# Simplifying Robot Personalization

Heramb Nemlekar

Assistant Professor



#### Assistive robotics



Kiri-Spoon









#### Barriers to state-of-the-art robotics

Rigaud et al. (2024) Journal of Rehabilitation and Assistive Technologies Engineering

#### Useful

Reliably perform variety of tasks



#### Easy

Intuitive with minimal training







#### Adaptive

Personalize to individual needs







#### Accessible

Affordable hardware & compute





## Imitation learning



#### Personalization

Unique individual needs of humans.







How do I teach the robot to raise the glass higher?



Many demonstrations? Different objects? Different heights?



Gap between end-users and state-of-the-art robot learners.

#### Barriers

Rigaud et al. (2024) Journal of Rehabilitation and Assistive Technologies Engineering

#### Useful

Reliably perform variety of tasks



#### Easy

Intuitive with minimal training







#### Adaptive

Personalize to individual needs







#### Accessible

Affordable hardware & compute





### Simplifying robot learning

How can we make it *easy* for humans *to program robots*?

Dominant objectues Prior

## Teaching by drawing

L2D2: Robot Learning from 2D Drawings (AuRo 2025)



## Simplifying robot learning

How can we make it *easy* for humans *to program robots*?





## Simplifying robot learning

How can we make it *easy* for humans *to program robots*?





#### Imitation learning

#### Training on data from multiple tasks

common







VIOLA: Zhu et al. (2022); HYDRA: Belkhale et al. (2023); MimicPlay: Wang et al. (2023); Octo: Ghosh et al. (2024); RT2: Google DeepMind (2023); Track2Act: Bharadwaj et al. (2024); Open x-embodiment: O'Neill et al. (2024)

- Of course, to be able to perform these multiple tasks.
- Similarities and dissimilarities between the tasks can help the robot generalize beyond the training tasks.

Transfer or extend knowledge to new tasks!

#### Imitation learning

#### Training on data from multiple tasks

common

small-scale, repetitive





VIOLA: Zhu et al. (2022); HYDRA: Belkhale et al. (2023); MimicPlay: Wang et al. (2023); Octo: Ghosh et al. (2024); RT2: Google DeepMind (2023); Track2Act: Bharadwaj et al. (2024); Open x-embodiment: O'Neill et al. (2024) What do you think is important for *generalization*?

Data quality > More data

#### Research question

If you can choose one task to train the robot in, which one would you choose?

Towards transferring human preferences from canonical to actual tasks (RO-MAN 2022);

Transfer learning of human preferences for proactive assistance (HRI 2023 Best Paper finalist);

Selecting source tasks for transfer learning of human preferences (RA-L 2024)

## Choosing training task

Say you want to teach a robot to play pickleball, which other training task will you choose?

Tennis (Similar S, A, R, T) more difficult

Table tennis Similar le lasier Skills Side to side throwing

#### Personalization

Unique individual needs of humans.







I want the robot to raise **all fragile objects** higher



Train with glassware? electronics? different materials?



**Focus:** Choosing a task to learn human *preferences* 

#### Transfer learning

*Approach:* Transfer objectives learned from demonstrations in simple task to the complex task.



#### Task definition

Model the simple task (source) and the complex task (target) as MDPs.

#### Markov Decision Process (MDP):





S - set of states  $s_t \in S$ 

A - set of actions  $a_t \in A$ 

 $T(s_{t+1}|s_t,a_t)$  - probability of transitioning to next state  $s_{t+1} \in S$ 

 $R(s_{t+1})$  - reward received by the user (objective)

Reward learned in the source MDP must also apply to the target MDP.

### Task-agnostic objectives

Represent the user's objective as a function of the *task-agnostic features*  $\phi$ .



**Assembly studies:** Features such as *cost of changing* parts and tools, *physical and mental effort* of actions. (*Fournier et al.* 2019, *Hesse et al.* 2020)



### Transfer learning framework



- Learn weights w via *inverse reinforcement learning* in source task  $M_{\mathcal{S}}$ :  $\arg\max_{w} P(\underline{w}|\xi)$
- Use same weights to compute reward in target task  $M_T$ :  $R(s) = w^T \phi(s) \quad \forall s \in S_T$ .



