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Abstract—Unnamed Aerial Vehicles (UAVs) are becoming in-
creasingly popular and widely used for surveillance and re-
connaissance. There are some recent studies regarding moving
object detection, tracking, and classification from UAV videos. A
unifying study, which also extends the application scope of such
previous works and provides real-time results, is absent from
the literature. This paper aims to fill this gap by presenting a
framework that can robustly detect, track and classify multiple
moving objects in real-time, using commercially available UAV
systems and a common laptop computer. The framework can
additionally deliver practical information about the detected
objects, such as their coordinates and velocities. The performance
of the proposed framework, which surpasses human capabilities
for moving object detection, is reported and discussed.
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I. INTRODUCTION

UAVs have become an essential part of surveillance and
reconnaissance in recent years. Beside their widespread usage
in the entertainment and media production industries, UAVs
are used for many military and civil applications. These
applications include search and rescue, traffic control, border
patrol and security. The use of UAVs for security applications
requires an operator that should be able to process the infor-
mation rather quickly. Since human operators are generally
quite behind these criteria, computers with the ability to meet
these specifications with consistent reliability, accuracy, and
precision, at quick rates and for a low cost, are expected to
surpass human operators.

An important application of aerial surveillance for security
purposes is to detect and classify moving objects in the
observed area. There are some studies in the literature that
accomplish either detection, or classification, or both with
limitations. In their study Mattyus et al. [1] accomplished
object detection and tracking for vehicles and humans in real-
time from low altitude aerial surveillance. In addition to the
detection and tracking, Iwashita et al. [2] also performed
classification with 80% accuracy for vehicles and humans
but the operation was not in real-time. Another similar study
is conducted by Oreifej et al. [3] where they performed
detection and classification for humans but not tracking. In
[3], classification accuracy was 85% and the operation was
not in real-time. Although detection, tracking and classification
were achieved in real-time in [4], the camera was stationary

and much closer to the moving objects, which makes the entire
process easier due to higher resolution, larger target objects,
and fewer noise sources.

To the best of our knowledge, previous studies that perform
detection, tracking and classification collectively do not work
in real-time. Useful information that complement aerial videos
are also provided by UAVs, such as geographical coordinates,
telemetry data, and flight information; other studies have
neglected to utilize such information for object localization.
Hence, these systems should be improved to operate in real-
time, and their scope can be extended.

Here, we propose a framework that performs moving object
detection, tracking, and classification for vehicles and humans
in real-time for low-altitude (near 100 meters) aerial surveil-
lance. Our technique also uses telemetry data of the UAV to
calculate the GPS coordinates of the classified objects.

II. METHODS

The main purpose of this study is to propose a robust
framework that performs moving object detection, tracking and
classification in real-time, with computation power require-
ments that can be met with a common laptop computer. We
start this section with an overview of the proposed framework,
and then describe the components.

The main blocks of the algorithm are presented in the
flowchart given in Fig. 1. Instead of designing a unidirectional
system, we leverage the information from tracking and clas-
sification to improve detection performance. Relative position
and size mean the position and size of objects in terms of
pixels.

A. Image Undistortion

We start processing after the acquisition of a video frame as
an image. While camera lenses help widening or shrinkening
the field of view, they also deform the images. These distor-
tions have an essential negative impact on image registration
[5]. In order to remove the effect of the lens from the retrieved
images, lens parameters, i.e. intrinsic, extrinsic, and lens
distortion parameters, were extracted via camera calibration,
which enables image undistortion [6].

As the camera lens is the same throughout a video (or a
flight), we compute the mapping between the original image
and the destination image in advance, and use it for proceeding
video frames. This precomputation step significantly speeds up
the undistortion process.
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Fig. 1: General flowchart of the proposed framework. Blue blocks
show the main components. Green and yellow blocks represent the
input and the output, respectively. While black arrows show the flow
of processed images, orange items are other information that the
framework utilizes.

B. Image Registration

While working with a mobile camera, image registration is
one of the key steps for surveillance. To align two images, one
should determine the keypoints of the images, and then match
them. The matched keypoints are used to compute a transfor-
mation between images, which performs the alignment.

Every frame that enters the registration step is converted
into a grayscale image for fast computation of the remaining
processes. These images are processed until the classification
step where color images are used. The registration process
continues with the alignment of consecutive frames.

