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Abstract— Enabling robots to act according to human prefer-
ences across diverse environments is a crucial task, extensively
studied by both roboticists and machine learning researchers.
To achieve it, human preferences are often encoded by a reward
function which the robot optimizes for. This reward function is
generally static in the sense that it does not vary with time or
the interactions. Unfortunately, such static reward functions do
not always adequately capture human preferences, especially,
in non-stationary environments: Human preferences change in
response to the emergent behaviors of the other agents in
the environment. In this work, we propose learning reward
dynamics that can adapt in non-stationary environments with
several interacting agents. We define reward dynamics as a
tuple of reward functions, one for each mode of interaction,
and mode-utility functions governing transitions between the
modes. Reward dynamics thereby encodes not only different
human preferences but also how the preferences change. Our
contribution is in the way we adapt preference-based learning
into a hierarchical approach that aims at learning not only
reward functions but also how they evolve based on interactions.
We derive a probabilistic observation model of how people will
respond to the hierarchical queries. Our algorithm leverages
this model to actively select hierarchical queries that will
maximize the volume removed from a continuous hypothesis
space of reward dynamics. We empirically demonstrate reward
dynamics can match human preferences accurately.

I. INTRODUCTION

One of the most important challenges in robotics is to
enable robots to act and perform tasks in a way that matches
with human preferences. Since specifying all possible sce-
narios is very impractical for most of the real-world systems,
machine learning techniques are widely employed. Two
common approaches are to learn a reward function that
implicitly gives a policy for the robot, or to learn directly the
policy itself. While the latter approach has been successfully
applied for several tasks [1]–[4], the former one is often
preferable as it outputs an interpretable reward function.

Inverse reinforcement learning (IRL) is one such method
that is widely employed for learning reward functions using
expert demonstrations [5]–[8]. However, acquiring expert
demonstrations might be hard when the system of interest
has high degrees of freedom [9], or when the demonstrations
significantly differ from actual human preferences [10].

Preference-based learning has emerged as a successful
alternative to IRL for learning reward functions for robotic
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systems that uses other forms of human guidance, such
as pairwise comparison queries, when demonstrations are
not available [11]–[19]. Further studies combined IRL with
preference-based learning [20].

Like IRL, preference-based learning assumes a static re-
ward function, which is not expressive enough to match
human preferences in all environments. Real world is often
non-stationary due to environment complexity or changes
in objectives in the environment. Surrounding agents con-
tinuously change their behavior which in turn requires the
robot to adapt to these changes. For example, in driving
people continuously adapt their reward functions in response
to traffic complexity and behavior of other drivers. It is quite
common for us to get impatient behind a slow driver and
make drastic maneuvers different from our usual driving
style. Here we may weigh efficiency more than collision
avoidance than we usually do.

As an important class of non-stationary environments,
human-robot and robot-robot adaptation have recently at-
tracted much attention, where the aim is to ensure robots
adapt to their changing environments and other agents [21],
[22]. In contrast, our goal is to learn the reward functions that
dynamically change depending on the interactions between
the agents and the environment. We augment preference-
based learning to recover such multi-modal reward functions.

Prior works have also theoretically investigated how to
perform preference-based learning for multi-modal reward
functions [23]–[25]. Specifically in [25], it was shown that
pairwise comparisons can be used to learn only unimodal
reward functions, or as we call, static reward functions. In
this paper, by modeling and learning the transitions between
the modes, we relax the problem and empirically show that
we are able to learn bimodal rewards.

In our work, in addition to learning the reward function
for each mode, we are also interested in how they change
in non-stationary environments. Modeling behaviors in such
environments is a well-studied problem especially for driv-
ing. For example, [26] characterizes driving styles based on
sensor data using deep learning. In a more related paper
[27], the authors modeled the drivers with a latent state
space which can affect their driving behavior. While they
stated these latent states might change over time, both of
these works made the assumption that latent states remain
unchanged over the trajectories of interest, so they did not
address changing behaviors. In [28], the authors modeled
the latent states of the drivers using Hidden Markov Models
(HMM) where they also allow adaptation. However, they
did not specifically learn reward functions, and they focused
on identifying the maneuvers the drivers will perform from



a predefined database. With a similar objective, [29] used
HMM for latent state estimation for human-robot interaction.

