
LEARNING PREFERENCES

FOR INTERACTIVE AUTONOMY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Erdem Bıyık

May 2022

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/vz918rc3628

© 2022 by Erdem Biyik. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/vz918rc3628

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Dorsa Sadigh, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Emma Brunskill

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Chelsea Finn

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

When robots enter everyday human environments, they need to understand their tasks and how they

should perform those tasks. To encode these, reward functions, which specify the objective of a robot,

are employed. However, designing reward functions can be extremely challenging for complex tasks

and environments. A more promising approach is to learn reward functions from humans. Recently,

several robot learning works embrace this approach and leverage human demonstrations to learn the

reward functions. Known as inverse reinforcement learning, this approach relies on a fundamental

assumption: humans can provide near-optimal demonstrations to the robot. Unfortunately, this is

rarely the case – human demonstrations to the robot are often suboptimal due to various reasons, e.g.,

difficulty of teleoperation, robot having high degrees of freedom, or humans’ cognitive limitations.

This thesis is an attempt towards learning reward functions from human users by using other

data modalities that are more reliable. Specifically, this thesis studies how reward functions can be

learned using comparative feedback, in which the human user compares multiple robot trajectories

instead of (or in addition to) providing demonstrations. To this end, we first propose various

forms of comparative feedback, e.g., pairwise comparisons, best-of-many choices, rankings, scaled

comparisons; and describe how a robot can use these various forms of human feedback to infer a

reward function, which may be parametric or non-parametric. We discuss the pros and cons of each

comparative feedback modality in detail, and show how such feedback enables us to outperform

standard inverse reinforcement learning that only utilizes demonstrations.

An important limitation of comparative feedback is that each comparison carries only a small

amount of information: instead of observing the humans’ actions at every time step of a demonstra-

tion, we only observe their comparison between trajectories. This harms data-efficiency, which is

crucial in robotics due to the cost of collecting data (especially when it is coming from humans). To

solve this, we propose active learning techniques to enable the robot to ask for comparison feedback

that optimizes for the expected information that will be gained from that user feedback.

While showcasing the benefits of these various techniques for learning and active querying, we

also demonstrate its applicability in a wide variety of domains. Our experiment domains range from

autonomous driving simulations to home robotics, from standard reinforcement learning benchmarks

to lower-body exoskeletons.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Dorsa Sadigh. It has been an absolute pleasure

to learn from and work with her. Even though I had almost no experience in robotics when I started

working with Dorsa, her passion, positivity and hard-work have always inspired and motivated me

to learn more. Being her first Ph.D. student has been an honor and gave me invaluable experience.

I would not have been where I am today without her guidance and support.

Many of my works in graduate school have been in close collaboration with other advisors.

Great academic advice by Ramtin Pedarsani made a lot of positive impact not only in my studies

but also in my life. Dylan P. Losey and Mykel J. Kochenderfer have always been role models

with their dedication and time management skills. My collaborations with Nima Anari, Yisong

Yue, Yanan Sui, Stephen L. Smith, and Aaron D. Ames contributed a great deal to this thesis. I

would also like to thank my internship supervisors and collaborators at Google Research: Yinlam

Chow, Mohammad Ghavamzadeh, Chih-wei Hsu, Alex Haig, and Craig Boutilier for giving me a

perspective for preference-based learning algorithms outside robotics. It has also been an honor for

me to collaborate and be co-authors with great mentors from both industry and academia: Adrien

Gaidon, Guy Rosman, Judith E. Fan, Shahrouz Ryan Alimo, and Andrea Goldsmith. Although we

have not collaborated on a research project yet, Scott Niekum, Emma Brunskill, and Chelsea Finn

gave me a lot of guidance and support during my Ph.D.

My first research experience was at Bilkent University during my undergraduate studies with

Tolga Çukur in 2016. His continuous support to this date has been invaluable and I am thankful

to him, as well as his students Efe Ilıcak, Kübra Keskin, L. Kerem Şenel, Salman U. H. Dar. I was

also lucky enough to work and be co-authors with Aykut Koç at ASELSAN as a research engineer,

and with Mohamad Dia and Jean Barbier in Rüdiger Urbanke’s lab at EPFL as a research intern.