Corner points are considered as keypoints. In literature,
several keypoint detectors have been proposed. While some
of them are suboptimal in terms of image registration per-
formance, some suffer from long computation times. In [7],
authors showed the FAST corner detector outperforms other
techniques in most cases in terms of repeatability, which
measures the ability to detect the same corner points under
geometric and photometric transformations [8]. We employ
the FAST algorithm because it is designed for high speed per-
formance [7], which is critical for our framework. We extract
200 best-response keypoints per image, which is adequate for
keypoint matching and does not immensely slow down the
process.

To match the keypoints of two images accurately, it is
important to employ a high-performance keypoint descriptor.
In [9], authors showed the superiority of FREAK descriptors
over its competitors, in terms of recall values and com-

putation times. In the proposed framework, keypoints are
matched based on the closest distance between their FREAK
descriptors. Using these matchings, homography transform
matrix between two images are computed with a RANSAC
method, which has been preferred for its robustness under
noisy conditions. At the end, we align the frame onto the next
consecutive frame via the homography matrix as [1] suggests.

We also transform the relative positions of previously de-
tected objects in order to keep the track of all objects on the
matched frames. Without this important step, tracking would
fail when the camera moves fast.

C. Moving Object Detection

Having two consecutive images aligned, frame differencing
is a widely known technique for moving object detection for
its favorable performance and speed [10, 11].

One problem associated with frame differencing is that it is
vulnerable to the errors caused by image registration. When the
alignment of the two images undergoing differencing is faulty,
misdetections occur at the sharp color transition points. To
suppress this problem, median filtering is generally employed.
In our framework, we use mean filter for its significantly
higher speed. Under the assumption that moving objects are
not too small in terms of pixel size (i.e. the camera is high
resolution and/or the camera is not at very high altitudes), we
proportionally select the window size of the filter to video
resolution. For a 1080p video, a square window size of 7 was
found to be optimal considering the detection accuracy.

To binarize the image, we apply simple thresholding. If the
number of pixels found to be moving is higher than 10% of
the entire image, we consider the images to be misaligned and
go back to the image registration step with the next frame.
If such a problem does not occur, we perform connected
component labeling, and then apply morphological dilation
to each individual object by using a kernel identical to the
binarized object itself. The purpose of this adaptive dilation
step is to combine objects that are moving as parts of the same
entity, e.g. hood and trunk parts of a car.

Having detected moving object candidates, we perform a
“median across frames” step to eliminate detections that are
actually noise. In this method, three consecutive frames are
compared and detections are removed if they appear only once.
Normally, this technique requires finding the median value
of all individual pixels. To accelerate, we take the mean of
the binarized images and apply simple thresholding. We then
check which objects have not disappeared, and keep them in
the original labeled image while discarding the others.

Finally, we enlarge all detection rectangles so that they
contain the complete object. To do so, we apply a filter whose
impulse response is a rectangle window of size propotional
to video resolution. 11-by-11 window has been found to be
sufficient for a 1080p video.

The impacts of tracking and classification on the detection
stage are described in the corresponding subsections.



D. Tracking

Tracking enables the framework to match previous detec-
tions with the current detections, and is essential for improving
performance and speed of the detection and classification
processes.

The tracking step is initiated with the calculation of the
center point and the size of each and every detection. These
detections are then matched with existing trajectories with
respect to the distances between their center points. While
doing so, trajectories that cannot be matched to latest de-
tections are removed, since they correspond to either noisy
detections or objects that have stopped for a long time. After
matching is complete, trajectory of each moving object is
independently controlled: If an object is changing its direction
too frequently, its trajectory is removed as it is noise with an
adequately high probability. Since it is more important not
to miss moving objects rather than completely eliminating
noise, we set a threshold that is only high enough to eliminate
radically variant noise sources: trajectory of an object is
removed if that object’s direction changes at least once in
three consecutive frames on average. Upon the exclusion of
abnormal detections, Kalman filter is employed to track the
moving objects. Kalman filter is an especially useful tracking
tool when objects disappear or stop temporarily. When an
existing moving object is not detected, our framework keeps
track of it for another 3 seconds while labelling it as passive;
and if it does not appear again, the track is removed. For the
filter, the process and measurement noise covariance matrices
are initialized empirically, and are stored separately for each
object. These matrices are then updated with respect to the
percentage of frames in which the object has remained passive,
so that the Kalman gain is low for mostly passive objects. The
transition and measurement matrices are formed by kinetic
calculations using the natural physical model. Further details
on object tracking using Kalman filter can be found in [1].

E. Classification

The classification step is a member of the core framework
processes. The detections that are carried onto this step are
classified as vehicles or humans. This step consists of two sub-
steps: Preclassification and deep convolutional neural network
(deep CNN) classification.

