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Abstract. Traffic congestion has large economic and social costs. The
introduction of autonomous vehicles can potentially reduce this conges-
tion, both by increasing network throughput and by enabling a social
planner to incentivize users of autonomous vehicles to take longer routes
that can alleviate congestion on more direct roads. We formalize these
effects of altruistic autonomy on roads shared between human drivers
and autonomous vehicles. In this work, we develop a formal model of
road congestion on shared roads based on the fundamental diagram of
traffic. We consider a network of parallel roads and provide algorithms
that compute optimal equilibria that are robust to additional unforeseen
demand. We further plan for optimal routings when users have varying
degrees of altruism. We find that even with arbitrarily small altruism,
total latency can be unboundedly better than without altruism, and that
the best selfish equilibrium can be unboundedly better than the worst
selfish equilibrium. We validate our theoretical results through micro-
scopic traffic simulations and show average latency decrease of a factor
of 4 from worst-case selfish equilibrium to the optimal equilibrium when
autonomous vehicles are altruistic.

Keywords: Autonomy-Enabled Transportation Systems, Multi-robot
systems, Stackelberg Routing Game, Optimization

1 Introduction

Autonomous and connected vehicles are soon becoming a significant part of roads
normally used by human drivers. Such vehicles hold the promise of safer streets,
better fuel efficiency, more flexibility in tailoring to specific drivers’ needs, and
time savings. In addition to benefits impacting individual users, autonomous cars
can significantly influence the flow of traffic networks. A coalition of autonomous
cars can potentially decrease road congestion through a number of creative tech-
niques. Autonomous vehicles can increase road capacity and throughput, as well
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as decrease fuel consumption, by forming platoons and maintaining shorter head-
ways to the vehicles they follow [1H5]. They can smooth shockwaves and insta-
bilities that form in congested flows of human-driven vehicles [6H9]. Finally,
autonomous vehicles can incentivize people to take unselfish routes, i.e., routes
leading to a lower overall traffic delay for all drivers on the network. Previous
work has studied methods such as tolling and incentives to influence drivers’
routing choices by, e.g., shifting their commute times or incentivizing them to
use less congested roads or less congesting modes of transportation |[L0H12]. Our
key insight is how people, who are incentivized to behave altruistically, along
with vehicles with autonomous capabilities, can be leveraged to positively in-
fluence traffic networks. Our key contribution is to formally study and plan for
altruistic autonomous cars that can influence traffic flows in order to achieve
lower latencies. The setting we are interested in is as follows: assume there is a
population of selfish human drivers and a population of autonomous car users,
some of whom are willing to take routes with varying degrees of inefficiency. How
can we best utilize this altruistic autonomy to minimize average user delay?

To answer this, we first develop a model of vehicle flow that reflects changes
in road capacity due to efficient platooning of autonomous cars on shared roads.
The latency experienced by users of a road is a function of the total vehicle
flow as well as the autonomy level, the fraction of vehicles that are autonomous.
We use the terminology latency to refer to the delay experienced by a driver
from taking a road, flow to refer to the vehicle flux on a road (vehicles per
second), and density to describe the number of cars per meter on a road. Our
mixed-autonomy model is developed based on the commonly used fundamental
diagram of traffic [13], which relates vehicle density to vehicle flow on roads with
only human-driven cars.

Using our mixed-autonomy traffic flow model for a network of parallel roads,
we study selfish equilibria in which human-drivers and users of autonomous
vehicles all pick their routes to minimize their individual delays. As it may be
difficult to exactly gauge flow demands, we define a notion of robustness that
quantifies how resilient an equilibrium is to additional unforeseen demand. We
establish properties of these equilibria and provide a polynomial-time algorithm
for finding a robust equilibrium that minimizes overall delay.

We then address how to best use autonomous vehicles that are altruistic.
We develop the notion of an altruism profile, which reflects the varying degrees
to which users of autonomous vehicles are willing to take routes longer than
the quickest route. We establish properties of optimal altruistic equilibria and
provide a polynomial-time algorithm for finding such routings.

We validate our theoretical results through experiments in a microscopic
traffic simulator. We show that an optimal selfish equilibrium can improve la-
tency by a factor of two, and utilizing altruism can improve latency by another
factor of two in a realistic driving scenario. Our contributions in this work are
as follows:

— We develop a formal model of traffic flow on mixed-autonomy roads.