Last but not least, I enjoyed working with and learning from my mentors at Bilkent: Orhan Arıkan,

Cem Tekin, Emine Ülkü Sarıtaş, İsmail Uyanık, and my collaborators: H. Can Baykara, Gamze Gül,

Deniz Onural, Ahmet Safa Öztürk, and İlkay Yıldız.

I would also like to thank all my amazing co-authors who have been one of the main sources of

learning and incredibly fun to work with. Daniel A. Lazar is not only an efficient collaborator with

his math skills and sharpness, but also a great travel companion. Minae Kwon, who was already an

v

intern in the lab when I started, has always been welcoming and I learned a lot from chatting with

her. I also had the privilege to work with Nils Wilde, Anusha Lalitha, Amir Maleki, Mark Beliaev,

Zhangjie Cao, Malayandi Palan, Nicholas C. Landolfi, Sydney M. Katz, Kejun (Amy) Li, Maegan

Tucker, Ellen Novoseller, Chandrayee Basu, Erik Brockbank, Rajarshi Saha, Zhixun (Jason) He,

Vivek Myers, Woodrow Z. Wang, Nicolas Huynh, Aditi Talati, Suvir Mirchandani, Kenneth Wang,

Gleb Shevchuk, Zheqing (Bill) Zhu, Karan Bhasin, Jonathan Margoliash, and Allan Raventos.

Although the Ph.D. programs are infamously said to be lonely, I never felt in that way thanks

to my friends. Special thanks to my labmates at ILIAD: Mengxi Li, Sidd Karamcheti, Andy Shih,

Megha Srivastava, Suneel Belkhale and Zhiyang (Jerry) He for making the lab a great place to work

at. I also thank Turkish Student Association, especially Burak Bartan, Serhat Arslan, Atiye Cansu

Erol Arslan, Süleyman Kerimov, Okan Atalar, Hüseyin İnan for our board game nights; as well as

my close friends from Turkey: Melike Ersoy, Batuhan Sütbaş, Ömer Mert Aksoy, Görkem Ünlü, Naz

Yetimoğlu, Fatih Karaoğlanoğlu, Ömer Arol for supporting me even from thousands of kilometers

away and the virtual social activities we have had during the pandemic.

Finally, I would like to thank my family for all their love and support. My parents Reyhan Bıyık

and İrfan Bıyık have always believed and put confidence in me. They brought up me in a way that

made this thesis possible: they always taught and encouraged me to pursue what I enjoy, and do

it with passion, responsibility and determination. And my sister, Begüm Bıyık, has been a “best

friend instead of a sibling” as she always wanted when she was younger; and my main source of good

songs, which have been essential while working long hours. Overall, I am thankful to all members

of my family: their perspective allowed me to understand “Science is the most reliable guide for

civilization, for life, for success in the world. Searching a guide other than the science is meaning

carelessness, ignorance and heresy.”