During preclassification, positive and negative biases are
prepared and enforced on the output of the deep CNN. It can
be seen in Fig. 2 that the vehicles and humans are highly
separable with respect to their sizes. To utilize this fact, an
adaptive threshold is applied on detection size; the threshold
level depends on the camera altitude and the video resolution.
If a detection’s size is larger than the vehicle threshold, then
its probability of being a vehicle is increased by 20% (being
a human is decreased by the same amount). Similarly, if it
is smaller than the human threshold, then its probability of
being a human is increased by 20%. With the same reasoning,
a velocity threshold is also performed: Detections that move
faster than 10 m/s are biased to be vehicles and the ones slower
than 5 m/s are biased to be humans.
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Fig. 2: The histogram for area size of human- and vehicle-class
detections from a dataset collected by a UAV at an altitude of 100
meters. The video resolution is 1080p.

Deep CNN classification technique was chosen due to its
favorable performance in image classification tasks [12]. As
the network is deep and the number of moving objects may
be large, an accelerated framework was needed. To address
this issue, we employed pretrained SqueezeNet model [13],
which achieves AlexNet-level [12] accuracy with much fewer
parameters. SqueezeNet also enables us to benefit from trans-
fer learning concepts, where partial training of the network
eliminates the need for massive datasets.

We prepared a dataset using data from three sources: Videos
taken from 100 meters altitude with the camera of Phantom 3
Advanced Drone (DJI, China) under different illumination and
weather conditions, videos taken from 25 meters altitude with
Hero4 camera (GoPro, CA) which are then downsampled by
4 in both directions, and videos from Stanford Drone Dataset
[14]. Sample data are shown in Fig. 3. The entire set consists
of 32760 training and 3640 validation images, equally divided
into four classes: humans, groups of humans, vehicles and
faulty detections, where the class of faulty detections is aimed
at improving the detection performance. Humans and groups
of humans are defined as two distinct classes in order to
improve classification accuracy, although both are reported as
humans at the end.

Fig. 3: One data sample from each class is shown: (a) human, (b)
group of humans, (c) vehicle, (d) faulty detection. Images are resized
for visual quality.

Using the dataset, two convolutional and one fully-
connected layers of SqueezeNet were trained, and the resulting
network was used for moving object classification. Images
that are ready for classification are first resized to 227-by-227
pixels to match the network. Resized images pass through the
network, and the bias values obtained from preclassification
are added onto the resulting probabilities. If the image is
classified as a faulty detection, the detection is removed. Oth-
erwise, the image is labeled and the corresponding probability
is used to determine when the same object will be classified



again, i.e. if the classifier gives a high probability of belonging
to a class, then the object does not need to be classified for
some time depending on the probability (up to 1.5 seconds).

F. Location Calculation

The last block of our proposed framework is the calculation
of detection locations in universal measures. For this, the GPS
of the UAV is utilized. If this information is not available, this
step can be skipped, as it does not affect the other blocks.

To calculate the GPS coordinates of a moving object, its
distance from the point where the camera is perpendicular to
the ground is computed in North East Down (NED) coordinate
frame. We use this distance along with the altitude of the
camera from the ground, its azimuth and field of view in both
north and east directions to calculate the relative coordinates of
the object in NED frame. These coordinates are then converted
into GPS frame by first calculating the Earth-Centered Earth-
Fixed (ECEF) coordinates of the UAV using its GPS position
and elevation from the sea level. Further details on these
calculations can be found in [15].

III. EXPERIMENTS

A. Implementation Details

A Phantom 3 Advanced UAV (DJI, China) was used
throughout this implementation. The video quality supplied
by the UAV was 1080p at 60 frames per second (fps). Videos
were recorded from an altitude of 100 meters and camera
exposure was manually adjusted depending on the brightness
of the environment.

A number of frames proportional to the total processing time
were skipped to achieve real-time results: Any two consecutive
frames that are processed by the framework would correspond
to the samples of the source video at every time interval where
the framework returns to the image undistortion step. The
framework provided results at an average of 6 fps (see Fig. 4).

The main components of the proposed framework were
implemented using the C++ language, supported with OpenCV
libraries [16] and the Caffe framework [17]. The classifier
utilized the SqueezeNet CNN [13], partially retrained with our
dataset, implemented with CUDA (NVIDIA, CA) to run on the
laptop graphical processing unit (GPU). A modified version of
the DJI Mobile SDK Android application, aided with a custom
TCP client and server, and a Java™ application that uses
Google Maps API (Google, CA) to retrieve elevation above
sea level from the given GPS coordinates, were employed to
access the UAV’s telemetry information.