— We design an optimization-based algorithm to find a best-case Nash equilib-
rium.

— We define a robustness measure for the ability to allocate additional flow
demand and develop an algorithm to optimize for this measure.

— We develop an algorithm to minimize total experienced latency in the pres-
ence of altruistic autonomous vehicles[]

Our development considers how to find optimal equilibria. This does not

directly inform a planner on how to achieve such equilibria, but is the first step
towards doing so.
Related work. Our work is closely related to work in optimal routing, traffic
equilibria, and Stackelberg strategies in routing games. In routing games, pop-
ulations of users travel from source graph nodes to destination nodes via edges,
and the cost incurred due to traveling on an edge is a function of the volume of
traffic flow on that edge. Some works have found optimal routing strategies for
these games [15}16]. If all users choose their routes selfishly and minimize their
own travel time this results in a Nash or Wardrop Equilibrium [17,[18]. Stackel-
berg routing games are games in which a leader controls some fraction of traffic,
and the remainder of the traffic reaches a selfish equilibrium [19-21]. Many works
bound the inefficiency due to selfish routing in these games including in the pres-
ence of traffic composed of multiple vehicle types [22-25]. However, these works
on routing games consider a model of road latency in which latency increases as
vehicle flow increases. This latency model does not capture congestion, in which
jammed traffic has low flow and high latency.

While not in the routing game setting, other works focus specifically on
characterizing these congestion effects on traffic flow with multiple classes of
users [2629]. Krichene et al. combine these two fields by considering optimal
Stackelberg strategies on networks of parallel roads with latency functions that
model this notion of congestion |30]. Their work considers a single traffic type (no
autonomous vehicles) and the controlled traffic can be made to take routes with
delay arbitrarily worse than the best available route. In contrast, we consider a
routing game with two types of traffic and there is a distribution of the altruism
level of the controlled autonomous traffic.

2 Model and Problem Statement

Traffic Flow on Pure Roads. We assume every road has a maximum flow
zZ"®*, This occurs when traffic is in free-flow — when all vehicles travel at the
nominal road speed.

Traffic density vs traffic flow: Adding more cars to a road that is already
at maximum flow makes the traffic switch from free-flow to a congested regime,
which decreases the vehicle flow. In the extreme case, at a certain density, cars
are bumper-to-bumper and vehicle flow stops. Removing vehicles also decreases
the flow since it is not going to speed up cars that are already traveling in free-
flow at their nominal speed. Fig. [[(a) — Fundamental Diagram of Traffic [13] —
illustrates this phenomenon, where flow increases linearly with respect to density

4 Due to space constraints, we defer all proofs to this paper’s extended version |14].



with slope vzf until it hits the critical density. The slope corresponds to the free-

flow velocity on road i. At the critical point, flow decreases linearly until it is zero
at the maximum density. This linear model matches our simulations (Section.
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Fig.1: (a) Fundamental diagram of traffic for traffic of a pure road, relating vehicle den-
sity and flow. (b) Relationship between vehicle flow and latency. Blue and brown lines

correspond to free-flow and congested regimes; arrowheads show increasing density.

Traffic flow vs road latency: The relationship between vehicle flow and road
latency reflects the same free-flow/congested divide. In free-flow the road has
constant latency, as all vehicles are traveling at the nominal velocity. In the con-
gested regime, however, vehicle flow decreases as latency increases — in conges-
tion, a high density of vehicles is required to achieve a low traffic flow, resulting
in high latency. This is represented in Fig. [I| (b), where in free-flow, latency is
constant at free-flow latency a; for any amount of flow up to the maximum flow
on a road. The brown curve above corresponds to the congested regime, in which
latency increases as vehicle flow decreasesEI
Traffic Flow on Mixed-Autonomy Roads. We assume that on mixed-
autonomy roads, the autonomous vehicles can coordinate with one another and
potentially form platoons to help with the efficiency of the road network. We now
extend the traffic model on pure roads to mixed-autonomy settings as shown in
Fig.[2(a). Assuming that neither the nominal velocity nor the maximum density
changes, the critical density at which traffic becomes congested will now shift and
increase with autonomy level of the road. This can be explained as autonomous
vehicles do not require a headway as large as that needed by human drivers due
to platooning benefits.