In this paper, we propose to learn an expressive repre-
sentation of preferences in non-stationary scenarios, where
interactions and adaptations better reflect the real-world
conditions. We assume that the non-stationary scenarios arise
from changing behaviors of other agents interacting with
our system, which in turn affect human preferences. We
formalize reward dynamics which encodes not only different
human preferences but also how they change.

Our insight is that reward dynamics matches hu-
man preferences more accurately in a wide range
of scenarios than a static reward function.

We actively select comparison queries from a database,
similar to [12], [17], to learn a probability distribution
over reward dynamics: a mixture of static reward functions
representing different moods and a set of parameters for the
transitions between the moods. We tailor comparison queries
to capture longer term interactions between the robot and the
surrounding agents, and develop a probabilistic model of user
responses for any number of static reward functions and the
transitions between them.

In this paper, we make the following contributions:
Reward Dynamics: User preferences may change based
on the behaviors of other agents in the environment. We
encode the momentary human preference by a static reward
function and assume at any point of time the human has an
internal preference mode (mood) which dictates what reward
function the human will optimize next. We introduce the
notion of reward dynamics as a tuple of reward functions
and parameters governing transitions between those.
Hierarchical Queries: We formalize hierarchical queries as
a sequence of pairwise comparison questions, each of which
we call a sub-query. The sub-queries sequentially follow each
other so that the user moods are reflected into their choices.
Active Query Selection: We provide an algorithm that
actively selects informative hierarchical queries in order to
efficiently learn reward dynamics through interactions with
the users. We evaluate our algorithm on an autonomous driv-
ing example. We show in simulations that we can efficiently
learn changes in preferences when preferences indeed vary
based on interactions with different environments.

II. PROBLEM STATEMENT

Let us denote the agent in the environment of interest
(e.g. driving scenarios) that should match human preferences
as H (ego car), and the other agents in the environment
E = {E1, E2, ..., EP }. These agents can act differently at
different times. For example, in case of driving, some cars
aggressively swerve through the traffic and others may follow
a more cooperative strategy allowing other cars to merge
smoothly. Prior works on autonomous driving [30]–[37]
assume H should follow the same reward function over time
in both of the above scenarios. We argue user preferences
may vary in response to the changing behaviors of the
environment agents in both driving and potentially other

multi-agent environments. Our goal is to learn an expressive
reward function corresponding to these dynamic preferences.

We model the environment as a fully-observable dynam-
ical system. For driving, the continuous state of the system
x ∈ X includes the positions and the velocities of H and E .
The state of the system changes based on actions of all the
agents through a function f .

xt+1 = f(xt, utH , u
t
E) (1)

where uE are the actions of E , which affect the reward
function and in turn the actions uH of H. We define a finite
trajectory ξ ∈ Ξ as a sequence of continuous state-action
pairs ξ = (x0, u0

H , u
0
E , . . . , x

T , uTH , u
T
E) over a finite horizon

T , and Ξ is the set of all feasible trajectories that satisfy the
dynamics of the system.

Our goal is to learn human preferences for how H should
behave in the presence of different environment agents E . We
learn this reward function by making hierarchical comparison
queries to the users.

III. HIERARCHICAL COMPARISON QUERIES

Prior works have learned static reward functions by ask-
ing people to compare between two different trajectories
of robots. There, each query is a pair of short videos
that demonstrate two trajectories of the system [11], [12],
[16]. Such short trajectories do not capture the nuances
of interaction in a non-stationary multi-agent system. As
an example, in a 1-step comparison query in Fig. 1(a), an
environment agent E (white car) aggressively merged in front
of H (orange car). One option is for our user to slow down
(optimize a cooperative reward function). This sudden slow
down may have frustrated the user, causing a mode change.
So in a similar situation later (in another query) the user
prefers a trajectory optimal with respect to a competitive
reward function and prevents E from merging in front. This
change in preference manifests as noise in 1-step preference-
based learning approaches (see the Fig. 1(b)). However, we
would like to learn a composite reward function that not
only captures both of these preferences but also how they
have changed in such non-stationary environment.