The experiments were performed on CASPER CN TKI-
3210E laptop computer with a 2.5 GHz Intel Core™ i5-3210M
CPU, 16 GB DDR3 RAM. And, 2 GB NVIDIA GeForce GTX
950M Graphic Card was used for the classification step.

B. Experiments

The core elements of the system that affect performance
are image registration, moving object detection, Kalman filter
tracking and classification. To quantify the performance of the

set of algorithms used during each core element, we performed
several experiments that are described below.

Image registration performance was quantified by measuring
the peak-signal-to-noise ratio (PSNR) between the 800-by-
600 pixels central regions of two consecutive frames that are
aligned. For this, our UAV was flown over a mixed terrain
area consisting of a few buildings, roads, hills, and trees. The
acquired video consisted of two parts; in the first part the UAV
was stationary to reveal the image registration performance
under random instabilities, and in the second part the UAV
was flown over the same area in a circular motion at a speed
ranging between 1 m/s to 5 m/s and less than 0.5 rad/s rotation.

Moving object detection was tested with a video where
the UAV was flown at an average 2 m/s for duration of 25
s, across a densely populated region with over 100 persons
and vehicles in total, with an average of 10 moving objects
visible at a frame. All detections were examined and labeled as
true or false negatives or positives. In order to obtain a rough
reference to human performance, the same videos were later
shown to 4 volunteer human subjects on a 17-inch screen. The
subjects were asked to identify all moving objects that they
were able to spot. Calculating the precision and recall values
as given in Egs. 1 and 2, F; scores (see Eq. 3) have been used
to quantify the performance of both the detection process and
the reference human test subjects.

. # of all true positives
Precision = — ) (1
# of all positives

# of all true positives

Recall = 2)

# of all moving objects’
2 X Precision X Recall

Fi = 3
! Precision + Recall )

The video used for detection testing was also used to
quantify the Kalman filter performance. Labels of the detec-
tions were surveyed; tracking losses and joined labels were
identified. These were used to quantify the number of times
the tracker was successful, failed to track the target after
initializing the tracks, or failed to produce persistent track.

Classification performance was tested using offline results
from a collection of four videos acquired at a variety of terrain
conditions and population densities. The actual type of the
objects were later determined and compared to the classifier
results. A total of 287 humans and 128 vehicles were present
in the videos.

IV. RESULTS
A. Computation Time
The computation time of each system block with their cor-
responding algorithms was measured, and reported in Fig. 4.
B. Performance

In the registration stage, the system achieves a minimum
PSNR of 27 dB while UAV is stationary, and 17 dB while it
is moving with an approximate speed of 5 m/s. As it is shown
in Fig. 5, PSNR increases when the UAV slows down. UAV
speed and rotation rate are inversely correlated with image
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Fig. 4: Computation times, averaged over 100 video frames, are shown for each step of the framework. The times required for the completion
of morphological dilation, tracking and classification steps depend on the number of moving objects in the frame. Classification time is
reported for a single object, whereas dilation and tracking times have been averaged for a general case where more than 10 moving objects
are present. The total time required for the processing of a frame is 150 ms to 200 ms depending on the number of objects (from O to 5),
which corresponds to a video processing rate of 5 to 6.67 frames per second.

registration performance, which is an expected result since the
transformation becomes more complex with faster movements.
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Fig. 5: Image registration process was assessed using peak signal-to-

noise ratio over a 250-frame video. Nearly-perfect alignment was

achieved when the camera is stationary. When it is moving, a

minimum PSNR of 17 dB was observed.

0 50

The detection stage, without any feedback from tracking and
classification steps, yields an F1 score of 0.91 (see Table I).
This is a desirably high rate since the later phases of tracking
and classification can compensate for misdetections. Tracking
would likely filter out temporary misdetections, and persistent
ones will be carried onto the classification stage, likely with
the label of faulty detections. The comparison with subjects
shows that although humans are quite precise while detecting
movements, they miss several moving objects as they cannot
focus on the entire video at once. Thus, the average human
reference indicates that the proposed system meets its goal of
exceeding the success of human operators.