To formalize the relationship between autonomy level and critical density
on road ¢, we assume at nominal velocity autonomous vehicles and humans
require headway h; and h;, respectively, with h; <h,. This inequality reflects the
assumption that autonomous vehicles can maintain a short headway, regardless
of the type of vehicle they are following. Then, if x; and y; denote the flow of
human-driven and autonomous vehicles respectively, the critical density is

: 1
P (@i i) = = ,
z o xizfyi hz + ﬂcf-:ifyl hi +L

)

5 Though congested flow may be unstable, it can be stabilized with a small number
of autonomous vehicles [7], adding an additional constraint to later optimizations.
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Fig.2: (a) The fundamental diagram of traffic for roads with all human-driven (solid)
and all autonomous (dashed) vehicles. Congestion begins at a higher vehicle density
as autonomous vehicles require a shorter headway when following other vehicles. Su-
perscripts -h and -r denote parameters corresponding to purely human and purely au-
tonomous traffic, respectively. (b) The relationship between vehicle flow and latency
also changes in the presence of autonomous vehicles. Free-flow speed remains the same
but maximum flow on a road increases.
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where all vehicles have length L. Here the denominator represents the average
length from one car’s rear bumper to the preceding car’s rear bumper when all
cars follow the vehicle in front of them with nominal headway. Note that critical
density is expressed here as a function of flows x; and y;. This quantity can also
be expressed as a function of autonomy level «;(x;,y;) = wZ—u’ i.e., the fraction
of vehicles on road ¢ that are autonomous. Since flow increases linearly with
density until hitting p'it, the maximum flow can also be expressed as a function
of autonomy level: z/**(z;,y;) = vzfpfm(xi, Yi)-

The latency on a road is a function of vehicle flows on the road as well as a
binary argument s;, which indicates whether the road is congested:

,Uig“ ) Si = 07
Ci(xs,Yi, 85) = 1'( i pirit(zi,yi)ip?ax) . (1)
Nzity; 2% (24,Y;) T
We define the free-flow latency on road i as a; := d;/ vlf, where d; is the

length of road i. Fig. [2[ (b) illustrates the effect of mixed autonomy on latency.
Demonstrative Example. We use the follow-
ing running example to intuitively describe the
concepts formalized in Main Results (Sec. [3).
Imagine driving on a Friday afternoon in Los
Angeles, where you plan to drive from the Bev-
erly Hills library to the Valley. The most direct
route, Coldwater Canyon, takes 25 minutes with-
out traffic. Taking the 405 freeway would be 30
minutes, and Laurel Canyon would be 35 minutes
in free-flow. Unfortunately, it is Friday afternoon (30 min)

and the flow is anything but free! Let us assume
that everyone is in the same predicament — mean- Fig. 3: The map with three pos-
ing that all traffic on these roads is from people sible routes for the example.
with the same start and end points. People would

Coldwater
(25 mimn)

Laurel
(35 min)



only take Laurel Canyon if Coldwater and the 405 were congested to the point
that each take at least 35 minutes. Further, any route that people use will have
the same latency, otherwise they would switch to the quicker route. Fig. [4] illus-

trates three such equilibria with varying delays.
Laurel 1 L\\\”\
405
Coldwater ; ;

flow (cars/second)

@) - (b) i ©

A latency (seconds)

Fig. 4: Tllustration of equilibria in the network. Equilibria can have one road in free-flow
and others congested (a) or all used roads can be congested (b, c).

Krichene et al. have shown that for any given volume of traffic composed
of only human drivers, there exists one best equilibrium which is an equilibrium
where one road is in free-flow and all other used roads are congested and the
number of roads used is minimized [30]. However, when there are multiple types
of vehicles that affect congestion differently, as we see in mized-autonomy, there
can be multiple equilibria with the same aggregate delay.

Concretely, autonomous vehicles can form platoons to increase the free-flow
capacity of a road, an effect that is accentuated on freeways. This effect can be
used not only to find equilibria that minimize aggregate delay, but also to find
equilibria, within the set of delay-minimizing equilibria, that can accommodate
extra unforeseen flow demand. As an example, Fig. 5| (a) and (b) have the same
delay, whether all autonomous flow (green) is the 405 or is split between the 405
and Coldwater. However, (b) has higher autonomy level on the 405 than (a) and
can therefore accommodate more additional flow on the 405, since it matches
its autonomous vehicles with the roads that benefit most from them. If a social
planner can dictate equilibrium routing but does not have perfect information
about flow demands, using a routing such as in (b) can make the routing more
robust to unforeseen demand.