To do so, we allow the users to change their preferences
within the same query. We present each query q as a sequence
of several sub-queries. Each sub-query qi in the sequence
is a continuation from the final state of the trajectory of
the previous sub-query qi−1. This allows us to learn how
the behavior of other interacting agents in one sub-query
affects user preference in the next sub-query. We assume that
the users’ next immediate preference mode depends only on
their current experience. We, therefore, reset their preference
mode at the beginning of each query with a demonstration,
which we denote as q0. After q0, each sub-query is a pairwise
comparison qA, qB ∈ Ξ. qA1 and qB1 are both continuations
of q0. In general, for the rest of the sub-queries, qAi and qBi
are continuations from q

ai−1

i−1 where ai−1 is the answer for
the (i− 1)th sub-query, as shown in Fig. 1(c).
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Fig. 1. a. 1-step comparison query. In any two iterations a user with bimodal preference may pick the trajectories optimal with respect to two different
true weights w1GT and w2GT (GT stands for ground truth). b. This ambiguity shows up as noise in 1-step comparison based learning where the goal is
to learn a single reward function wGT (on the left). In reality the true preference function of the user wGT changes between w1GT and w2GT depending
on the environment, αGT governs the transition. Our algorithm learns such a bimodal preference: w1 close to w1GT and a w2 close to w2GT (on the
right). c. Our proposed hierarchical query consists of 3 sub-queries: q0 is a context sub-query, q1 is a comparison between two trajectories, each a different
continuation of q0 and q2 continues the preferred trajectory from q1.

IV. REWARD DYNAMICS MODEL

A. Preliminaries

Throughout the paper, we will use [n] to denote the integer
set {1, 2, . . . , n} for n ∈ Z>0.

We denote the ith sub-query as qi for i ∈ [s]∪{0}, where
the number of sub-queries within one query is s.

We assume there is a finite set of modes M and we
enumerate each mode such that M = {1, 2, . . . , k} where
k is the total number of modes. Mj is the jth element of the
set of modes M . We also assume the mode of the user is
stable during each time period, the duration of a sub-query.
We denote the mode in the ith sub-query as mi ∈M .

Each qi, except q0, consists of two trajectories qAi , q
B
i ∈ Ξ.

The user selects A or B as his/her response to each of these
sub-queries. The user’s response to qi is ai ∈ {A,B}. āi
denotes the complement of ai, i.e. {ai} ∪ {āi} = {A,B}.

In addition, we assume a features function φ : Ξ → Rd
that maps every trajectory to a d-dimensional feature space.
This function depends on both H and E . We assume the d
features of the environment F are known. For example, some
representative features for driving are distance to the closest
environment car, distance to the road boundaries, the speed
and the heading angle of the ego vehicle.

B. Human Preference Model

Reward functions under known modes. We define a user-
specific reward function parameterized by the mode of the
user, for example, two different reward functions represent-
ing calm and rushed driving: RMj

: Ξ → R for j ∈ [k].
With linearity assumption as in [11], [12], it is defined as:
RMj (ξ) = w>Mj

φ(ξ) where ξ ∈ Ξ and w ∈ Rd×k is a user-
specific weight matrix, and wj is the jth column of w, with

each column corresponding to a particular mode for a user.
Then, the user response to a sub-query qi is probabilistic
based on Luce’s Choice Axiom [38], [39] which is a widely
used human decision model in cognitive science as it nicely
captures the uncertainty in humans’ choices:

P (ai|qi,mi, w) =
exp(Rmi

(qaii ))

exp(Rmi(q
ai
i )) + exp(Rmi(q

āi
i ))

(2)