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Thesis Approach . 2

1.2 Contributions . 2

1.3 Thesis Organization . 4

2 Background 6

2.1 Reinforcement Learning (RL) . 6

2.2 Inverse Reinforcement Learning (IRL) . 8

3 Learning Reward Functions via Comparative Feedback 10

3.1 Incorporating Comparisons into IRL . 10

3.1.1 Formulation . 11

3.1.2 Our Approach . 13

3.2 Learning Non-parametric Rewards via Pairwise Comparisons 16

3.2.1 Related Work . 16

3.2.2 Formulation . 17

3.2.3 Our Approach . 18

3.3 Incorporating Ordinal Feedback along with Comparisons 22

3.3.1 Formulation . 23

3.3.2 Learning Algorithm . 24

3.4 More Expressive Feedback: Scale Questions . 26

3.4.1 Formulation . 28

3.4.2 Our Approach . 29

3.4.3 Algorithm Design . 33

3.5 Learning Multimodal Rewards via Ranking Queries 34

vii

3.5.1 Formulation . 36

3.5.2 Our Approach . 38

3.6 Hierarchical Comparison Queries for Non-stationary Rewards 38

3.6.1 Formulation . 40

3.6.2 Hierarchical Comparison Queries . 41

3.6.3 Reward Dynamics Model . 42

3.6.4 Learning Reward Dynamics . 44

3.6.5 Derivation and Simplifications . 45

3.7 Chapter Summary . 46

4 Active Querying for Comparative Feedback 47

4.1 Choosing Queries with Volume Removal . 48

4.1.1 Maximum Volume Removal Optimization . 48

4.1.2 Experiments . 52

4.2 Choosing Queries with Mutual Information . 57

4.2.1 Maximum Mutual Information Optimization 57

4.2.2 Additional Tools and Analysis . 58

4.2.3 Algorithm . 61

4.2.4 Experiments . 61

4.3 Active Querying for Preference-based GP Regression 68

4.3.1 Formulation . 68

4.3.2 Experiments . 70

4.4 ROI Active Learning with Comparisons and Ordinal Feedback 76

4.4.1 Formulation . 77

4.4.2 Simulations and Experiments . 78

4.5 Active Querying for Scale Feedback . 83

4.5.1 Two Acquisition Functions for Active Scale Feedback 83

4.5.2 Experiments . 85

4.6 Active Querying for Multimodal Rewards . 89

4.6.1 Formulation . 89

4.6.2 Overall Algorithm . 89

4.6.3 Experiments . 91

4.6.4 User Studies . 95

4.7 Active Generation of Hierarchical Queries . 97

4.7.1 Active Querying based on Maximum Volume Removal 97

4.7.2 Simulations and Experiments . 98

4.8 Batch-mode Active Querying for Time-Efficiency . 103

4.8.1 Formulation . 106

viii

4.8.2 DPP-based Batch Active Learning . 108

4.8.3 Time-Efficient Batch Active Learning Methods 111

4.8.4 Theoretical Guarantees . 114

4.8.5 Simulations and Experiments . 114

4.9 Chapter Summary . 121

5 Final Words 123

5.1 Challenges . 123

5.1.1 Limitations and Future Work in Learning . 124

5.1.2 Limitations and Future Work in Active Querying 125

5.2 Closing Thoughts . 126

A Proofs 127

A.1 Proof of Proposition 1 . 127

A.2 Volume Removal Equivalence when |Q(i)| = 2 . 127

A.3 Proof of Theorem 2 . 129

A.4 Proof of Corollary 1 . 129

A.5 Justification for Remark 2 . 130

B Derivations 131

B.1 Mutual Information Derivation for Section 4.2 . 131

B.1.1 Extension to User-Specific and Unknown ς 132

B.2 Mutual Information Derivation for Section 4.3 . 134

B.3 Mutual Information Derivation for Section 4.6 . 137

C Implementation Details 139

C.1 Metropolis-Hastings for Section 4.6 . 139

C.2 Simulated Annealing for Section 4.6 . 140

C.3 Hyperparameters for Section 4.6 . 140

C.4 Hyperparameter Tuning for DPPs in Section 4.8.5 140

D Experiment Details 142

D.1 Environment Features for Sections 4.1.2 and 4.2.4 . 142

D.1.1 FetchReach . 142

D.1.2 Driver . 142

D.1.3 Tosser . 143

D.2 Environment Features for Section 4.5.2 . 143

D.2.1 ExtendedDriver . 143

D.2.2 Original Driver . 144

ix

D.2.3 FetchDrink . 144

D.3 Choice of σS in the User Studies for Section 4.5.2 . 144

D.4 Baselines for Section 4.6.3 . 145

D.4.1 Random . 145

D.4.2 Volume Removal . 145

D.5 Trajectory Generation in Section 4.6.3 . 145

D.5.1 LunarLander Trajectories . 145

D.5.2 FetchBanana Trajectories . 146

D.6 Metrics in Section 4.6.3 . 147

D.6.1 MSE . 147

D.6.2 Log-Likelihood . 147

D.6.3 Learned Policy Reward . 148

D.7 Experimental Setup in Section 4.6.3 . 148

D.7.1 Shelf Descriptions for FetchBanana Environment 148

D.7.2 User Interface . 148