The social cost can further be improved if users of autonomous vehicles
are altruistic and are willing to endure a delay longer than the quickest route
available in order to improve traffic. Assume the autonomous cars are owned by
entities concerned for the public good and consider a population of autonomous
car users who, in exchange for cheaper rides, are willing to accept a delay of
20% longer than the quickest available route. In this case, a social planner can
send some autonomous users on the 405 so that Coldwater is in an uncongested
state, yielding a social cost lower than that of the best-case selfish equilibria
(Fig. [ (<)).

Before presenting our main results, we also define our network and objective.
Network Objectives. We consider a network of N parallel roads, with indices
{1,...,n}. For convenience we assume no two roads have identical free-flow
latencies, and accordingly, order our roads in order of increasing free-flow latency.
We use [m] = {1,...,m} to denote the set of roads with indices 1 through m.
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Fig.5: (a) and (b) represent two selfish equilibria with the same social cost. The equi-
librium with all autonomous flow on the 405 freeway (b) is more robust to additional
unforeseen flow demand. Solid (resp. dashed) lines characterize the road with only
human drivers (resp. autonomous vehicles). The 405 has maximum flow that bene-
fits more from autonomy than the canyons — by routing all autonomous traffic onto
the 405, a social planner can make the routing more robust to unforeseen demand. If
some autonomous users are altruistic, a social planner can send them on the 405 while
Coldwater is uncongested (c), leading to a lower overall travel time.

We consider an inelastic demand of Z and 3 (human-driven and autonomous
vehicle flow, respectively), meaning that the total flow of vehicles wishing to
travel across the network is independent of the delays on the roads. We describe
the network state by (z,y,s), where z, y € RY, and s € {0,1}V. A feasible
routing is one for which x; + y; < 28(x;,y;) for all roads, where 2% denotes
the maximum flow on road i. We denote total flow on a road by z; := z; +y;. We
are interested in finding a routing, i.e. allocation of vehicles into the roads, that
minimizes the total latency experienced by all vehicles, C(x, y, 8) = 37, (zi +
yi )i (2, i, Si), while satisfying the demand, i.e. Zie[n] z; = T and Zie[n] Yi = 7.
Further, we constrain this optimization based on selfishness or altruism of the
vehicles, which we will define in Section [3]

3 Main Results

We now make precise the aforementioned notions of selfishness, robustness, and
altruism. We develop properties of the resulting equilibria, and using those,
provide polynomial-time algorithms for computing optimal vehicle flows.
Selfishness. Human drivers are often perceived as selfish, i.e., they will not
take a route with long delay if a quicker route is available to them. If all drivers
are selfish this leads to a Nash, or Wardrop Equilibrium, in which no driver can
achieve a lower travel time by unilaterally switching routes [17}{18]. In the case of
parallel roads, this means that all selfish users experience the same travel time.

Definition 1. The longest equilibrium road is the road with mazximum free-
flow latency that has delay equal to the delay experienced by selfish users. Let
mgq denote the index of this road. We then use NE(Z,y, mrq) to denote the set
of Nash Equilibria with longest equilibrium road having inder mrq.



Definition 2. The longest used road is the road with mazimum free-flow
latency that has positive vehicle flow of any type on it. We use maypr, to denote
the index of this road; if all vehicles in a network are selfish then mgq = marr.

We define the set of Best-case Nash Equilibria (BNE) as the set of
feasible routings in equilibrium that minimize the total latency for flow demand
(Z,7), denoted BNE(Z, 7). The following theorem provides properties of the set
of BNE for mixed-autonomy roads (for pure roads see [30]).

Theorem 1. There exists a road index myq such that all routings in the set of
BNE have the below properties. Further, this index myq is the minimum index
such that a feasible routing can satisfy the properties:

1. road myy, is in free-flow,

2. roads with index less than myq are congested with latency Uy, and

3. all roads with index greater than myq have zero flow.

The running example in Fig. [5| shows that there does not necessarily exist
a unique BNE. However, as estimating flow demand can be difficult, we prefer
to choose a BNE that can best incorporate additional unforeseen demand. We
thus develop the notion of robustness.