This models probability of the human making a choice
given a sub-query, the humans’ mode during that sub-query,
and the user-specific preferences.
Prior on mode transitions. We also learn how people
change modes. For example, how likely is a person to
transition from aggressive driving to defensive driving or
vice versa. We assume that a prior G ∈ Rk×k over the
mode transitions is given by the designer. The matrix G
alone represents the natural propensity to transition between
different modes and is independent of the sub-queries and
the current state of the learning algorithm. For example,
some mode transitions are naturally more likely than the
others: If we have three modes that correspond to defensive,
neutral and offensive moods, then it would be more likely
for a defensive user to switch to the neutral mode than
to the offensive mode. G captures this prior. Hence, it is
constrained to be a proper Markov chain matrix. We note
that Markov chains are employed similarly for mood changes
by psychiatrists, e.g. [40]. We explain the formulation of the
mode transitions next.
Mode transition model. The users change their mode based
on what they experienced in the previous sub-query and
their previous mode. We define a Mode-Utility function to
capture this effect of the sub-queries. Specifically, we model
the mode transitions as follows: The user has an underlying



mode-utility function that quantifies the previous trajectories.
If the user thinks she would have higher utility with mode
Mj , then she transitions to Mj . As an example, imagine you
are driving in a very calm mood. If someone suddenly cuts in
front of you, you would think “if I were aggressive, I could
keep a shorter headway with the car in front and the other
car would not have been able to cut in front of me”, and
you also switch to an aggressive mood. It is of course also
possible that you keep calm. Hence, the transition should be
stochastic.

We model the mode-utility as a function of trajectories:
UMj : Ξ → R for j ∈ [k]. Again with linearity assumption,
it is defined as: UMj

(ξ) = β>Mj
φ(ξ) where β ∈ Rd×k is

another user-specific weight matrix and βj is the jth column
of β.

The probability of transitioning from any mode Mj0 in
sub-query qi−1 to any mode Mj1 in the next sub-query
is given by multiplying the prior G with the likelihood
computed using the mode-utility function:

Pj0j1(qi−1, ai−1, β)

:= P (mi = Mj1 |mi−1 = Mj0 , qi−1, ai−1, β)

=
1

Z

exp(UMj1
(q
ai−1

i−1 ))∑
m∈M exp(Um(q

ai−1

i−1 ))
Gj0j1 (3)

where Z is the normalization constant. In a completely
“neutral case”, when the likelihood (softmax) gives equal
values for each mode, the transition is solely defined by the
prior G. Some examples of G are:

• Gj0j1 = 1/k for ∀(j0, j1) ∈ [k]2 means that the user
may change from any mode to any other mode just
based on the previous sub-query with a uniform prior.
This is suitable when the modes are categorical, not
sequential.

• G = I means the user will not ever change her mode
and will remain in her initial mode. Note that the initial
mode will also be modeled in a probabilistic way.

• If G is a band matrix, then the user can only change
between the modes that are “close”. This is suitable for
sequential modes.

While our learning model is valid for any feasible G,
we will do simplifying assumptions to actively select the
hierarchical queries for sample-efficient learning.

Definition IV.1. Reward dynamics of a user is a tuple of
(w, β), which governs both the user preferences and how
they transition with the interactions the user is involved in.

Therefore, our aim is to learn the reward dynamics rather
than a static reward function.
Initial State. We do not know the initial mode m0 of the
user, which is the active mode during q0. One simple way
is to assume uniform distribution over all modes. However,
imagine G is such that transitioning to Mj is very unlikely
from any mode. Then, the uniform assumption will not hold,
because the user is unlikely to be in mode Mj . Then a better

model is the following:

Pj := P (m0 = Mj) = πMj
(G) (4)

where πMj denotes the probability of mode Mj in the
stationary distribution of the Markov chain G. If there exist
several stationary distributions, the designer should pick one
of them using domain knowledge.

C. Learning Reward Dynamics

To make the learning of reward dynamics effective and
efficient, we should restrict the continuous space of reward
dynamics. For that, we make assumptions on the norms of
the columns of w and β similar to [11], [12].