E Additional Results 149

E.1 Additional Simulation Results for Section 4.2.4 . 149

E.1.1 Results with User-Specific and Unknown ς . 149

E.1.2 Results without Query Space Discretization 150

E.1.3 Effect of Information from “About Equal” Responses 150

E.1.4 Optimal Stopping under Query-Independent Costs 151

E.2 Additional Simulation Results for Section 4.5.2 . 151

E.2.1 ExtendedDriver . 152

E.2.2 Original Driver . 153

E.2.3 FetchDrink . 153

E.3 Results with Test Set with Mixture Data for Section 4.5.2 154

E.4 Numerical Results for Section 4.5.2 . 157

E.5 Synthetic Experiment for Section 4.6.3 . 157

E.5.1 Testing M > 2 . 157

E.5.2 Testing Robustness to M Parameter . 159

E.6 Additional Unimodal Baseline for Section 4.6.3 . 159

x

List of Tables

4.1 Environment Properties . 115

4.2 Average Query Generation Times (seconds) . 118

C.1 Hyperparameters . 140

D.1 Features of the ExtendedDriver Environment . 143

E.1 Numerical results of the simulations at selected iterations i 157

E.2 Final numerical results of the user study . 158

E.3 Additional User Study Reward Learning Baseline . 159

xi

List of Figures

1.1 (top) The robot should first learn a model of the agent it is interacting with. (bot-

tom) It will then adapt to and influence the other agent in the task. 2

3.1 Example of a demonstration (top) and a best-of-many choice query with |Q| = 2,

i.e., a pairwise comparison query (bottom). During the demonstration the robot is

passive, and the human teleoperates the robot to produce trajectory ξD from scratch.

By contrast, the preference query can be active: the robot chooses two trajectories

ξ1 and ξ2 to show to the human, and the human answers by selecting their preferred

option. 12

3.2 Overview of our DemPref approach. The human starts by providing a set of high-

level demonstrations (left), which are used to initialize the robot’s belief over the

human’s reward function through w. The robot then fine-tunes this belief by asking

questions (right): the robot actively generates a set of trajectories, and asks the

human to choose their favorite. 13

3.3 The user is trying to teach the robot how to play a variant of mini-golf, where the

reward differs among eight targets. In preference-based learning, instead of trying to

design a reward function by hand or controlling the robot to provide demonstrations,

the user simply compares two demonstrated trajectories on the robot. Here, ξ1 and

ξ2 demonstrate two trajectories that correspond to hitting the ball towards the blue

or green targets. 18

3.4 The Atalante exoskeleton, designed by Wandercraft, has 12 actuated joints, 6 on each

leg. The experiments explore four gait parameters: step length, step duration, pelvis

roll, and pelvis pitch. 22

3.5 Scale feedback allows users to provide finely detailed comparisons between different

options. 27

xii

3.6 Different feasible sets learned from pairwise comparison and scale feedback under the

linear reward model. Shown is the updated weight space (green) after observing user

feedback for one (ξ1, ξ2) pair. If q̄ = 1, scale feedback enables us to learn a tighter

half-space; when q̄ ∈ (0, 1), scale feedback enables us to learn an equality, i.e., a

hyperplane. 30

3.7 Noiseless user model. 31

3.8 Examples of why multimodal reward functions might be needed. 34

3.9 (a) 1-step comparison query. In any two iterations a user with bimodal preference may

pick the trajectories optimal with respect to two different true weights w∗
1 and w∗

2 .

(b) This ambiguity shows up as noise in 1-step comparison based learning where the

goal is to learn a single reward function w∗ (on the left). In reality the true preference

function of the user changes between w∗
1 and w∗

2 depending on the environment, θ∗

governs the transition. Our algorithm learns such a bimodal preference: w1 close to

w∗
1 and a w2 close to w∗

2 (on the right). (c) Our proposed hierarchical query consists

of 3 sub-queries. In iteration i of querying, Q(i,0) is a context sub-query, Q(i,1) is

a comparison between two trajectories, each a different continuation of Q(i,0), and

