Towards Pluralistic Alignment:
From Axiomatic Foundations to Pairwise Calibration
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Al Alignment
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match those of its designers...
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...Al alignment involves ensuring that an Al system's objectives
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Reinforcement Learning with Human Feedback
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Random Utility Models
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Heterogeneous Preferences
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Axiomatic Approach
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Heterogeneous Preferences
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Linear Social Choice

O v.=12000]

© v =1020,0]

© vc=1010,10] 0=10,0,0,] HMp @O -©O-0O-0 -0
© v, =1001]

O . =100



Linear Social Choice
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Linear Social Choice
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Axiomatic Approach

Goals:
 What axioms are satisfied by aggregation methods used by existing RLHF algorithms?
* Are there alternative aggregation methods that offer stronger axiomatic guarantees?
» Pareto Optimality: A linear rank aggregation rule f satisfies Pareto optimality if, whenever every

voter prefers candidate a over candidate b, then candidate a is ranked higher than candidate b in the
output ranking

* Pairwise Majority Consistency (PMC): A ranking o is called a PMC ranking for profile r if for all a, b €
C,a >, bifandonlyif a majority of voters rank a > b. A linear rank aggregation rule satisfies PMC
if, when a PMC ranking o exists for the input profile T and o is feasible, then f () = o



Loss-Based Rules

A loss function £: R - R

infog L(O;m,€) =infyg YgepNagsp () - (rg(b) —1r9(a))

BTL model: #(x) = In(1 + e%¥)

Theorem (informal): If a linear rank aggregation rule f optimizes a loss function that is either nondecreasing
and weakly convex, or strictly convex then f fails PO and PMC



A Social Choice Based Rule

* Leximax Copeland subject to PO

RN
1 2 3 2
Copeland Output Domain

2 1 2 l 1 l

3 3 m—1 3




A Social Choice Based Rule

* Leximax Copeland subject to PO

RN
1 2 3 » 2
Copeland Output Domain

2 1 2 l 1 l

3 3 m—1 3




A Social Choice Based Rule
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A Social Choice Based Rule
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A Social Choice Based Rule

* Leximax Copeland subject to PO
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A Social Choice Based Rule
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A Social Choice Based Rule

* Theorem: Leximax Copeland subject to PO satisfies
a) PO
b) PMC



A Social Choice Based Rule

* Theorem: Leximax Copeland subject to PO satisfies
a) PO
b) PMC
c) majority consistency
d) winner monotonicity

* Majority Consistency: A linear rank aggregation rule f satisfies majority consistency if when a
candidate a is ranked first by a majority of voters in the input profile, a is ranked first in the output
ranking

* Winner Monotonicity: A linear rank aggregation rule f satisfies winner monotonicity if, when a
candidate a is ranked first in the output ranking, elevating a in any voter’s preference does not cause
a to lose their top position in the updated aggregate ranking



A Social Choice Based Rule

* Theorem: Leximax Copeland subject to PO satisfies
a) PO
b) PMC
c) majority consistency
d) winner monotonicity
and can be implemented in polynomial time by solving O (m?) small linear programs

* Majority Consistency: A linear rank aggregation rule f satisfies majority consistency if when a

candidate a is ranked first by a majority of voters in the input profile, a is ranked first in the output
ranking

* Winner Monotonicity: A linear rank aggregation rule f satisfies winner monotonicity if, when a
candidate a is ranked first in the output ranking, elevating a in any voter’s preference does not cause
a to lose their top position in the updated aggregate ranking
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Pairwise-Calibrated Ensemble of Reward
Functions

Daniel Halpern Ariel Procaccia Itai Shapira
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Heterogeneous Preferences
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Pairwise-Calibrated Ensemble

Pairwise Comparisons Ensemble of k reward functions
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Pairwise-Calibrated Ensemble
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Position: A Roadmap to Pluralistic Alignment
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Abstract Is it ok for governments to moderate
With increased power and prevalence of Al sys- public social media content?
tems, it is ever more critical that Al systems are
: : - x Pluralistic
designed to serve all, i.e., people with diverse Human Values Free speech

values and perspectives. However, aligning mod-
els to serve pluralistic human values remains an
open research question. In this piece, we pro-
pose a roadmap to pluralistic alignment, specifi-
cally using large language models as a test bed.
We identify and formalize three possible ways
to define and operationalize pluralism in AT sys-
tems: 1) Overton pluralistic models that present
a spectrum of reasonable responses; 2) Steerably
pluralistic models that can steer to reflect certain
perspectives; and 3) Distributionally pluralistic
models that are well-calibrated to a given pop-
ulation in distribution. We also formalize and
discuss three possible classes of pluralistic bench-
marks: 1) Mulfi-objective benchmarks, 2) Trade-
off steerable benchmarks that incentivize mod-
els to steer to arbitrary trade-offs, and 3) Jury-
pluralistic benchmarks that explicitly model di-
verse human ratings. We use this framework to
argue that current alignment techniques may be

findamantallu limitad far nluraliotin AT indaad

Overton Many think that

.
@ while others deem it acceptable for prevention of
— terrarism. A few, on the other hand, think it's
necessary to reduce misinformation.

It is ok for the government to moderate

Steerable content for terrorism and threats.

& 2
A\ or
@\W\*{ t is ok for the government to moderate

content that promotes false information.

Y

Distributional < A: Yes, for public safety threats (45%) |

B: No, to (32%) |
% ﬁ' I C: Yes, to prevent misinformation (9%) |
AL )

Figure 1. Three kinds of pluralism in models.



Theoretical Results

The goal is to design an ensemble that:

 Satisfies pairwise calibration

* Has

e Excludes outliers

* No ranking has a Kemeny score significantly worse than the optimal ranking

Proposition: A pairwise-calibrated ensemble with support min(im, n) always exists

Theorem: Finding a pairwise-calibrated ensemble is an NP-hard problem

Theorem: For any € > 0, there exists a e-pairwise-calibrated ensemble with support 0(e~1)

2
Theorem: Forany e > 0 and § = 2, there exists a (\/E + B%) -pairwise-calibrated ensemble that does
not contain (B, (B + 1) - Ve)-outliers

Theorem (informal): Pairwise calibration can be learned with a limited number of pairwise comparisons
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Experiments

Name Pref. Pairs Unique Prompts Annotation Avg # Annots.
MultiPref 9413 4,791 /532 Human annotators 4.0
PersonalLLM 263,256 9,402/ 1,000 Model-based scores 10
HelpSteer2 21,000 10,000 / 1,000 Human annotators 39
Reddit TL;DR 3,217 729 / 845 Human annotators 7.56
MultiPref PersonalLLM HelpSteer2 Reddit TL;DR
MSE on held-out prompls
0.10 020 0.121
Snge-Reward Limt 0.084 0.15- 0.094
0.05- 0.10- 0.061
_"“"-'..__‘_.__H e 5 & ————
0.03 0,054 0.031
0.00- 0.00- 0.00
2 4 6 8 2 8 4 6 8 2 4

Ensemble Size
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