Definition 3. The robustness of a routing in the set of Nash Equilibria is
how much additional traffic (as a multiple of the original demand flow), at
the overall autonomy level, can be routed onto the free-flow road. Formally, if
(x,y) € NE(Z,y,m), then it has robustness:

B, y, T, 7, $m) = (2)
max v $.t. Ty + Ym + V(T + §) < 20T + YTy Y + YY) Sm =0
0 Sm=1.

We use Robust Best Nash Equilibria (RBNE) to refer to the subset
of BNE that maximize robustness. The RBNE may not be unique.
Altruism. It is possible that some passengers, especially those in autonomous
vehicles, can be incentivized to use routes that are not quickest for that individ-
ual, but instead lead to a lower social cost (Fig. . We use the term altruism
profile to refer to the distribution of the degree to which autonomous vehicles are
willing to endure longer routes. For computational reasons, we consider altruism
profiles with a finite number of altruism levels.

@(K), fraction of autonomous cars @(x)
that will not tolerate delayx/,
1 or— 1 Oo—
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Fig. 6: Altruism profiles. A fraction (k) of autonomous users will not accept delay
greater than x times that of the quickest available route. (a) Users will tolerate delay
of up to ko times that of the quickest route. (b) Users have multiple altruism levels.



Formally, we define ¢ : R>¢ — [0,1] to represent the altruism profile as a
nondecreasing function of a delay value that is mapped to [0,1]. A volume of
©(k)y autonomous flow will reject a route incurring delay x times the minimum
route delay available, which we denote by {o. If autonomous users have a uniform
altruism level as in Fig. [6] (a), we call them ro-altruistic users, where ko is the
maximum multiple of the minimum delay that autonomous users will accept.
Users may have differing altruism levels, as in Fig. |§| (b). We use K to denote
the set of altruism levels, with cardinality |K|. Accordingly, a feasible routing
(z,y,s) is in the set of Altruistic Nash Equilibria (ANE) if

1. all routes with human traffic have latency by < 4i(zi, 5, 8:) Vi € [n] and
2. for any ¢ > 0, a volume of at least ¢(¢/ éo) 7 autonomous traffic experiences

a delay less than or equal to £. Note that it is enough to check this condition

for £ = ¢;(x;,y;, s;) for all ZE|

We denote the set of routings at Altruistic Nash Equilibria with demand
(Z,7), equilibrium latency ¢y, and altruism profile ¢ as ANE(Z, 7, o, ). The
set of Best-case Altruistic Nash Equilibria (BANE) is the subset of ANE
with routings that minimize total latency.

Theorem 2. There exist a longest equilibrium road myg and a longest used
road mjyy;, with myq < mjyy,, such that all routings in BANE have the following
properties:

1. roads with index less than myq are congested,

2. roads with index greater than myq are in free-flow,

3. roads with index greater than myq and less than mj;, have mazimum flow.

Remark 1. One may be tempted to think that, like in BNE, road mjq will be
in free-flow. Further, one might think that mfq is the minimum index such
that all selfish traffic can be feasibly routed at Nash Equilibrium. We provide
counterexamples to these conjectures in this paper’s extended version [14].

Finding the Best-case Nash Equilibria. In general, the Nash Equilibrium
constraint is a difficult combinatorial constraint. Theorem [Il however states that
we can characterize the congestion profile of the roads by finding the minimum
free-flow road such that Nash Equilibrium can be feasibly achieved. Once this is
found, we select a feasible routing that maximizes robustness. This is formalized
as follows: find the minimum mpq such that NE(Z, §, mrq) is nonempty. Then
the RBNE is the set of routings that maximize the robustness of road mgq:

Mpq = g Min Gy, s.t. NE(Z,7,mrq) # 0, then
mgq€[n]

BNE(Z, 9, mpq) = arg max Blx,y,Z,7, SmEQ) . (3)
(@.9.5)ENE(7,5,m0)

Theorem 3. Finding a solution to (3)) is equivalent to finding a routing in the
set of RBNE, if any exist. Further, ([3)) can be solved in O(N*) time.

5 This is similar to the notion of epsilon-approzimate Nash Equilibrium [31], but with
populations playing strategies that bring them within some factor of the best strategy
available to them, with each population having a different factor.
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We provide a sketch of the algorithm for finding an element of the RBNE:

1. Search over mgq, the longest equilibrium road, to find the minimum mgq
that is feasible for required flow demands at Nash Equilibrium.