Q(i,2) continues the preferred trajectory from Q(i,1). 41

4.1 Sample queries generated with the volume removal and information gain methods on

Driver and Tosser tasks. Volume removal generates queries that are difficult, because

the options are almost equally good or equally bad. 50

4.2 Comparing preference queries that do not account for the human’s ability to answer to

queries generated using our information gain approach. Here the robot is attempting

to learn the user’s reward function, and demonstrates two possible trajectories. The

user should select the trajectory that better aligns with their own preferences. While

the trajectories produced by the state-of-the-art volume removal method are almost

indistinguishable, our information theoretic approach results in questions that are

easy to answer, which eventually increase the robot’s overall learning efficiency. . . . 51

4.3 Views from simulation domains, with a demonstration in orange: (a) LunarLander,

(b) FetchReach (simulated), (c) FetchReach (physical). 52

4.4 The results of our first experiment, investigating whether initializing with demonstra-

tions improves the learning rate of the algorithm, on three domains. On the Driver,

LunarLander, and FetchReach (simulated) environments, initializing with one demon-

stration improved the rate of convergence significantly. 54

xiii

4.5 (Left) Our testing domain, with two trajectories generated according to the reward

functions learned by IRL and DemPref from a specific user in our study. (Right)

The results of our usability study – the error bars correspond to standard deviation

and significant results are marked with an asterisk. We find that users rated the

robot trained with DemPref as significantly better at accomplishing the task and

preferred to use our method for training the robot significantly more than they did

IRL. However, we did not find evidence to suggest that users found our method easier

to use than standard IRL. 55

4.6 Alignment values are plotted (mean ± standard error) to compare mutual informa-

tion and volume removal formulations. Standard errors are so small that they are

mostly invisible in the plots. Dashed lines show the weak pairwise comparison query

variants. Mutual information provides a significant increase in learning rate in all

cases. While weak pairwise comparison queries lead to a large amount of improve-

ment under volume removal, mutual information formulation is still superior in terms

of the convergence rate. 64

4.7 Wrong answer ratios on different queries are shown. The numbers at top show the

average number of wrong responses and “About Equal” choices, respectively, for both

strict and weak queries. Mutual information formulation yields smaller numbers of

wrong and “About Equal” answers, especially in the early stages. 65

4.8 User study results. Error bars show std. Asterisks show statistical significance. (a)

Easiness survey results averaged over all queries and users. Queries generated using

the mutual information maximization method are rated significantly easier by the

users than the volume removal queries. (b) The number of identical options in the

experiments averaged over all users. In Driver and Tosser, users indicated significantly

less indistinguishable queries with mutual information maximization compared to

volume removal maximization. (c) Final preferences averaged over the users. 7 means

the user strongly prefers the optimized trajectory w.r.t. the learned reward by the

mutual information formulation, and 1 is the volume removal. Dashed line represents

indifference between two methods. Users significantly prefer the robot who learned

using the mutual information maximization method for active query generation. . . 66

4.9 Simulation results for the order of demonstrations and preference queries. Alignment

values are plotted (mean±s.e.). It is consistently better to first utilize the passively

collected demonstrations rather than actively generated preference queries. The dif-

ferences in the Alignment value is especially small in the FetchReach simulations,

which might be due to the fact that it is a simpler environment in terms of the

number of trajectory features. 67

xiv

4.10 Simulation results for optimal stopping. Line plots show cumulative active learning

rewards (cumulative difference between the mutual information values and the query

costs), averaged over 100 test runs and scaled for visualization. Histograms show when

optimal stopping condition is satisfied, which aligns with the desired cumulative rewards. 68

4.11 Sample trajectories are shown for the two simulation environments. In Driver, another

car is cutting in front of the ego vehicle. In Tosser, the robot must hit the dropping

capsule such that it will fall into one of the baskets. 70

4.12 Accuracies and average log-likelihoods for test set queries are shown for the Driver

environment (mean±std over 5 runs). (a) Expressiveness results when the true under-

lying reward function is linear. (b) Expressiveness results when the true underlying

reward function is a degree-of-two polynomial. (c) Data-efficiency results that com-

pare ActiveGP with RandomGP. Accuracies and average log-likelihoods for test

set queries are shown (mean±std). Active query generation improves data-efficiency

