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Abstract— Imitation learning techniques have been shown
to be highly effective in real-world control scenarios, such
as robotics. However, these approaches not only suffer from
compounding error issues but also require human experts to
provide complete trajectories. Although there exist interactive
methods where an expert oversees the robot and intervenes if
needed, these extensions usually only utilize the data collected
during intervention periods and ignore the feedback signal
hidden in non-intervention timesteps. In this work, we create a
model to formulate how the interventions occur in such cases,
and show that it is possible to learn a policy with just a
handful of expert interventions. Our key insight is that it is
possible to get crucial information about the quality of the
current state and the optimality of the chosen action from
expert feedback, regardless of the presence or the absence
of intervention. We evaluate our method on various discrete
and continuous simulation environments, a real-world robotic
manipulation task, as well as a human subject study. Videos
and the code can be found at https://liralab.usc.edu/mile.

I. INTRODUCTION

Imagine training a household robot to help users place the
dishes in the dishwasher. One way to do this is to use
reinforcement learning (RL) that has been proven successful
in several areas ranging from gaming to dialogue systems
to autonomous driving [1]–[4]. However, its need for lots of
online interactions with the environment as well as a well-
defined reward function make it unsuitable in a real-world
situation like this. An alternative is to use imitation learning
(IL) where an expert provides demonstrations of how to
place the dishes. IL requires fewer interactions in the world
than RL and does not require a reward function. A common
drawback of this approach is the compounding distributional
shift, which results from the accumulation of errors when
deploying a learned policy [5]: the small inaccuracies in the
robot’s learned policy will move it to an out-of-distribution
state where the policy may fail more significantly, which may
result in the robot breaking the dishes.

Interactive learning techniques try to overcome this com-
pounding errors problem by querying the expert with system
states in an iterative fashion, and fine-tuning the policy based
on the actions provided by the expert [6]–[9]. Most of these
techniques do not let the human intervene at will but transfer
the control to the human according to some criterion [8],
[10]. In others, the human can take over the control at any
timestep [7], [11]–[13].

Going back to the running example, assume the robot
had a mediocre policy in the beginning, thanks to some
initial training done in the factory setup. In this interactive
scheme, we would control the robot only when we think it
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is doing or about to do something wrong. This is clearly
more convenient than operating the robot for long periods
to generate full demonstrations. But what about the intervals
where we did not input any actions? Did we not provide
any information to the robot? The answer is no: the fact
that we chose to not intervene means the robot’s actions
were already good enough in those intervals. This is what
the existing interactive learning techniques are missing: even
though they try to improve the robot’s policy based on the
states where the expert intervenes, they do not utilize any
structure of how or when those interventions occur, ignoring
an important feedback signal that is leaking through the states
where the expert does not intervene.

In order to efficiently use the information in both the states
with and without human interventions, we argue that it is
necessary to understand and utilize the structure behind how
those interventions occur. Motivated by this, we propose the
following contributions in this paper:

1) We propose a novel model that is fully differentiable
to formulate how and when an expert intervenes.

2) We utilize this intervention model to fine-tune a weak
policy and evaluate our method in various simulated
and real-world environments to prove its effectiveness.

3) We compare our method against the state-of-the-art
baselines which utilize interventions to show its higher
sample-efficiency and performance.

II. RELATED WORK

Interactive Imitation Learning. In imitation learning, ex-
pert data is used to train a policy in a supervised way
[14]–[19]. Interactive imitation learning methods try to over-
come its compounding errors problem [5], [6] by querying
the expert on the learned policy’s rollouts [6]–[8], [10],
[14]. While the expert relabels either the whole trajectory
of the learned policy with actions, or some parts of it that
are automatically selected by estimating various quantities
related to task performance [6], [10], there are also works
where the expert has the freedom to intervene at will [7],
[11], [12], [20]. Some of these methods consider the implicit
feedback coming from the states that the expert chooses not
to intervene. They attempt to incorporate the information
leaking from non-intervention intervals either by enforcing
those state-action pairs to be constrained in the action-value
cost functions using some hyperparameters [13] or utilize
weighted behavioral cloning (BC) to incorporate the signal
from non-interventions, with different heuristics used for
assigning weights to on-policy robot samples, and expert
human interventions [11], [12], [20]. However, none of these
algorithms uses a model to understand and learn from why
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Fig. 1. Overall MILE System. A human operator oversees the robot during task execution and may decide to take over control at any timestep. The
human makes the decision to intervene or not based on their prediction of the robot’s potential failure, without observing the robot’s action in that particular
state. During the data collection phase, all interactions with the environment are recorded, both with and without interventions. The policy is then trained
on this dataset using an iterative process that incorporates our novel intervention model.