2. For this mgq, find the routing that maximizes the robustness of road mgq.
This can be formulated as a linear program, which has cubic computational
complexity in the number of roads [32].

The following optimization (which can be converted to a linear program)
maximizes robustness while at feasible free-flow equilibrium.

max v s.t. Z z; =T, Z yi =¥, (@i, yi,1) = amy,, Vi € [mpq —
T YERS 720 i€fmie] i€lmyq)

(meQ +7, ymEQ + ’Vg) .

me*DQ + ymP*:Q + '7(57 + Q) < Zﬁ%);
Finding the Best-case Altruistic Nash Equilibria. To find an element of
the BANE, we need to solve:
arg min C(x,y) . (4)
meq€[n], éoe[amEQ?amEQ+l)! (z,y,8)EANE(z,7,00,)

As demonstrated in [14], the BANE no longer has monotonicity in mgq, the
index of the longest equilibrium road. Further, road mgq may not be in free-
flow in the set of BANE. We do however have a degree of monotonicity in the
latency on road mgq: for a fixed mgq, optimal social cost is minimized at the
minimum feasible latency on road mgq.

Theorem 4. Finding a solution to (4)) is equivalent to finding a routing in the
set of BANE, if any exist. Further, can be solved in O(|K|N®) time, where
|K| is the number of altruism levels of autonomous vehicle users.

In the full proof we show that for any given mgq, there are a maximum
of |K|N critical points to check for the equilibrium latency, £o. We sketch the
algorithm for finding a routing in the set of BANE:

1. Enumerate through all options for mgq.

2. For each mgq, enumerate through the |K|N critical points of b.

3. For each of these combinations, find the routing that maximizes the au-
tonomous flow on roads [mggq], while incorporating all human flow on these
roads. This can be formulated as a linear program. Then find optimal au-
tonomous routing on the remaining roads (order N calculations).

Improvement can be unbounded. We motivate the schemes described above
by demonstrating that without them, aggregate latency can be arbitrarily worse
than with them (Fig. [7). First we show the cost at BNE can be arbitrarily worse
than that at BANE, even when autonomous users have arbitrarily low altruism.

Consider three roads with free-flow latencies az > as > a1, and human-driven
and autonomous flow demands Z and § relative to maximum flows 2**(z,0) =
z, 25°*(0,9) = g, and 25*(Z, §) > T+ g. This means human-driven vehicles can
fit on road 1 with autonomous vehicles on road 2, or both vehicle types can fit
on roads 1, 2, and 3 if all are selfish, as all vehicles cannot fit on roads 1 and 2 at

as

the same latency. Let autonomous vehicles have uniform altruism level kg = 2,
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Fig. 7: Nllustration showing unbounded improvement in (a) altruistic NE vs. best selfish
NE, and (b) best selfish NE vs. worst NE. Red and green represent regular and au-
tonomous vehicle flow, +’s are worst-case Nash Equilibrium routing, x’s are best-case
NE routing, and circles are best-case altruistic NE routings.

which can be arbitrarily close to 1. In BANE, autonomous vehicles will be on
road 2 and human-driven vehicles on road 1. However in BNE, all flow will be on
BNE ]

road 3, as the others are fully congested. Then, c% = Sf’gj_t;% > 22, which
can be arbitrarily large.

Now consider one road with very large critical density and a small demand
Z. This road can exist at free-flow latency at low density or in a highly congested
state at high density and serve flow T either way. Then, limz_,o+ ﬁ’g;gé; — 00,
which shows a NE can be arbitrarily worse than a BNE.

4 Experiments

Numerical example of gained wutility by BNE and BANE.
Next, in order to numerically show the utility
gained by RBNE (or BNE) against another NE
and by altruistic autonomy in a more realistic
setting, we create a scenario with two parallel
residential roads of length 4007 and 10007 me-
ters. The speed limit is 13.9 m/s (~ 50 kph).
All vehicles are 5 meters long and have head-
way of max(2,7v) meters with the vehicle in
front, where v represents the speed of the ve-
hicle and 7 is the reaction time (2 seconds for
regular and 1 second for autonomous vehicles).
We want to allocate the flows of 0.3 regular and
0.3 autonomous vehicles per second.

We simulated this scenario using the traffic
simulator SUMO [33]. To conveniently simulate
the congestion effect, we designed circular and
single-lane roads (Fig. . We employed the original Krauss car following model
for driver behavior [34]. We solved the optimizations using the CVX frame-
work [35/36]. For comparison, we also computed and simulated a congested NE.

