
Supplementary Material

A. Pseudocode of the Algorithm

Algorithm 1 MILE: Model-based Intervention Learning in Iterative Setting
Notations
N : maximum deployment rounds, k: number
of rollout episodes in each deployment round,
l: number of batches, b: batch size,
m: number of epochs in each learning round,
α: learning rate,
πθ1 : initial policy, π̂ξ1 : initial mental model

for i← 1 to N do
Di+1 ← DEPLOYMENT(πθi , D

i)

πθi+1, π̂
ξ
i+1 ← LEARNING(πθi , π̂

ξ
i , D

i)

function DEPLOYMENT(πθ, D)
Collect rollouts w/ interventions τ1, . . . , τk
D′ ← D ∪ {τ1, . . . , τk}
return D′

function LEARNING(πθ, π̂ξ, D)
for m epochs and l batches each do

Get the next mini-batch
(
si, air, a

i
h, ν

i
)b
i=1
∼ D

Compute ν̂(si; θ, ξ)=p(νi=1 |si) based on Eq. (7)
Compute J(θ, ξ) based on Eq. (12)
Run in parallel:
θ ← θ − α∇θJ(θ, ξ)
ξ ← ξ − α∇ξJ(θ, ξ)

return πθ , π̂ξ

B. Simulation Experiment Details

Depending on the action space, we trained suboptimal initial policies and various levels of expert
policies for simulated humans using SAC or DQN [1, 2]. We train a different policy for each task.
For each task, the same expert is used to intervene across all methods. To generate the mental models
of simulated humans, we collected 100 rollouts of the initial policy and trained a BC agent on them.
In all result plots, we display the mean and standard error over 3 seeds for each method.

Regarding the observation space, we use true world states, i.e. low-level states of the robot and the
task-related object. This includes robot joint positions and the positions and orientations of relevant
objects. Our action space consists of the change in Cartesian coordinates of the robot end effector
and the gripper state. Each episode has a maximum of 1000 timesteps, with early termination upon
success.

To compare our method with RLIF, we used RLPD as its backbone algorithm in the domains with
continuous action spaces as it was done in the original paper [3]. For domains with discrete action
spaces, we used DQN as the backbone of RLIF. We initialized the policy networks for all methods as
the clones of the initial policy πθ. For the offline demonstration ablation, we also initialized RLIF’s
replay buffer with those demonstrations.

C. Real Robot Experiment Details

In this experiment, we use image observations (captured from a USB webcam) along with the robot’s
end effector position. We keep the same action space as in the simulation experiments for real-world
settings. The robot begins with the octagonal block in its gripper. The initial BC policy is trained
using 120 human-collected trajectories, gathered with a Meta Quest 2 headset. At the beginning
of real-world experiments, we show 3 trajectories to the users to make them aware of the robot’s
capabilities. We also warm-start the initial mental model using these same demonstrations. This
process requires no supervision from the human and minimal effort since the human only needs to
observe the robot.

D. Hyperparameters

We used a Multi-Layer Perceptron (MLP) with hidden dimensions of 256 in both the MetaWorld
and real-robot experiments for all methods. In order to get image embeddings in real-robot ex-
periment, we used a pretrained R3M model with ResNet50 architecture [4, 5]. To retain temporal
information, we concatenate the states of the previous three timesteps with the current timestep. For
the LunarLander experiment, we used an MLP with hidden dimensions of 64 for all methods. The
network outputs an action for the current step.
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The log-probabilities of the actions vary in scale between the policies used in different tasks. This
necessitates adjusting the standard deviation of the normal distribution whose cumulative distribu-
tion function (CDF) is used in Equation 7, along with task-specific cost terms (parameter c), to
calculate smoother rather than skewed intervention probabilities.

Table 1: Hyperparameters across different simulation and real-world tasks.

LunarLander Button-Press Drawer-Open Peg-Insert WidowX Peg Insertion
MILE (Ours)
Learning Rate 1e-5 1e-4 5e-4 1e-4 1e-5
Mental Model Hidden Dims (64, 64) (256, 256) (256, 256) (256, 256) (256,256)
Dataset size in Offline Experiment 5 Trajectories 15 Trajectories 15 Trajectories 15 Trajectories -
Number of Iterations - - 20 20 6
Episodes Per Iteration - - 1 1 3
Training Epochs per Iteration - - 300 300 500
Intervention CDF c 3 150 60 75 70
Intervention CDF σ 1 200 75 175 100

HG-DAgger
Learning Rate 5e-6 5e-5 1e-4 5e-6 1e-5
Number of Iterations 5 5 5/20 5/20 6
Episodes Per Iteration 1 3 3/1 3/1 3
Training Epochs per Iteration 400 1000 1000/300 1000/300 500

RLIF
Batch Size 64 256 256 256 -
Learning Rate 5e-4 3e-4 3e-4 3e-4 -
Discount 0.99 0.99 0.99 0.99 -
UTD Ratio 4 4 4 4 -

IWR
Learning Rate 5e-6 5e-6 1e-4 1e-6 1e-5
Number of Iterations 5 5 5/20 5/20 6
Episodes Per Iteration 1 3 3/1 3/1 3
Training Epochs per Iteration 400 1000 1000/300 1000/300 500

Sirius
Learning Rate 5e-6 5e-6 1e-4 1e-6 1e-5
Number of Iterations 5 5 5/20 5/20 6
Episodes Per Iteration 1 3 3/1 3/1 3
Training Epochs per Iteration 400 1000 1000/300 1000/300 500

All Methods
Policy Hidden Dims (64, 64) (256, 256) (256, 256) (256, 256) (256, 256)
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