TABLE I: Precision, recall and F; scores for moving object detection
with no feedback from tracking and classification steps

Precision Recall F; Score
Detection Algorithm 0.88 0.94 0.91
Human Average 1 0.71 0.83

Kalman tracking maintenance failure ratio is 8.77%, which
means that our system can keep track of an object 91.23 frames
out of 100 frames on average.

Classification performance is evaluated through a confusion
matrix in Table II. The accuracy of the faulty detections class
indicates classification step, in fact, improves the detection.
For the combined outcomes of three classes, overall accuracy
is 90.6%.

Lastly, we measured the real and calculated distances be-
tween the center points of frames and detected objects. We
have seen that the difference is about 1%.

TABLE II: Confusion matrix of the classifier

Prediction
Human Vehicle Faulty Detection
= Human 260 6 21
£ Vehicle 13 111 4
< Faulty Detection 6 3 139

V. DISCUSSION

Quantitative analyses of our image registration, moving
object detection and tracking performance have yielded greater
average stationary state registration PSNR values and detection
F1 scores than those from [18]. The overall classification
accuracy was greater than in [2] and [3]. Considering major
application differences, such as our use of feature based
methods aided with different descriptors for image registration,
our real-time approach using a sampled video with lower
fps, use of different datasets and learning techniques, and
possible differences in our camera setting such as UAV related
hardware, it is difficult to evaluate the significance of these
results. However, achieving higher than literature values can be
a strong indicator that our framework provides successful and
computationally cheap solutions for use in aerial surveillance
related applications.

To enhance the proposed framework, some critical points
can be improved. Image registration is a primary and critical
process in this framework due to the use of a UAV that is
in motion. In cases where there is an insufficient number of
corner points in a scene, consecutive frames may be matched
improperly. For such cases, area based image matching meth-
ods [19] can be applied. Also, more sophisticated methods,
such as SIFT [20] or SURF [21], can be employed given the
availability of resources with a high computational capacity.

To further reduce the number of detection failures, thresh-
olding operation can be performed adaptively at the price of
computation time. One simple approach might be selecting
the threshold value with an adaptive model, such as Otsu’s
method [22], around the regions where an object has already
been spotted. A more demanding approach can be determining
the threshold after modeling the background in sliding patches
across the images.

Parallax errors in the moving object detection is another
issue that can be reduced with further studies. High objects,
such as streetlights (see Fig. 3d), are detected as moving
objects because of the relative motion with respect to the
ground from the perspective of UAV. Our approach attempts to



eliminate such misdetections in classification step. In addition,
as [23] suggests, the use of image gradients might improve the
performance by achieving better parallax suppression. Besides,
optical flow [24] might be incorporated into the moving object
detection block at the price of computational power.

Classifier performance can be increased in various ways.
Firstly, larger datasets in which large shadows are regarded
as different classes can be used for training. Secondly, our
preclassification method can be integrated into the deep CNN.
For example, the output layer of deep CNN can be replaced
with a support vector machine which takes velocity and size
information of objects as additional inputs, which would yield
a better learning of these features. Moreover, for the robustness
of algorithm speed, multiple classifiers with different com-
plexities can be trained. Simpler alternatives can be preferred
to speed up, when the entire process slows down due to
high number of objects; whereas sophisticated classifiers are
used in the abundance of process time. Lastly, we employed
SqueezeNet [13] for the framework to be fast, even on low-
cost graphical processing units (GPU), whereas more complex
CNNSs can increase classification performance in the cost of
computation power.

In this work, UAV has been assumed to be controlled with
an external controller, which is generally the case for com-
mercially available UAVs. An alternative implementation can
unify the processing with the control of UAV. Furthermore, on-
board implementations that work on UAV itself can eliminate
the need of high communication capabilities between UAV and
ground stations, so higher quality videos might be available
for processing. In this work, classification was performed on
a low-cost graphics processing unit (GPU). Other blocks of
the framework can also be transferred to GPU for even higher
speeds.

VI. CONCLUSION

In this study, we proposed a fast and robust framework that
detects and tracks moving objects from mobile UAV videos,
and classifies the objects as vehicles and humans in real-time,
for low-altitude applications. An additional feature where the
GPS coordinates of the classified objects are calculated by
using telemetry data of the UAV has been included in the
framework. The improvements presented in this work is mostly
practical. Different from previous studies, our framework can
perform multiple tasks in real-time. Novel ideas to increase the
robustness and the speed of the system have been described
throughout the paper. We believe our speed optimizations, de-
tection system with feedback from tracking and classification
steps, and SqueezeNet-based [13] fast classifier with a specific
preclassification approach will stimulate further research and
practical work.
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