Fig. 8: The simulation visualiza-
tion for Road 1. Regular vehicles
(red) have larger headway than
autonomous ones (green).



12 Table 1: Effect of Altruistic Autonomy

In both calculations NE RBNE BANE (xo=2.5)
and simulations, the BNE (z1,y1) (0.006,0.252) (0.3,0.031)  (0.3,0.215)
approximately halves (z2,y2) (0.294,0.048) (0,0.269) (0,0.085)
the total cost com- Cr(x,y) 324 135.608 61.5
pared to congested Cg(x,y) 297.052 135.87 68.64

NE, and the BANE
halves it again (Table . The altruism level is kg =2.5. Gray cells represent
congested roads. Subscripts T" and S denote if the presented result is theoretical
or simulated, respectively. Fig. [0] visualizes the solutions over flow-latency graph.
Simulation of a 4-parallel-road network. To 600
show the properties of all the equilibria we de-

fined, we simulated the following comprehensive
scenario: We assume there are 4 parallel roads Z 400
with different lengths from one point to another,

=300
two of which are residential roads where the speed &
limit is 13.9 m/s, and the other two are undivided £ 200
=

highways where the limit is 25.0 m/s (~90 kph). 100
The residential roads and highways have lengths
4007, 6007, and 8007, 10007 meters, respectively. 0 02 04 06 08
Sorting based on the free-flow latencies makes the Flow (cars/second)
order of lengths (4007,8007,10007,6007), and we Fig.9: Three solutions to the
use this order from this point on. We keep all other scenario with two residential
parameters the same as the previous simulation.  roads are visualized. Blue lines

With this configuration, we first simulate represent the shorter road,
Road 4 (residential road, 6007 meters long) alone, Whereas brown is the longer
The resulting fundamental diagram and the re- "¢ Solid ‘and dashed lines

. . . correspond to fully regular
lationship between vehicle flow and latency are

R . . and fully autonomous config-

shown in Fig.[T0]along with the theoretical curves. urations, respectively.
There exists a small mismatch between the theory
and simulations, which is apparent only for z™#*. We conjecture that this is stem-
ming from: 1) Shape: We approximated circular roads using pentacontagons
(regular polygons with 50 edges), so the actual road lengths are slightly dif-
ferent. 2) Initiation: We cannot initiate the vehicles homogeneously over the
polygon. Instead, we initiate from the corners. This hinders our ability to al-
locate the maximum possible number of vehicles. 3) Discretization: As the
number of vehicles needs to be an integer, density values are heavily discretized.
4) Randomness: Given the total number of vehicles for each road, our simu-
lation initiates regular and autonomous vehicles drawn from a Bernoulli process
with the given probability distribution.

To show the effect of changing kg in the altruistic case, we consider human
flow demand of 0.4 and autonomous flow demand of 1.2 vehicles per second.
For BANE, we simulated both xg = 1.25 and k¢ = 1.5, where we assume all
autonomous vehicles are uniformly altruistic for simplicity.

We then simulate the computed flow values using SUMO. We found that
often the full calculated flow cannot be allocated in the simulation because of the
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Fig. 10: Simulation results of Road 4 for three different o values with theoretical values
(black curves). The noisy appearance of the curves for a =0.5 is due to randomness,
while mismatches on p™* are due to the other imperfections. (a) The fundamental
diagram of traffic. Due to simulation incapabilities regarding initiation, we cannot sim-
ulate heavily congested regions. We used more lightly congested traffic measurements
to project heavily congested cases (dashed lines). (b) The flow and latency relationship.

mismatch between the theoretical maximum flow on a road and the simulated
maximum flow (Fig. [L0[ (b)). In these cases, we kept a-value for that road fixed
and allocated flow with respect to Nash equilibrium. Hence, for BNE, RBNE
and BANE, we added the remaining flow into road Mmpq, without breaking Nash
equilibrium. For NE, we again kept a and the number of utilized roads fixed and
swept latency values to satisfy flow conservation. These simulation results, as
well as theoretically computed values for x, y, 5, C(x,y) are given in Table