the expert chooses to not intervene. In our method, we pro-
pose a model that attempts to capture how the interventions
occur, and how satisfied the user is with the current action
in the case of not intervening. Moreover, we investigate how
we can efficiently use the information coming from that
model for training. To the best of our knowledge, this is
the first work that models how human interventions happen
in robotics while utilizing it for better policy learning.

Reinforcement Learning with Expert Data. Many stud-
ies focus on integrating expert demonstrations into the RL
pipeline. This is often achieved by populating the replay
buffer to warm-start the initial policy and guide its explo-
ration in a favorable direction [21]–[24]. There are also
approaches that incorporate interventions into RL. One ap-
proach introduces an extra cost term in the learning objec-
tive to minimize interventions [25]. Another recent method
relabels the rewards based on the interventions, assigning
negative rewards at intervention states, while giving a reward
of zero to all other states [26]. However, most of these
methods assume access to some type of reward informa-
tion, either through explicit reward functions or through
Q-functions of the task. Our method does not require any
of these assumptions. Not to mention, these methods still
require a lot of online interactions with the environment and
RL algorithms that can handle both on-policy and off-policy
data coming from the intervening agent.

Modeling Interventions. There have been efforts to
provide formal definitions and qualitative analyses of in-
terventions in the human-robot interaction research, along
with developing metrics to evaluate operator workload [27],
[28]. Within computational modeling, various studies have
addressed the modeling of trust in human-robot collaborative
settings, which include both binary and continuous measures
[29]. There are also methods exploring the temporal dy-
namics of trust conditioned on the task performance [30],
[31]. One such work models trust as a latent variable in
a partially observable Markov decision process (POMDP),
utilizing this model to maximize task performance [31]. To
the best of our knowledge, no prior work has developed a
similar computational model to explain the occurrence of

interventions in human-robot teams.

III. PROBLEM DEFINITION

We formulate the problem as a discrete time Markov deci-
sion process (MDP) with the standard ⟨S,A, ρ, f,R, T, γ⟩
notation. The robot does not know the reward function R or
the transition dynamics f of the environment. It starts with
an initial policy πθ : S → A parameterized by θ.

In addition, a potentially noisy expert human can intervene
(take over the control) with any action ah ∈ A at any
timestep. However, in contrast to some of the existing works
[32], the human has to make the decision about intervening
or not without observing the robot’s action ar ∈ A in that
particular state. This is a more viable setting in robotics
where it is not realistic to expect the robot to check each
and every action with the human.

We let the robot and the human interact in this setup,
and we record (s, ar, ah, s

′) from every timestep, with the
possibility that ah is undefined if the human did not intervene
in that timestep. Our objective is to find a policy πθ∗ that
maximizes the expected cumulative discounted reward:

θ∗ = argmax
θ

Eτ∼πθ

[
T−1∑
t=0

γtR(st, at)

]
where s0 ∼ ρ(·), and (st, at) pairs are sampled according to
the policy πθ and transition function f .

We assume the human interacts with the robot for N
iterations, each of which includes k episodes. After each
iteration, we train the robot policy using the data collected so
far. In the next section, we describe how we do this training.

IV. MODEL-BASED INTERVENTION LEARNING (MILE)

Our method to solve this problem is based on a compu-
tational model of when and how the human may decide
to intervene the robot’s operation. We will introduce this
intervention model in the first subsection. Subsequently, we
will leverage this model to create a framework where we
update the robot’s policy πθ based on its interactions with
the human and the environment.