There is also the problem of label switching. That is, all the
probabilities will remain the same if we switch the order of
modes both in w and β. Since this can completely disable the
learning, we enforce another constraint on the ordering, as
mentioned by [23], such that βM1,1 > βM2,1 > · · · > βMk,1

where βMj ,1 is the first element of M th
j column of β.

Our goal is to learn a distribution over the reward dynam-
ics by making informative queries. We start with a uniform
prior over the space of all feasible (w, β). After receiving
all the answers to a query q, (a1, a2, . . . , as), we perform a
Bayesian update:

p(w, β|as, as−1, . . . , a1, qs, qs−1, . . . , q0)

∝ p(as, as−1, . . . , a1|w, β, qs, qs−1, . . . , q0)p(w, β) (5)

Next we derive the expression for the update function
p(as, as−1, . . . , a1|w, β, qs, qs−1, . . . , q0) and present some
simplifications that we adopted for our implementation.

D. Derivation and Simplifications

In this section, we present how we compute the update
function for p(w, β). We note q0 does not receive any
response. For the simplicity of notation, we let qa00 be the
associated trajectory in q0, so that Pj0j1(q0, a0, β) is well-
defined for ∀(j0, j1) ∈ [k]2. We then derive

P (as, as−1, . . . , a1|w, β, qs, qs−1, q0)

=
∑

(j0,...,js)∈[k]s+1

Pj0Pj0j1(q0, a0, β) . . . Pjs−1js(qs−1, as−1, β)

∏
l∈[s]

P (al|w, ql,ml = Mjl) (6)

In our implementation, we restrict ourselves to the cases
where s = 2. Then, the above equation is simplified as

P (a2, a1|w, β, q2, q1, q0)

=
∑
j0∈[k]

∑
j1∈[k]

∑
j2∈[k]

Pj0Pj0j1(q0, a0, β)Pj1j2(q1, a1, β)

P (a1|w, q1,m1 = Mj1)P (a2|w, q2,m2 = Mj2) (7)

To eliminate the normalization Z from the equation, we
assume Gj0j1 ∈ {0, 1/cj0} for ∀(j0, j1) ∈ [k]2 where cj0
is an appropriate constant. That is, we assume the model
designer will just decide on whether or not it is possible to



move between any two modes and will not assign specific
prior probabilities. Then,

Pj0j1(q0,a0,β)=
exp(β>Mj1

φ(qa00 ))∑
j′∈[k]:Gj0j′=1/cj0

exp(β>Mj′
φ(qa00 ))

(8)

If we further assume k = 2 and Gj0j1 = 1/2 for
∀(j0, j1) ∈ [k]2, such as the case of cooperative and
competitive modes, we also have Pj0 = 1

2 , so we can write:

P (a2, a1|w, β, q2, q1, q0)

=
∑

(j1,j2)∈{1,2}2

∏
i∈{1,2}

exp(w>Mji
φ(qaii ))

exp(w>Mji
φ(qaii )) + exp(w>Mji

φ(qāii ))

exp(β>Mji
φ(q

ai−1

i−1 ))

exp(β>M1
φ(q

ai−1

i−1 )) + exp(β>M2
φ(q

ai−1

i−1 ))
(9)

This formulation enables us to update p(w, β). We are now
ready to present our active query selection algorithm that
improves data-efficiency.

V. ACTIVE QUERY SELECTION

In this section, D denotes all the information about w and
β up to the current iteration of interest —we dropped the
subscript for simplicity.