over random querying in both tasks. This can be seen through both accuracy and

log-likelihood. 71

4.13 Features of 1000 Tosser trajectories are visualized in two-dimensional plane (gray).

Poisson disk sampling allows us to obtain a diverse set of 20 samples (orange), whereas

sampling uniformly at random yields mostly uninteresting trajectories (blue). 72

4.14 Accuracies and average log-likelihoods for test set queries are shown for the Tosser

environment (mean±std over 5 runs). (a) Expressiveness results when the true under-

lying reward function is linear. (b) Expressiveness results when the true underlying

reward function is a degree-of-two polynomial. (c) Data-efficiency results that com-

pare ActiveGP with RandomGP. Accuracies and average log-likelihoods for test

set queries are shown (mean±std). Active query generation improves data-efficiency

over random querying in both tasks. This can be seen through both accuracy and

log-likelihood. 73

4.15 Top view of the eight targets in the variant of mini-golf user study. The users assign

distinct scores from 2 to 9 to the targets. The figure shows an example of this rank-

ing. While the robot is capable of hitting the ball into the entire shaded region, the

maximizers of a linear reward always lie near the corners of the shaded region in blue.

Therefore, while the GP reward model can query the user with better trajectories

(e.g. the green trajectory), the linear model only explores the boundaries (e.g. the

blue trajectory that throws the ball outside of this region). Crosses show where the

ball hits the ground. 74

xv

4.16 (a) Prediction accuracy results (mean±se). Each trained with 15 queries, ActiveGP

achieves significantly higher prediction accuracy than both ActiveLinear and Ran-

domGP (p < 0.05). (b) User ratings on the final robot performance (mean±se).
ActiveGP accomplishes the task significantly better than both ActiveLinear and

RandomGP (p < 0.05). 75

4.17 1D posterior illustration. The true objective function is shown in orange, and the

algorithm’s posterior mean is blue. Blue shading indicates the confidence region for

ε = 0.5. The solid grey line indicates the true ordinal threshold Bo1 : the ROI is above

this threshold, while the ROA is below it. The dotted grey line is the algorithm’s

Bo1 hyperparameter. The actions queried so far are indicated with “x”s. Utilities are

normalized in each plot so that the posterior mean spans the range from 0 to 1. . . . 79

4.18 Impact of random subset size on algorithm performance. a) Example 3D synthetic

objective function and posterior learned by ROIAL with subset size = 500 after 80

iterations. Values are averaged over the 3rd dimension and normalized to range from

0 to 1. b-c) Algorithm’s error in predicting preferences and ordinal labels (mean ±
std). Each simulation evaluated performance at 1000 randomly- selected points; the

model posterior was used to predict preferences between consecutive pairs of points

and ordinal labels at each point. 79

4.19 Effect of the confidence interval. All simulations are run over 50 reward synthetic

functions with a random subset size of 500. a) Left: cumulative number of points in

the ROA (Bo1) queried at each iteration (mean ± std). Note that as ε increases, more

samples are required for the confidence interval to fall below the ROA threshold, at

which point ROIAL starts avoiding the ROA. Middle and right: error in predicting

comparison and ordinal labels for different values of ε; predictions are over 1,000

random actions (mean ± std). b) Confusion matrices (column-normalized) of ordinal

label prediction over the entire action space at iterations 80 and 240 with ε = -

0.45. The 2× 2 confusion matrices for ROI prediction accuracy are outlined in green.

Prediction accuracy increases with the number of iterations. 80

4.20 Effect of noisy feedback. The ordinal and pairwise comparison noise parameters, σO

and σC , range from 0.1 to 0.3 and 0.02 to 0.06, respectively. All cases use a random

subset size of 500 and ε = −0.45, and each simulation uses 1,000 random points to

evaluate label prediction. Plots show means ± standard deviation. 81

4.21 Confusion matrix of the validation phase results for all three subjects. The first

column is gray because trajectories in the ROA (Bo1) were purposefully avoided to

prevent subject discomfort. Percentages are normalized across columns. Parentheses

show the numbers of gait trials in each case. 81

xvi

4.22 4D posterior mean reward across exoskeleton gaits. Rewards are plotted over each pair