Intervention Model. Consider our running example:
would you intervene the robot’s operation when it is quickly



Fig. 2. Framework for learning from interventions. Starting from an inital policy πθ , we jointly train the mental model, and the policy using our
intervention model.

moving toward a glass jar that stands at the edge of the
countertop? How about if the jar was made of plastic? This
example highlights the important factors that affect when
humans intervene the robot. Firstly, consider the case of glass
jar. The human is likely to intervene because they predict the
robot may hit and break the jar. So the human’s belief about
what the robot will do, i.e., their mental model of the robot,
affects their decision to intervene, as this was previously
shown in human-robot interaction research [31].

Next, let’s compare the cases with glass and plastic jars.
The human is less likely to intervene in the latter, because
even if the robot takes bad actions, the outcome is not going
to be as bad as in the case of glass jar. This points out that
the human’s interventions also depend on how good/bad the
potential outcomes are.

Considering these factors, we propose an intervention
model based on the probit model from discrete decision
theory [33]. For the ease of the presentation, we will start
with discrete action spaces and then extend our formulation
to continuous domains.

Let ν be a binary random variable that indicates whether
the human intervenes (ν = 1) or not (ν = 0), and āh denote
the nominal human action, i.e., the action human would take
provided they decide to intervene. Mathematically, ah = āh
if and only if ν = 1. Otherwise, ah is not defined in that
state. Finally, let π̂ denote the human’s mental model of
the robot, i.e., what the human believes the robot will do
in a given state. This prediction is needed as the human
has to intervene before seeing the robot’s action. While
some learning from intervention works assumes the human
first sees the system’s proposed action [32], ours is a more
realistic setting, especially in robotics where conveying an
action without taking it is both difficult and time-consuming.

We start with modeling the probability that the human
will intervene at a given state s. We use σ for the softmax
operation and Φ for the cdf of a standard normal distribution.

p(ν = 1 | s) =
∑
a∈A

p(āh = a, ν = 1 | s)

=
∑
a∈A

p(āh = a | s)p(ν = 1 | āh = a, s) (1)

Here, the first term inside the summation is just the probabil-
ity that the human would take action a at state s. Since we
assume the human is a (noisy) expert, we use a Boltzmann

policy under the true reward function of the environment to
model this probability, similar to the prior work [34]–[38]:

p(āh=a |s)=πh(a |s) :=σ(Q(s, a))=
exp(Q(s, a))∑

a′∈Aexp(Q(s, a′))

The second term in Eq. (1) denotes the probability that
the human will intervene conditioned on the state and their
nominal action. This is where we bring the probit model into
play: the human will intervene only if their nominal action
is considerably better than what they expect the robot to do:

p(ν=1 | āh=a, s) = Φ
(
Q(s, a)−Ea′∼π̂(·|s)[Q(s, a′)]−c

)
,

where c is a scalar hyperparameter. In this probit-based
model, the human is more likely to intervene if the value of
their nominal action is much higher than the expected value
of the robot’s action. The scalar c depends on the effort the
human needs to put to intervene the robot. If it is difficult
to intervene, c is going to be high and the human will only
intervene if the difference in action values is extremely high.
On the other extreme, if interventions are free, then c will
be low and the human may continually intervene.

Now that we modeled the probability of human interven-
tions, we continue with how they intervene when they do:

p(ah = āh | s) = p(ah = āh | ν = 0, s)p(ν = 0 | s)
+ p(ah = āh | ν = 1, s)p(ν = 1 | s)

= σ(Q(s, āh))p(ν = 1 | s) ,
where p(ah = āh | ν = 0, s) = 0 by the definition of ah.

We note the following relation due to the Boltzmann policy
formulation we use for the human:

lnπh(a | s)− lnπh(a
′ | s) = ln

(
expQ(s, a)∑

a′′∈A expQ(s, a′′)

)
− ln

(
expQ(s, a′)∑

a′′∈A expQ(s, a′′)

)
= Q(s, a)−Q(s, a′) .

