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AI Alignment

…AI alignment involves ensuring that an AI system's objectives 

match those of its designers…

(wikipedia)
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Random Utility Models
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Heterogeneous Preferences

𝜃1
≻A B C≻ …

≻D A C≻ …

≻B A D≻ …

.

..

𝜃2

𝜃𝑛
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Luise Ge Daniel Halpern Itai ShapiraAriel Procaccia Yevgeniy Vorobeychik Junlin Wu



Heterogeneous Preferences

𝜃1

𝜃∗

≻A B C≻ …

≻D A C≻ …

≻B A D≻ …

≻A B D≻ …

.

..

𝜃2

𝜃𝑛

𝑳𝒊𝒏𝒆𝒂𝒓 𝑴𝒐𝒅𝒆𝒍: 𝒓𝜽 𝒗 =< 𝜽, 𝒗 >



Linear Social Choice
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Axiomatic Approach

• Pareto Optimality: A linear rank aggregation rule 𝑓 satisfies Pareto optimality if, whenever every 
voter prefers candidate 𝑎 over candidate 𝑏, then candidate a is ranked higher than candidate b in the 
output ranking

• Pairwise Majority Consistency (PMC): A ranking 𝜎 is called a PMC ranking for profile 𝜋 if for all a, b ∈ 
C, 𝑎 ≻𝜎  𝑏 if and only if a majority of voters rank 𝑎 ≻  𝑏. A linear rank aggregation rule satisfies PMC 
if, when a PMC ranking 𝜎 exists for the input profile 𝜋 and 𝜎 is feasible, then 𝑓(𝜋)  =  𝜎

Goals:

• What axioms are satisfied by aggregation methods used by existing RLHF algorithms?

•  Are there alternative aggregation methods that offer stronger axiomatic guarantees? 



Loss-Based Rules

Theorem (informal): If a linear rank aggregation rule 𝑓 optimizes a loss function that is either nondecreasing 
and weakly convex, or strictly convex then 𝑓 fails PO and PMC

i𝑛𝑓𝜃  𝐿 𝜃; 𝜋, ℓ = i𝑛𝑓𝜃  σ𝑎≠𝑏 𝑛𝑎≻𝑏 𝜋 ⋅ ℓ(𝑟𝜃 𝑏 − 𝑟𝜃 𝑎 )

A loss function ℓ: ℝ → ℝ

BTL model: ℓ 𝑥 = ln(1 + 𝑒𝑥) 



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1
PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1
PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1
PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.

Copeland

𝝈′

1

3

.

.

.

PO

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1

3

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1

3

2

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.



A Social Choice Based Rule

• Leximax Copeland subject to PO

Output Domain

𝝈∗

2

1

3

𝑚 − 1

.

.

.

Copeland

𝝈′

1

3

2

𝑚

PO

𝝈𝟏 𝝈𝟐 … 𝝈𝒏

1 2 3

2 1 2

3 3 𝑚 − 1

𝑚 𝑚 − 1 𝑚

.

.

.
.
.
.

.

.

.
.
.
.



A Social Choice Based Rule

• Theorem: Leximax Copeland subject to PO satisfies 

a) PO

b) PMC

c) majority consistency 

d) winner monotonicity

and can be implemented in polynomial time by solving 𝑂(𝑚2) small linear programs



A Social Choice Based Rule

• Theorem: Leximax Copeland subject to PO satisfies 

a) PO

b) PMC

c) majority consistency 

d) winner monotonicity

and can be implemented in polynomial time by solving 𝑂(𝑚2) small linear programs

• Majority Consistency: A linear rank aggregation rule 𝑓 satisfies majority consistency if when a 
candidate 𝑎 is ranked first by a majority of voters in the input profile, 𝑎 is ranked first in the output 
ranking

• Winner Monotonicity: A linear rank aggregation rule 𝑓 satisfies winner monotonicity if, when a 
candidate 𝑎 is ranked first in the output ranking, elevating 𝑎 in any voter’s preference does not cause 
𝑎 to lose their top position in the updated aggregate ranking



A Social Choice Based Rule

• Theorem: Leximax Copeland subject to PO satisfies 

a) PO

b) PMC

c) majority consistency 

d) winner monotonicity

and can be implemented in polynomial time by solving 𝑂(𝑚2) small linear programs

• Majority Consistency: A linear rank aggregation rule 𝑓 satisfies majority consistency if when a 
candidate 𝑎 is ranked first by a majority of voters in the input profile, 𝑎 is ranked first in the output 
ranking

• Winner Monotonicity: A linear rank aggregation rule 𝑓 satisfies winner monotonicity if, when a 
candidate 𝑎 is ranked first in the output ranking, elevating 𝑎 in any voter’s preference does not cause 
𝑎 to lose their top position in the updated aggregate ranking



Heterogeneous Preferences

𝜃∗ ≻A B C≻

𝜃1
≻A B

≻A B

≻B A

𝜃2

𝜃3

C≻

C≻

C≻



Pairwise-Calibrated Ensemble of Reward 
Functions

Daniel Halpern Itai ShapiraAriel Procaccia
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Heterogeneous Preferences
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Pairwise-Calibrated Ensemble
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Pairwise-Calibrated Ensemble



Theoretical Results

The goal is to design an ensemble that:

• Satisfies pairwise calibration

• Has small support

• Excludes outliers

• No ranking has a Kemeny score significantly worse than the optimal ranking

• Proposition: A pairwise-calibrated ensemble with support min(𝑚, 𝑛) always exists

• Theorem: Finding a pairwise-calibrated ensemble is an NP-hard problem

• Theorem: For any 𝜖 > 0, there exists a 𝜖-pairwise-calibrated ensemble with support 𝑂(𝜖−1)

• Theorem: For any 𝜖 > 0 and 𝛽 ≥ 2, there exists a 𝜖 +
1

𝛽−1 

2
 -pairwise-calibrated ensemble that does 

not contain (𝛽, 𝛽 + 1 ⋅ √𝜖)-outliers

• Theorem (informal): Pairwise calibration can be learned with a limited number of pairwise comparisons



Experiments

and can be implemented in polynomial time by solving 𝑂(𝑚2) small linear programs
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