Each answer tuple (a1, a2) removes some volume from
the hypothesis space of (w, β), where, volume removed is
given as the difference between the unnormalized posterior
distribution over (w, β), and its prior distribution. We have
a belief over what the user answers could be. We leverage
this probabilistic model to actively select a query at each
iteration that will maximize the expected volume removal.
Formally, we solve the following optimization:

(q∗0 , q
∗
1 , q
∗
2)

= arg max
q0,q1,q2

Ea1,a2 [Ew,β [1−p(a2,a1|w,β,q2,q1,q0)]] (10)

where both expectations are taken given D, q0, q1 and
q2. To compute the inner expectation, we sample (w, β)
from p(w, β|D) using Markov Chain Monte Carlo methods.
Unlike previous works in active reward learning [11], [12],
our update function is not log-concave. We, therefore, resort
to Metropolis-Hastings algorithm. Now, let’s say we take M
samples. We let w̄ and β̄ represent those samples:

(q∗0 , q
∗
1 , q
∗
2)

u arg min
q0,q1,q2

Ea1,a2

 1

M

∑
w̄,β̄

p(a2, a1|w̄, β̄, q2, q1, q0)


Formally writing Ea1,a2 , the minimization objective is∑
(a1,a2)

p(a2, a1|q2, q1, q0,D)
1

M

∑
w̄,β̄

p(a2, a1|w̄, β̄, q2, q1, q0)

where the first sum is over {A,B}2. By the law of large
numbers, we also have:

p(a2, a1|q2, q1, q0,D)= lim
M→∞

1

M

∑
w̄,β̄

p(a2, a1|w̄, β̄, q2, q1, q0)

as w̄ and β̄ are drawn from p(w, β|D), independent from q2,
q1, q0; and (a1, a2) are conditionally independent from D.
Then, for large M , we can write the optimization as:

arg min
q0,q1,q2

∑
(a1,a2)∈{A,B}2

∑
w̄,β̄

p(a2, a1|w̄, β̄, q2, q1, q0)

2

(11)

where the probability expression in the objective function is
already derived in Section IV.

VI. SIMULATION EXPERIMENTS

A. Problem Domain

We focus on learning driving preferences. Each component
of the learned reward dynamics weighs 5 features for driving
that attempt to encode safety and traffic rules: one feature
for penalizing closeness to the edges of the road, one for
velocity, and three more features of proximity to lane centers,
to other cars and alignment with the road, similar to [11]1.
Each sub-query consists of the driving environment and a
pair of trajectories of E and H whose preferred behavior we
are learning. The environment is represented by the trajectory
of an environment car and the initial states of H. Our query
database consists of 10000 randomly generated hierarchical
comparison queries.

B. Dependent Measures

In our implementation we learned α1 := β1 − β2, instead
of β, as it has fewer parameters2. The same approach
generalizes to any k with αj := βj − βk for ∀j ∈ [k − 1].

We measure the performance of hierarchical preference
learning in terms of expected dot product between learned
weights and true weight as in [11], [12], separately for each
component of (w,α):

r = E
[

v̂.v∗

‖v̂‖2‖v∗‖2

]
(12)

where v ∈ {w1, w2, α1}, v̂ and v∗ are the estimated and true
weights, respectively, and the expectation is taken over the
sampled v̂ values. Hence, r is a measure of convergence, as
its value being close to 1 indicates learned weights are close
to the true weights.

C. Experiments with Random Data

We first conduct experiments with completely random and
independent sub-queries without the driving environment.
We assume we can generate queries in an unconstrained way
such that any φ-vector is possible, i.e. there is no dynamics
constraint in the generation of queries. Here, we simulate
oracle users: users who are perfectly aware of their true
reward dynamics. That is, they always behave (change mode

1While traffic rules are not explicitly modeled in our simulation, many
of the features can be weighed appropriately to encode them. For example,
the feature for velocity measures the deviation from the maximum allowed
speed which can be easily adapted to the road type.

2Note we cannot do the same trick for w, because while β in Eq. (9) can
be simplified to α, there is no such simplification on w.
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Fig. 2. r value shows that our algorithm converges well for non-driving
data with non-active query selection when the simulated user is oracle. Here
we show an average r over 5 different ground truth reward dynamics.

and respond) with respect to the higher probability out of
softmax models. In Fig. 2, the average results of 5 different
simulated oracle users show convergence of (w1, w2, α1)
whose true values were independently drawn from standard
normal distribution independently for each entry.