This allows us to rewrite p(ν = 1 | s) and p(ah = āh | s)
only dependent on the policy and not the Q-function:
p(ν = 1 | s) (2)

=
∑
a∈A

πh(a |s)Φ
(
Ea′∼π̂(·|s)[lnπh(a | s)−lnπh(a

′ | s)]−c
)

=Ea∼πh(·|s)
[
Φ
(
Ea′∼π̂(·|s)[lnπh(a | s)−lnπh(a

′ | s)]−c
)]

p(ah = āh | s) = πh(āh | s)p(ν = 1 | s) (3)



This change of variables allows us to readily use this inter-
vention model in continuous domains. The main difference
is that, in the discrete case, ah has a categorical distribution
over the action space as well as the no-intervention (ν = 0).
In continuous case, ν acts like a gate controlling which
continuous policy (πh or πθ) will be active. We will now
present how we use this intervention model to learn from
humans’ intervention feedback.

Learning from Interventions. The robot misses infor-
mation about two critical components in the intervention
model: π̂ that models what the human thinks the robot will
do, and the human’s policy πh. In our learning algorithm,
we model both of these policies with neural networks, π̂ξ

and πθ, respectively (see “mental model” and “policy” in
Figure 2). Since the intervention model is differentiable, we
conveniently utilize the gradients coming from it to jointly
train these networks using the dataset of (s, ar, ah, s′) tuples.
During inference time, we only employ the trained policy πθ.

In discrete domains, we minimize the cross entropy loss
between the ground truth actions (ah if ν = 1 and ar other-
wise) in the dataset and estimated final action probabilities,
where no-intervention (ν = 0) is an extra class in the action
space. Mathematically, the loss function is:

J(θ, ξ) = CE(P̂(S; θ, ξ),ah)=− 1

N

N∑
i=1

log(p̂i,ai
h
(si; θ, ξ)) ,

where S is the set of states in the dataset, P̂(S; θ, ξ) is the
matrix of probabilities with each row p̂i(si; θ, ξ) being the
predicted probability vector for sample i, ah is the vector of
true intervention action labels including no-intervention, and
p̂i,ai

h
(si; θ, ξ) is the predicted probability for the true class

of sample i.
In continuous domains, we use a combination of discrete

and continuous loss functions as we want our model to
learn both when and how the human intervenes. In order
to accomplish the former, we use binary cross entropy loss
between ground truth intervention signals ν and the estimated
probability of intervention from Eq. (2), where πθ replaces
πh and π̂ξ replaces π̂:
J1(θ, ξ) = BCE(ν̂νν(S; θ, ξ), ννν)

=− 1

N

N∑
i=1

[νi log (ν̂(si; θ, ξ))+(1−νi) log (1−ν̂(si; θ, ξ))] ,

where ν̂νν(S; θ, ξ) is the predicted probability of whether an
intervention will happen. For the latter, we minimize the
negative log-likelihood of the human actions ah (when ν =
1) under the estimated action distribution in that state:

J2(θ) = NLL(πθ(ah | S)) = − 1

N

N∑
i=1

log(πθ(a
i
h | si)) (4)

J1 (intervention loss) updates both the policy and the mental
model, while J2 (policy loss) updates only the policy πθ,
both terms contributing to policy learning:

J(θ, ξ) = λJ1(θ, ξ) + (1− λ)J2(θ) (5)
In our experiments, we set λ = 0.5. We show the complete
pipeline in Figure 2. The pseudocode for our framework can

be found on the project website.

V. SIMULATION EXPERIMENTS

Experiment Setup. We tested our method on four different
simulation tasks, one with a discrete and three with contin-
uous action spaces. The discrete action space environment
is Lunarlander from Gymnasium [39]. The remaining three
tasks—Drawer-Open, Peg-Insertion, and Button-Press—are
from the Metaworld suite [40] where the primary goal is
to control a 6 DoF robot arm with a gripper to accomplish
various tasks that require precise joint control and are prone
to distributional shifts and local minima issues during RL
optimization. For the Metaworld experiments, we use true
world states as observations. To retain temporal information,
we concatenate the states of the previous three timesteps
with the current timestep. The action space is composed of
4 DoF: the Cartesian positions of the end effector, which
always points down, and +1 dimension for the gripper. Since
our model does not rely on any assumptions about the
environment’s reward structure, and our primary comparisons
are with other interactive learning methods, we follow the
prior work [41] to evaluate the methods using success
rates. Lunarlander is the only exception where we used the
environment rewards due to the simplicity of the task.