of gait space parameters, with the values averaged over the remaining 2 parameters

in each plot. Each row corresponds to a subject: Subject 1 is the most experienced

exoskeleton user, Subject 2 is the second-most experienced user, and Subject 3 never

used the exoskeleton prior to the experiment. 82

4.23 Comparison of scale feedback and weak pairwise comparisons for different active

querying methods. 85

4.24 All results are shown for the first experiment (mean±s.e. over 18 subjects). 88

4.25 All results are shown for the second experiment (mean±s.e. over 14 subjects). 88

4.26 The LunarLander environment is visualized with the two tasks. Sample trajectories

associated with these tasks are shown. 91

4.27 Unimodal and bimodal reward learning models are compared under MSE. Both mean

and median values (over 100 runs) are shown. Shaded regions show the first and the

third quartiles. 93

4.28 Different querying methods are compared with the (top) MSE and (bottom) Log-Likelihood

metrics (mean±se over 75 runs). 94

4.29 Mutual information based and random querying methods are compared with the

Learned Policy Reward values (mean±se over 75 runs which correspond to 150 ran-

domly generated reward function parameters) in LunarLander. 95

4.30 User study results (mean±se over 24 users for LunarLander and 13 groups for Fetch-

Banana). 96

4.31 Alignment value shows that our algorithm converges well for non-driving data with

non-active query selection when the simulated user is oracle. Here we show an average

Alignment over 5 different ground truth reward dynamics. 99

4.32 Alignment values show that our algorithm with active query selection (left) can learn

reward dynamics faster than non-active query selection (right) when the simulated

user is oracle. Here we show an average Alignment over 5 different ground truth

reward dynamics. 100

4.33 Alignment value shows even when the users are noisy our algorithm can learn the

true reward dynamics (left) and that as the probability being at mode 1 increases, w1

converges faster (right). 101

4.34 Distribution of ŵ1 and ŵ2 across all users for individual features. (a) User preferences

vary widely for adherence to lane center and distance to road boundaries, but are very

similar for efficiency (speed) and safe driving (collision avoidance). (b) While we did

not learn significantly different w1 and w2 for individual users, the average reward

with respect to ŵ1 and ŵ2 differs slightly for some of our study participants. 102

xvii

4.35 Most users gave high ratings to the trajectories optimal with respect to Rŵ1 and Rŵ2

and low ratings to trajectories optimal with respect to their perturbed versions Rwp
1

and Rwp
2
and the lowest rating to the trajectories that were optimal with respect to

a reward function that is parameterized randomly Rwr
. 103

4.36 Batches should be both diverse and informative in batch active learning. Here, a hypo-

thetical batch selection problem is visualized. Each cross represents a query. Similar

queries are close to each other. Orange shows the queries selected in that iteration,

and blue shows the queries for which the human responses have already been collected

in the previous iterations. Green color represents informativeness: darker regions cor-

respond to the queries with high informativeness based on the information collected

until that iteration. (Top) Maximizing only informativeness generates batches that

include very similar queries which, when queried together, carry redundant informa-

tion. (Middle) Maximizing only diversity does not take informativeness into account

at all, and so is wasteful as it selects some queries that are not informative. (Bot-

tom) A good batch active learning algorithm should both select informative queries

and avoid redundancy. 105

4.37 The effect of λ is visualized. The columns of the matrix L have the same magnitude

here; however {1, 3} is a more diverse set than {1, 2}. When λ = 1, {1, 3} is two times

more likely to be sampled from the DPP distribution than {1, 2}. When we increase

λ to 2, this ratio increases to 4, since more diverse sets are boosted against the less

diverse sets. 109

4.38 Visualizations of the batch generation process of the proposed time-efficient batch

active learning algorithms. In each visual, a simple 2D space with 16 different ψ

values that correspond to the reduced set X is shown. The goal is to select a batch

of k = 5 that will near-optimally maximize the joint volume removal. The selected

queries are shown in orange. (a) Greedy Selection. (b) Medoids Selection. The points

are selected based on the k-medoids clustering algorithm. (c) Boundary Medoids

Selection. The clusters are chosen over the boundary of the convex hull of all samples.

