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Assistive robotics




Barriers to state-of-the-art robotics

Rigaud et al. (2024) Journal of Rehabilitation and Assistive Technologies Engineering
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Imitation learning
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Personalization

Unique individual needs of humans.

Many demonstrations? Different objects? Different heights?

Gap between end-users and state-of-the-art robot learners.

How do I teach
the robot to raise
the glass higher?
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Simplifying robot learning

How can we make it easy for humans to program robots?




leaching by drawing

L2D2: Robot Learning from 2D
Drawings (Auffo 2025)




Simplifying robot learning

How can we make it easy for humans to program robots?

Learning from Using intuitive
simpler tasks tools & interfaces

Collaborative assembly Household tasks
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Imitation learning

Training on data from multiple tasks

common small-scale, repetitive

* Of course, to be able to perform
these multiple tasks.

 Similarities and dissimilarities
between the tasks can help the robot
generalize beyond the training tasks.

VIOLA: Zhu et al. (2022); HYDRA: Belkhale et al. (2023),
MimicFlay: Wang et al. (2023); Octo. Ghosh et al. (2024),
R12: Google DeepMind (2023); TrackZAct: Bharadway et al.

(2024),; Open x-embodiment: O'Neill et al. (2024)

Transfer or extend knowledge to new tasks!
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Imitation learning

Training on data from multiple tasks

common small-scale, repetitive

VIOLA: Zhu et al. (2022); HYDRA: Belkhale et al. (2023),
MimicFlay: Wang et al. (2023); Octo. Ghosh et al. (2024),
R12: Google DeepMind (2023); TrackZAct: Bharadway et al.

(2024),; Open x-embodiment: O'Neill et al. (2024)

What do you think is important
tfor generalization?

Dida, 4 wality 7 Mert faks
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Research question

If you can choose one task to train the robot in, which one would you choose?

lowards transferring human preferences from canonical to actual tasks (RO-MAN 2022);
Iranster learning of human preferences for proactive assistance (HRI 2023 Best Faper finalist),
Selecting source tasks for transfer learning of human preferences (RA-L 2024)
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Choosing training task

Say you want to teach a robot to play pickleball, which other training task will you choose?
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Personalization

Unique individual needs of humans.

Train with glassware? electronics? different materials?

Focus: Choosing a task to learn human preferences

I want the robot
to raise all fragile
objects higher
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Transter learning

Approach: Transfer objectives learned from demonstrations in simple task to the complex task.
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e.g., stacking blocks e.g., actual assembly
Users demonstrate simple task Robot assists in complex task
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Task definition

Model the simple task (source) and the complex task (target) as MDPs.

Markov Decision Process (MDP): (S, A, T, R)

S - set of states s, € S
A - set of actions a; € A

T'(s¢+1|5¢, ar) - probability of transitioning to next state s;41 € S

R(s¢+1) - (objective)
\

Reward learned in the source MDP must also apply to the target MDP.
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lask-agnostic objectives

Represent the user’s objective as a function of the

R(s) =w'¢(s) Vs e {Ss, St}

e

Feature weights capture States in the source
user preferences. and target task.
(Simple task)
. Ss

Assembly studies: Features such as T~

parts and tools, of actions.

(Fournier et al. 2019, Hesse et al. 2020) ST /
(Complex task)

_,(D

(Task-agnostic
feature space)
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Transfer learning framework dercers traken,

Learn weights w via inverse reinforcement learning in source task Mg: arg max P(w|{ J
w -

Use same weights to compute reward in target task M7: R(s) = w’ ¢(s) Vs € St

Learn user .
biect: feature weights
ODbjectives Actions that maximizes reward.
Compute . Predict
policy next action
3 %
\\\ / o~ /
N
Simple task (Offline) Complex task (Online)
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Selecting simple task

Learn weights w via inverse reinforcement learning in source task Mg : arg max P(wl¢)
w

Use same weights to compute reward in target task My: R(s) = w’ ¢(s) Vs € St.

Learn user
objectives
How to automatically select simple source tasks
for transfer learning of human objectives?
\\K ‘&
™~
A
Simple task (Offline)
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Example: Robot navigation

User preferences for spending time and money.

R(s) = w1¢1(s) + wa(s)

Hypothesis space
B

Start

Em - N
! _ g
0.0, ¢
Target task Source A Source B '
Time (¢, =-1)

User weights

Money (¢, = -2) All weights are equally likely.
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Example: Robot navigation

Information gained

User preferences for spending time and money.
Learned weights R(S) — wld)l(s) + Wy g (3)
Hypothesis space

1.0

w> (money)

1.0

Source C Source B

User weights

Hypothesis space

1.0
=
)
c
205
s

0.0
0.0 0.5 1.0
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Example: Robot navigation

Information gained

User preferences for spending time and money. , More
information gained

Learned weights R(S) = wlgbl(s) + Wa oy (8)

Hypothesis space

1.0

Hypothesis spacge

. 1.0
% %
[ C
£ 0.5 —> £05
s s
0.00 0 1.0 0.00 0 1.0
' ' Source C Source D ' ' '

User weights

Behavioral equivalence class (BEC)

How informative should the source task be?
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Example: Robot navigation

User preferences for spending time and money.

R(s) = w101(s) + waga(s)

Learned weights

Hypothesis space Hypothesis space
1.0 1.0

3 \L . B
) o
c c
s Sy

0'00 0 0'00 0 0.5 1.0

| Target task Source D | ' |

User weights

w1 (time)

Behavioral equivalence class (BEC)

24



Example: Robot navigation

User preferences for spending time and money.