D. Experiments with Driving Data

Active versus non-active query selection. We compare
the performance of our active query selection algorithm
with a non-active baseline where we uniformly sample the
queries from a discrete database of 10000 queries. Here our
simulated users are always oracle. We test the following
hypothesis: H1. The reward dynamics learned with our active
query selection algorithm converges to the true weights faster
compared to the non-active baseline. Our results in Fig. 3
supports this hypothesis by demonstrating that active query
selection accelerated the learning of one of the modes (w2)
compared to the non-active baseline.
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Fig. 3. r values show that our algorithm with active query selection from
dataset of 10000 discrete queries (left) can learn reward dynamics faster
than non-active query selection (right) when the simulated user is oracle.
Here we show an average r over 5 different ground truth reward dynamics.

Testing different mode preferences. Next we simulate
5 noisy users, who choose between options A and B with
respect to p(a|w, β, q). Our algorithm actively selects queries
from the same discrete dataset of size 10000 as in the case
of oracle users. We first set the following hypothesis: H2.
Our algorithm learns the reward dynamics even when the
users are noisy.

We also test the performance of our algorithm for different
mode likelihoods, i.e. probability of transitioning to a given
mode, p(m = Mj). We manipulated the ground truth reward
dynamics to reflect different mode likelihoods. For example,
one user might be in one mode 80% of the time while
another user has equal chances of being in one of the two
modes. Although this might actually affect the priors P1

and P2 as we explained in Section IV, we still adopted the

derivations based on uniform prior to test the robustness of
our framework. Therefore, we test the following hypothesis:
H3. Our algorithm learns the weights w that correspond to
both modes, and it converges faster for wMj

if p(m = Mj)
is higher.
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Fig. 4. r value shows even when the users are noisy our algorithm can
learn the true reward dynamics (left) and that as p(m = M1) increases,
w1 converges faster (right).

Fig. 4(a) shows that our algorithm was able to learn w1,
w2 and α1 even when the users are noisy. We note that in
general we learn α1 slowly and we need more queries for
its convergence. The second plot shows that we are able to
learn the reward weights wj of a mode Mj regardless of its
likelihood probability being high or low. The same plot also
shows the algorithm converges faster for the modes that are
visited more often. This is intuitive, as the algorithm is able
to gather more information about those modes, even though it
does not perfectly know that the user is in the corresponding
mood. Hence, H3 has strong empirical support.

VII. USER STUDY

A. Hypotheses

We test the following hypotheses with the user study:
H1. Our algorithm learns weights that can represent the
driving behavior of the users. H2. Some people indeed
change preferences depending on the driving behaviors of
the interacting agents.

Close to lane margin
Road alignment
Distance to cars
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Distance to road boundary
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a) Distribution of learnt "(and ")
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b) Average rewards with respect to !"1 and 
!"2 for two users showing minor difference.

Fig. 5. Distribution of ŵ1 and ŵ2 across all users for individual features.
(a) user preferences vary widely for adherence to lane center and distance to
road boundaries, but are very similar for efficiency (speed) and safe driving
(collision avoidance). (b) While we did not learn significantly different w1

and w2 for individual users, the average reward w.r.t to ŵ1 and ŵ2 differ
slightly for some of our study participants.

B. Study Design

To validate our hypotheses, we collected data from 10
real users in a within-subjects study. We first learn a general
reward dynamics (ŵ, α̂) using 50 hierarchical queries. We
then use the posterior distributions over these parameters to
jump-start the process for each subject with a reasonable
prior that better represents legally correct driving. During



validation, we ask users to provide ratings for trajecto-
ries locally optimized with respect to the learned reward
dynamics. We compare the expressiveness of the learned
weights (ŵ1, ŵ2) against their perturbed versions (wp1 , w

p
2).