We use simulated humans to mimic human interventions in
our simulation experiments. The goal of these experiments is
to scale up the tasks and to show that it is possible to fine-
tune an initial policy in a sample-efficient way using our
framework. The data collection phase involves two distinct
policies: a suboptimal agent for generating rollouts and an
expert agent for interventions guided by our intervention
model. In place of the simulated human’s mental model
of the robot (πζ), we train a BC policy on the rollouts of
the suboptimal policy. During data collection, we rollout the
suboptimal policy and intervene with the simulated human.
In other words, the policy πh of the human in the intervention
model is replaced by π∗ during the data collection using
simulated humans. We see that these simulated interventions
increase the success rate by comparing the dashed and the
dotted lines in Fig. 3. During training, we jointly train the
suboptimal agent and the mental model as we described in
Section IV. At test time, we only use the trained policy and
discard the mental model.

Baselines. We compare our methods against (i) BC in-
tervention where the model estimates human’s interventions
with only a neural network, (ii) HG-DAgger [7], a state-of-
the-art algorithm that iteratively finetunes the policy based
on the interventions, (iii) RLIF [26], a recent work which
models the interactive imitation learning as an RL problem
and uses interventions as the reward signals to train the policy
in an online fashion, (iv) IWR [12] and (v) Sirius [11], two
methods utilizing weighted BC with different heuristics to
learn from both intervention and non-intervention timesteps.
We start with the same initial suboptimal policy for all
methods, and assume there is no access to any expert dataset,
apart from the interventions provided.

To be consistent with the realistic settings, we keep the



Fig. 3. Success rates for single iteration training (mean±std). MILE was trained with N = 1 iteration and k = 15 episodes. To make it a fair
comparison, we train the ohter baselines until they have the same number of interventions in their datasets as ours.

intervention ratio in the rollouts to be less than 30% by tuning
the hyperparameter c. For our initial results, we train our
method with N = 1 iteration and k = 15 episodes. For
fairness, we train the other baselines until they have the same
number of interventions in their datasets as ours.

Results. We present the results in Fig. 3. Our method
achieves the best results across all environments (only tied
with HG-DAgger, IWR and Sirius in Lunarlander, and with
RLIF in Peg-Insert), proving its sample-efficiency. Due to
the small amount of data which mostly consist of states
with no interventions, IL methods suffer from overfitting as
well as compounding errors. On the other hand, RLIF fails
to produce reliable results, possibly due to the number of
samples being too few to learn a successful policy.

To align more with the online nature of the baselines,
we also perform iterative training with N = 20 iterations
and k = 1 in Drawer-Open and Peg-Insert environments,
as Button-Press was a relatively easier task. We run HG-
DAgger, IWR, and Sirius in the same setting. For RLIF, we
set the number of samples in its replay buffer approximately
the same as MILE and other methods. The results are
shown in Fig. 4. We observe that our method significantly
outperforms the baselines. In just 10 iterations, it is able to
achieve the success rate of the expert policy which provided
the interventions, following with an even greater performance
while the baselines mostly fall short.

Offline Demonstration Ablation. All of the baselines
we compare against normally assume access to a set of
offline demonstrations. Although MILE does not require such
access, we run an ablation study in Drawer-Open, comparing

Fig. 4. Success rates for iterative training (mean±s.e.).

Fig. 5. Success rates for the demo ablation study (mean±s.e.).

our method against the baselines when they have access
to expert demonstrations. Results are shown in Fig. 5. Our
method performs better than RLIF even when it has access
to 5 expert demonstrations. IL-based methods’ performance
increases with the number of demonstrations in the dataset
and becomes competitive with MILE but plateaus around the
success rate of the expert agent. We believe this is due to
overfitting and compounding errors. In both IWR and Sirius,
robot actions are used as direct supervision signals in cases
of non-intervention, albeit with different weights. In contrast,
MILE uses the computational model for human interventions
that we developed to construct probability distributions over
the action space which are then used to train the models,
thereby increasing the information bandwidth of the human
feedback by computationally modeling them.