Table 2: Theoretical and Simulated Results

NE BNE RBNE BANE (r0=1.25) BANE (ro=1.5)
(z1,3) (0.036,0.277) (0.075,0.52)  (0.391,0) (0.4,0.024) (0.4,0.041)
w2,y2) (0.121,0.311) (0.2,0.43) (0.009,0.772) (0,0.833) (0,0.833)
(xg,yg) (0.161,0.303) (0.126,0.25) (0,0.428) (0,0.343) (0,0.325)
(z4,y4) (0.083,0.309)  (0,0) (0,0) (0,0) (0,0)
Cr(x,y) 640 201.062 201.062 169.469 164.56
Cs(x,y)  599.072 199.985 199.575 172 167.035
Br 0 0.183 0.210 0 0
Bs 0 0.154 0.135 0 0

Note that BNE and RBNE lead to lower latencies, with a slight difference
in the simulation, compared to the presented NE configuration. By introducing
altruistic autonomous vehicles, the overall cost can be further decreased.

While theoretical values conform with the fact that RBNE maximizes the
robustness with the same cost as other BNE’s, the simulated robustness for the
RBNE case is smaller than that of the presented BNE solution. To understand
this, we first note that the RBNE solution makes the free-flow road with the low-
est latency (road 3) fully autonomous to be able to allocate more flow. However,
as can be seen from Fig. the mismatch between theory and simulations grows
larger with increasing autonomy. This causes RBNE to be unable to allocate high
prospective flow. A better maximum flow model would resolve this.

Fig. shows the average speeds of vehicles on the roads and visualizes
the vehicle densities for each of the theoretically presented solutions. The con-
gested roads are black and the free-flow roads are gray. This makes clear that the
NE solution leads to high latency due to heavy traffic congestion. Other solu-
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Fig.11: Roads are visualized with respect to the vehicle density values obtained from
each of the solutions. Red and green dots represent regular and autonomous vehicles,
respectively. We do not show headways for simplicity. Black roads are congested, while
gray roads are in free-flow. On the right, average vehicle speeds (m/s) are shown.

tions support the same flows with lower vehicle densities thanks to maintaining
higher speeds, yielding lower latencies. Further, the RBNE makes the free-flow
road fully autonomous to enable the allocation of more additional flow. Lastly,
increasing the altruism level in BANE reduces the overall traffic congestion[']

Ko =1 Ko = 1.25 Ko = 1.5

Effect of different altruism lev-
els. We also analyzed the effect of al- 1
truism level under different flow con-
straints. Fig. [12|shows the average la-
tency experienced by each vehicle for % 05 1 15 05 1 15 05 1 15
three different altruism levels and un- y

der different total flow requirements. Fig.12: Average latency (seconds) obtained
We solved all cases using BANE op- from BANE optimization for z,5 € [0,1.5]
timization. The first heat map shows ¢S P€* second an'd ko E {1,1.25,1.5}. Black
non-altruistic case where the average regions represent infeasible demand.
latencies are exactly equal to one of the free-flow latencies. This is a direct result
of Theorem [I] In the altruistic cases, the average latency experienced by vehicles
is lower and increasing the altruism level helps decrease the latency further.

130
120
110
1100
90

5 Discussion

Summary. In this work, we develop a new model to incorporate the effect of
autonomy in parallel road networks based on the fundamental diagram of traffic.
We further define a notion of robustness indicating the capability of a Nash
Equilibrium to be resilient to additional unforeseen flow demand. We design an
optimization-based polynomial-time algorithm to find a robust Nash Equilibrium
that minimizes overall latency. We then define the concept of altruistic autonomy
to model autonomous users’ willingness to accept higher latencies. We provide
a polynomial-time algorithm that utilizes altruism to minimize overall latency.
We demonstrate the improvements our algorithms provide using simulations.

Limitations and Future Directions. In this work we consider parallel net-
works; we wish to also study more complex transportation networks that in-

" An animated version can be found at |http://youtu.be/Hy2S62zbL6Z0 with realistic
numerical values for densities, headways, car lengths, speeds, etc.
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clude other modes of transportation. Congestion and altruism can be modeled
for each mode of transportation. Further, in this work we use the original Krauss
model [34] for car following; more complex and expressive models, such as Intelli-
gent Driver Model [37], could yield to other interesting outcomes. This work also
considers only isolated equilibria — investigating how to move the network from
one equilibrium to another is a valuable direction. Finally, our work is a first
step in formalizing altruistic autonomy. We would like to perform more realistic
case studies to understand emergent phenomenon in mixed-autonomy roads.
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