We sampled these perturbed versions from Gaussian distri-
butions centered around (ŵ1, ŵ2) and a standard deviation of
0.5×|ŵ1| and 0.5×|ŵ2|. While creating perturbed versions of
ŵ1 and ŵ2, as an attempt to ensure legally correct driving,
we constrain the weight components for the features that
correspond to staying within the road and avoiding collision
with cars. We also compare with wr sampled from a Gaussian
distribution centered on either ŵ1 or ŵ2 with a standard
deviation of 2 × |ŵj | with the corresponding mode index
j. Each rating question consists of two parts. The first part
is similar to q0 of the learning step, where we show user
one trajectory demonstration of H as an attempt to set their
initial mode. In the next part, we show users 5 trajectories
continued from the first part, optimal with respect to 5 reward
functions: ŵ1, ŵ2, their perturbed versions wp1 and wp2 , and
wr. For each of the 5 trajectories, we ask users a 7-point
Likert scale rating question: Indicate your level of agreement
with the following statement: I would like to ride this car.

In H1 we claim 1) users will give the highest overall rating
to the trajectories generated from ŵ1 and/or ŵ2 most of
the time, and 2) if p(Mj) is very high, we expect people
to give the highest rating to trajectories generated from
corresponding weight ŵMj . To validate the first part, we
repeat the same demonstration across several rating queries
preserving E’s trajectory alike and changing the trajectory of
H, varying between different local optimal with respect to
w1, w2 and the other weights. We randomize demonstration
trajectories across the rating questions. In H2 we hypothesize
that subject to different interactions in the environment, users
will sometimes give higher rating to trajectory optimal for
ŵ1 and sometimes to those optimal for ŵ2.

C. Results

Like previous work in this area [11], [12], we found that
the users have somewhat similar preferences: proximity to
cars has high negative weight and speed has high positive
weight showing that people generally prefer safe and efficient
driving (see Fig. 5). On the other hand, features that encode
staying on the road and alignment with the road vary more.
While the general direction of the feature weights is similar
between ŵ1 and ŵ2 for each user, there is some difference
in the magnitudes. We computed the percentage difference
between average reward with respect to ŵ1 and ŵ2 as
ŵ1.φ̄−ŵ2.φ̄

ŵ1.φ̄
, where φ̄ is the average feature values for our

application. This gave us the percentage difference in the
average reward. We found that of all the users the maximum
difference is 12% and the minimum difference is 6%. While
we also learned α, it becomes relatively unimportant here,
as w1 and w2 are very close.

As it can be seen in Fig. 6, the users gave the highest
scores to the trajectories generated from ŵ1 and ŵ2 with
statistical significance. This suggests an empirical evidence
for H1. While we also observed that users sometimes gave
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Fig. 6. Most users gave high ratings to the trajectories optimal for ŵ1

and ŵ2 and low ratings to trajectories optimal for their perturbed versions
wp

1 and wp
2 and the lowest rating to the trajectories that were optimal with

respect to some random weight wr .

high ratings to ŵ1 and sometimes to ŵ2, we have not
observed a significant dependence on the modes. This is due
to the fact that the learned weights were very close to each
other as they represent the legal driving behavior, which is
a very small subset of all the reward space. Further, our
simulation environment may not be realistic enough to elicit
emotions like anger, frustration etc. that cause behavioral
changes in different traffic situations [41]–[43]

VIII. DISCUSSION

Summary. We developed a model of how humans change
their moods based on the interactions with the environment,
as well as how they respond to the choice queries when they
are in a particular mood. Using this model, we developed a
volume removal-based active learning algorithm to efficiently
learn the reward functions and the mode transitions. We
demonstrated through simulations and user studies that this
framework can efficiently learn dynamic preferences.
Limitations. While the framework is very general, we tested
it only for driving environment. In fact, because legal driving
is a very small subset of the space of static reward functions,
we observed in our experiments that queries focus mostly
on learning this small subset, and we would need higher
number of queries to recover different modes within this set.
More extensive experiments on various environments where
all reward functions are sound but the personalization is more
important could give more interesting results.

We also used a specific set of parameters k = 2, s = 2.
Other values require further research for theoretical identi-
fiability guarantees with the relaxed problem of multimodal
reward learning we presented.
Future Directions. Besides research on identifiability and
task environments, we are also investigating how we can
incorporate into our framework other methods for latent state
inference and improve the expressivity of reward dynamics.
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