## Selecting simple task

- Learn weights w via *inverse reinforcement learning* in source task  $M_{\mathcal{S}}$ :  $\arg\max_{w} P(w|\xi)$
- Use same weights to compute reward in target task  $M_T$ :  $R(s) = w^T \phi(s) \quad \forall s \in S_T$ .

Learn user objectives



Simple task (Offline)

How to *automatically select simple source tasks* for transfer learning of human objectives?



User preferences for spending time and money.

$$R(s) = w_1 \phi_1(s) + w_2 \phi_2(s)$$



Target task

Time  $(\phi_1 = -1)$ 

Money ( $\phi_2 = -2$ )





All weights are equally likely. No information gained!

#### Information gained

User preferences for spending time and money.



$$R(s) = w_1 \phi_1(s) + w_2 \phi_2(s)$$









How informative should the source task be?





*Insight:* Source task only needs to be *behaviorally similar* the target task.



Behavioral equivalence class (BEC)

*Metric:* Select source tasks with *similar behavioral equivalence classes*.

$$BECS(M_{\mathcal{S}}, M_{\mathcal{T}}) = \frac{1}{|W|} \sum_{w_i \in W} P(w_i, M_{\mathcal{S}}, M_{\mathcal{T}})$$

 $P(w_i, M_S, M_T)$  = proportion of weights in  $BEC(w_i|M_S)$  that also belong in  $BEC(w_i|M_T)$  [source] [target]

#### Human-robot assembly

Robot proactively assists humans without demonstrations in complex assembly task.



- . Procedurally generate several source tasks.
- 2. Select *shortest behaviorally similar* source.



### Learning in source assembly

- Human manually requests required parts.
- Robot reactively assists user and learns task-agnostic objectives.



User prefers to **not switch tools** and **start with low effort** actions.



## Assisting in target assembly

- Robot predicts next assembly action and *proactively* reaches required part.
- Human provides feedback for online learning.





#### Increasing productivity

Benefit of *proactively assisting* user based on transferred objectives compared to *reactively following* user commands.





*Transferred weights* improve action accuracy compared to *uniform weights*.



## Simplifying robot learning

How can we make it *easy* for humans *to program robots*?





## Simplifying robot learning

How can we make it *easy* for humans *to program robots*?





#### Non-expert users

Challenging for novice end users to demonstrate robot motions accurately.



Multiple household tasks: handover, pick and place, or folding.

#### Research question

How can users change the robot's behavior without providing demonstrations?

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space (T-HRI 2025)

### Robot programming interface

End-users select **preferred task** and **robot behavior** from a *low-dimensional representation*.







#### Representation learning

Mapping high-dimensional robot trajectories to low-dimensional representations.



#### Task representation

Learn *separate latent representations* for tasks and robot behaviors.



#### Task representation

Learn *separate latent representations* for tasks and robot behaviors.



#### Task representation

Learn *separate latent representations* for tasks and robot behaviors.



#### Behavior representation

Shape latent space and map *extreme behaviors* to opposite ends of latent space.



Extreme behaviors E





## User-friendly interface

Learn *intuitive representations* for easily programming robot behaviors .



## Humans personalizing robots

#### Robot trajectory proxemics



#### Autonomous driving



### Humans personalizing robots

Our *direct interface* was more efficient, accurate, and intuitive than *active learning baseline*. (Active Preference Learning, Biyik et al. 2022)



#### Directions

What are some directions of research in imitation learning?

- Data collection / curation
  - How data characteristics affect learning performance? Towards balanced behavior cloning from imbalanced datasets (arXiv 2025)
  - What data modalities to use? How best to combine them? RECON: Reducing causal confusion with human-placed markers (IROS 2025) CIVIL: Causal and Intuitive Visual Imitation Learning (arXiv 2025)
- Efficient usage / learning
  - How to extract generalizable representations from data?
  - How to learn from data with minimal power consumption?
- Is data all you need?

# Simplifying Robot Personalization

Heramb Nemlekar

Assistant Professor

