to push the cart towards the left (action
0), or push it towards the right (action 1). After initializing the actor and the critic, the function enters a
training loop. The training loop consists of running a number of episodes, where an episode is a sequence
of 200 time steps (the gym environment defines this maximum episode length). A transition happens every
time env.step is called. As you can see, this function returns the next state but also the reward for that
transition. The cart-pole environment is setup to simply return a reward of 1 for every step it takes until
termination. Termination happens when one of the following happens:

• Pole angle is ±12◦

• Cart position is more than ±2.4m

• Episode length is greater than 200

The training loop adds each transition (state, action, reward, next state) to a replay buffer (a simple array
containing recently observed transitions).

Next is the training of the function approximators. First, the critic evaluates the temporal difference error,
and uses it to improve its current approximation of the value function. This is essentially what we are asking
you to implement. Then, the evaluated temporal difference error is passed on to the actor, that uses it to
improve the current policy. The reward accumulated over each episode is printed in your terminal as the
training progresses.

This whole process repeats until the maximum number of episodes is reached. The actor is then run for a
few ‘test‘ episodes that will also render for you.

(vii) [5 points] In the Colab notebook, finish implementing the Critic class. You will need to create
a neural network that takes as input the state and predicts the state-value. You can look at how the
Actor was implemented for a template. The forward pass should take a batch of state, rewards and
next states and return a tensor containing the estimated TD error for each sample in the batch.

(viii) [5 points] Time to run! Test that your Critic network is working for the classic cart-pole problem.
Run the final cell in the notebook to see your Actor-Critic neural network in working. Include the
plot of the rewards accumulated over each training episode in your write-up.

If your actor-critic neural network isn’t giving you the maximum score of 200, don’t stress! We will grade
based on how often your actor gets a high score (you should be able to get at least above 100 somewhat
con�sistently) and the correctness of your implementation. Also keep in mind actor-critic algorithms some-
times require a certain amount of tuning to work well in practice.

5

Fall 2023

Problem 3: Write your own MDP [40 points]
In this problem, you are tasked with designing your own custom Gym environment and solving it using any
Reinforcement Learning (RL) algorithm of your choice. We provide two problem scenarios that you can
select from to solve using RL.

Scenario A:

Create an N ×N Gridworld environment. There are three entities in this environment: the agent, an apple
and a plate. The agent is tasked with cutting the apple and putting the slices of apple onto the plate. You
may assume that the agent spawns in the same location at the beginning of each episode, but the object
locations will be randomized. The agent is rewarded only if they complete the full task.

Scenario B:

Create an N ×N Gridworld environment. The agent spawns at the bottom-left corner of the grid at every
episode. There is a goal cell that is randomly initialized at every episode and fixed throughout the episode.
The agent is given a positive reward when it reaches the goal state. The environment is partially observable,
so the agent will only have access to its current location. Additionally, the agent will reset to the initial state
after a fixed number of steps within the episode. For example, if the total length of the rollout is 60 steps,
every 15 steps the agent will reset back to the bottom-left corner.

Design the Gym environment [15 points]
1. First, you should create a clear description of your Gym environment considering the following

aspects:

• The state space: What are the states your agent can be in? How do you represent the agent’s
state?

• The action space: What actions can the agent take?
• Reward function: How are rewards calculated in your environment?
• Termination condition: When does the episode end?

2. Using Python and any libraries of your choice, create a custom Gym environment following one
of the scenarios described above. Ensure that it follows the standard Gym interfaces and implements
the functions in the abstraction: reset, step, and other relevant methods. See the OpenAI gym
documentation for more details about the API: https://gymnasium.farama.org/

Training your agent [25 points]
1. [1 point] Choose any RL algorithm that you are familiar with or interested in exploring. It could

be Q-Learning, Deep Q-Networks (DQN), Policy gradient methods, or any other RL algorithm you
prefer. Report which algorithm you choose.

2. / [14 points] Implement the RL algorithm to train an agent within your custom Gym envi-
ronment. Make sure training uses a sparse binary reward only given to the agent when the task is
completed (full task in Scenario A, reaching a goal in Scenario B). Describe the implementation details
(e.g., hyperparameters, any design/architecture choice you made). Feel free to use any deep learning
library for your implementation (e.g. Tensorflow, PyTorch, JAX, etc). You should either implement
the RL algorithm from scratch or if you choose to use open-source libraries (e.g., stable-baselines) you
should include in the writeup a description of how the algorithm works.

3. [5 points] Next, incorporate some reward shaping (subtask rewards, step penalty, etc.) and retrain
the agent and show that this helped accelerate the learning or solve the task.

4. [5 points] Evaluate the trained agent and provide relevant plots for the RL training metrics and
task success rate curves.

Here are some additional resources to help you with the implementation:

• PyTorch tutorial on Deep Q-Networks

• OpenAI SpinningUp documentation

• Gym-minigrid: a lightweight gridworld environment

Submit your code implementation as Python files or a Colab notebook. Attach the training / evaluation
figures into the writeup.

6

https://gymnasium.farama.org/
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://github.com/pierg/environments-rl