R(s) = w101(s) + waga(s)

Learned weights

Hypothesis space Hypothesis space
1.0 1.0
= i =
Q )
o c
S g
00 %0 0.5
| Target task Source C | '

1.0

User weights

w1 (time)

Behavioral equivalence class (BEC)

Insight: Source task only needs to be beliaviorally similar the target task.
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Example: Robot navigation

Hypothesis space Hypothesis space
1.0 1.0
= \L =
) )
c c
s s
0'000 0.5 1.0 0'000 0.5 1.0
wy (time) Target task Source C wy (time)

Behavioral equivalence class (BEC)
Metric: Select source tasks with similar behavioral equivalence classes.

1
BECS(Ms, My) = — Z P(w;, Ms, M7)
|W| w; W
P(w;, Mg, M7) = proportion of weights in BEC(w;|Mg) that also belong in BEC (w;|M7)

[source] [target]
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Human-robot assembly

Robot proactively assists humans without demonstrations in complex assembly task.

Steps =17 Time = 9 min

propellers

propeller €5
hub

Model airplane assembly

1. Procedurally generate several source tasks.

2. Select shortest source.
Steps =6 Time = 4 min
short bolt long wire

long bolt

short wire

Simple source assembly
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Learning in source assembly

Human manually requests required parts.

Robot reactively assists user and learns task-agnostic objectives.

User prefers to not switch tools
and start with low effort actions.

—

Learned weights

(a]

Keep Keep Easy
tool  part start
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Assisting in target assembly

Robot predicts next assembly action and proactively reaches required part.

Human provides feedback for online learning.
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Increasing productivity

Benetfit of proactively assisting user based on transferred objectives
compared to reactively following user commands.

190 7 . . :
Transferred weights improve action accuracy

185 on © compared to uniform weights.
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Simplifying robot learning

How can we make it easy for humans to program robots?

Learning from Using intuitive
simpler tasks tools & interfaces

Collaborative assembly Household tasks
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Non-expert users

Challenging for novice end users to demonstrate robot motions accurately.

Pour Coffee whzle mamtazmng preferred distance from user.

| "

Multiple household tasks: handover, pick and place, or folding.
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Research question

How can users change the robot’s behavior without providing demonstrations?

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space (T-HRI 2025)
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Robot programming interface

End-users select preferred task and robot behavior from a

Task selection Robot behavior

Style 1 Diztance ta human

Reset Simulstion |

——
[ERTNT]
AR
LN e

Flay Sim Trajectory |

Save Trajectory on Robotl

Play Trajectory o Roboti

6./7/8 cm




Representation learning

Mapping high-dimensional robot trajectories to low-dimensional representations.

& a Encoder Decoder
d

>
Gy
= A Train reconstruction
0 R
& 0 v ¢ 1€ — ¥ (20)]I?

Demonstration Latent representation
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Task representation

Learn

Behavior encoder

Task encoder

for tasks and robot behaviors.

o
3 0 <0 Decoder
Latent behaviors @ Zy é
(% .
Gumbel | g
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¢ v | m
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s

d

PR Train reconstruction
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lask representation

Learn

Behavior encoder

Gumbel

¢ 7 |

Task encoder

Latent behaviors 20

for tasks and robot behaviors.

20 Decoder

<
m

2
[]

Latent tasks

Train reconstruction

||£ . w(ze;, ZT)||2
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lask representation

Learn

Behavior encoder

Task encoder

for tasks and robot behaviors.

Not user intuitive

Interface

Style 1 Distance to human

AR
& 7,
Latent behaviors E: . ?8 Cm
Gumbel
Zr
¢ v | m i
Latent tasks o

Reset Simulation I

Play Sim Trajectory I

Save Trajectory on Robotl
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Behavior representation

Shape latent space and map

Behavior encoder

Tanh

»eels

Latent behaviors

to opposite ends of latent space.

Extreme behaviors E

Zy

Minimize cross-entropy

N Z one-hot (i) - log(zp)

1€l
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User-friendly interface

Learn for easily programming robot behaviors .

Behavior encoder

Interface e
Tanh [ mee 000

Style 1 Distance to human

Reset Simulation I

=}
=}
é- 6 . Play Sim Trajectory I
<0

Save Trajectory on Robot.l

——
[DRTNT]
Eyrary
Crl ] =

Latent behaviors P e

6./7/8 cm

Gumbel -
-
¢ v | omm L

Latent tasks Rt

Task encoder



Humans personalizing robots

Robot trajectory proxemics

Interface

-1.00 1%

Autonomous driving

Current Target Style: [60. 28.], Press 'Enter' or button to play

T T T T T T T T T
-1.00 -0.75 -0.50 —-0.25 0.00 0.25 0.50 075 100

AED Q=
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Humans personalizing robots

Our direct interface was more efficient, accurate, and intuitive than active learning baseline.
(Active Preference Learning, Biyik et al. 2022)

1.0

0.8+

w
1

Attempts
Behavior Error
Subjective Ratings

Easy Intuitive Accurate Attempts  Prefer
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Directions

What are some directions of research in imitation learning?

* Data collection / curation

* How data characteristics affect learning performance?

* What data modalities to use? How best to combine them?

 Efficient usage / learning
* How to extract generalizable representations from data?
* How to learn from data with minimal power consumption?

* Isdata all you need?
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