Overall, simulation results show our model for interven-
tions improves learning, and increases adaptability, especially



Fig. 6. Real robot experiment setup and Success rates for MILE and
other IL-based methods. All methods were trained for 6 iterations with
collecting 3 trajectories each iteration.

in low data regime where other interactive learning methods
fail. With a handful of intervention trajectories, we are able
to achieve near-optimal success levels in various tasks.

VI. REAL ROBOT EXPERIMENT

In order to show the effectiveness of our method in real
world settings, we designed an experiment using a WidowX
6-DoF robot arm and with a real human. The task is to put the
octagonal block into the wooden box through the correct hole
as shown in Fig. 6. The sensitivity of this task is very high,
as there exists a very small margin between the block and
the hole, which makes it a suitable candidate when the small
interventions provided by the humans can have substantial
effect on the robot’s success. We used image observations
along with the robot’s end effector position.

The robot is initialized with a mediocre policy that is
unable to complete the task. During the execution, the human
can take over the controls of the robot at any time via a PS3
controller. Similarly, they can also give the controls back to
the robot. We run the experiment with N = 6 iterations, with
k = 3 intervention trajectories collected in each iteration.

We compare our method against IL-based methods, which
have been somewhat more successful than RLIF in the
simulation studies. All methods use the same data collection
interface. Similar to the simulation experiments, we do not
assume access to any offline expert demonstrations and only
use the intervention trajectories. The results are shown in
Fig. 6. Our method is able to achieve 80% success rate
just after 4 iterations, while other baselines struggle to
improve the policy. This result showcases that our method is
applicable to real world settings as well.

VII. HUMAN SUBJECT STUDY ON REAL ROBOT

Finally, we conducted a user study to analyze how accurately
our model estimates the humans’ interventions, as the success
of our method relies on the success of the intervention model
capturing when and how humans intervene the robot. The
study is approved by the IRB office of the University of
Southern California. We used the same task setting and
experiment setup as in the previous section.

Procedure. We recruited 10 participants (3 female, 7 male,
ages 20-28). The study started with a training period where
subjects had a chance to get familiar with the robot controls.

We had 2 experiment settings. At the beginning of each
experiment, the subject was first shown 3 trajectories from
the initial policy to make them aware of the robot’s capabil-
ities. In the first experiment, the user was asked to collect 5

intervention trajectories (N = 1, k = 5), where they can take
over the initial policy at any time. These trajectories were
then used to fine-tune the initial policy using our method,
and the final policy was shown to the user. We asked the
users to rate the initial and the final policies.

The second experiment differed from the first by only
using N = 5 and k = 2. The users could intervene and take
control at any time during data collection: we did not provide
any instructions on how often to intervene. We showed the
finetuned policy at the end of each iteration and asked the
user to rate its performance. At the end of the study, we
did a post-study survey to collect participants’ feedback
on the method’s effectiveness, improvement and the their
satisfaction on the final result.

Results. We compared our intervention model against
two other methods: one that always predicts no intervention
(Majority Estimator) and a neural network classifier trained
on data from previous iterations to estimate interventions
in the current iteration (NN-Based Estimator). As shown in
Fig. 7, our model outperforms these methods in predicting
when an intervention will occur. Additionally, most users
rated our model’s effectiveness and adaptation speed as
adequate, demonstrating that it successfully mirrors real
human interventions.

Fig. 7. User Study Results (mean±s.e.). Legend: S=Satisfaction,
I=Improvement, E=Effectiveness

VIII. CONCLUSION

Summary. In this work, we presented MILE, a novel way of
integrating interventions in policy learning. We developed a
fully-differentiable intervention model to estimate when and
how the interventions occur, and a policy training framework
that uses the intervention model.

Limitations and Future Work. In its current form, our
intervention model considers only the immediate state for
estimating interventions. This does not fully capture the tem-
poral analysis humans make before intervening, i.e., waiting
for robot to fail in a recoverable way before taking control.
Future work should explore ways of integrating this temporal
aspect of intervention estimation, possibly with maintaining a
belief over robot actions and using Bayesian updates. Some
recent works show that the interventions can be used for
data generation and allow better sim-to-real generalization
[42], [43]. Another possible direction can be testing our
method’s capabilities in these domains, exploring whether
using a structure behind interventions enables even further
improvement in generalization or not.
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