(d) Successive Elimination. One point is selected and another is eliminated based on

pairwise comparisons of volume removal. 112

4.39 Simulation view of each environment. (a) FetchReach, (b) Driver, (c) Tosser, (d)

LunarLander, (e) MountainCar, (f) Swimmer. 115

4.40 Batch-active learning methods are compared. 117

4.41 The performance of each algorithm is averaged over 10 different runs on LDS where

w∗ is uniformly randomly generated. Successive elimination performs better than the

random querying and worse than the non-batch active method. 119

xviii

4.42 The performance the algorithms is shown. The non-batch active method performs

poorly on LunarLander and Tosser. 119

4.43 Convergence to w∗ as a function of time is plotted for each environment. Non-batch

active learning method is slow due to the optimization and adaptive metropolis al-

gorithm involved in each iteration, whereas random querying performs poorly due to

redundant queries. Successive elimination clearly outperforms both of them. 120

4.44 The performance of successive elimination algorithm with varying k values was aver-

aged over 10 different runs with LDS where w∗ is uniformly randomly generated and

|X | = 20k. (a) The Alignment values, and (b) average query times. 120

4.45 User preferences onDriver task are grouped into two sets. While the first set shows the

preferences conforming with the natural driving behavior, the second set is comprised

of data from two users one of whom preferred collisions with the other car over leaving

the road and the other regarded some collisions as near-misses and thought they can

be acceptable in order to keep speed. It can be seen that the uncertainty in their

learned preferences is higher. 121

4.46 User preferences on Tosser task are grouped into four sets. The first set shows the

preferences of people who aimed at throwing the ball into the green basket (the distant

one) but accepted throwing into the other basket is better than not throwing into any

baskets. The second set is comprised of data from three users who preferred the red

basket (the closer one). In the third group, the users preferred the green basket over

the red one, but also accepted throwing far away is better than throwing into the

red basket, because it is an attempt for the green basket. Lastly, the fourth group

is similar to the first group; however the confidence over preferences is much less,

because the users were not sure about how to compare the cases where the ball was

dropped between the baskets in one of the trajectories. 122

C.1 Multi-chain Metropolis-Hastings sampling (left) gives more representative samples

from the distribution compared to the single-chain variant (right). 139

C.2 Tuning results for the DPP-based method for various γ under each environment. . . 141

D.1 Sample LunarLander trajectory (left) with extracted features (right). 146

D.2 Sample FetchBanana trajectory (left) with extracted features (right). 147

D.3 The user interface for the online studies with the real Fetch robot (FetchBanana

environment). The user selected the 2nd trajectory as their top choice and the 6th

trajectory as the second top. 148

E.1 The simulation results with mutual information formulation for unknown ς. Plots are

mean±s.e. 149

xix

E.2 Alignment values are plotted (mean±s.e.) for the experiments without query space

discretization, i.e., with continuous trajectory optimization for active query generation.150

E.3 The results (mean±s.e.) of the simulations with weak pairwise comparison queries

where we use the information from “About Equal” responses (blue and red lines) and

where we do not use (purple and orange lines). 150

E.4 Simulation results for optimal stopping under query-independent costs. Line plots

show cumulative active learning rewards (cumulative difference between the informa-

tion gain values and the query costs), averaged over 100 test runs and scaled for better

appearance. Histograms show when optimal stopping condition is satisfied. 151

E.5 Alignment (left) and Relative Reward (right) for ExtendedDriver with σS = 0.3. . . 152

E.6 Log-Likelihood for the ExtendedDriver simulations. 153

E.7 Alignment and Relative Reward for the original Driver with σS = 0.1. 154

E.8 Alignment and Relative Reward for the original Driver with σS = 0.3. 154

E.9 Log-Likelihood for the original Driver. 154

E.10 Fetch robot with drink serving experiment (FetchDrink) with σS = 0.1. 155

E.11 Fetch robot with drink serving experiment (FetchDrink) with σS = 0.3. 155

E.12 Log-Likelihood for the Fetch robot with drink serving experiment (FetchDrink). . . . 155

E.13 Additional analysis results are shown (mean±s.e. over 18 subjects). 156

E.14 Different querying methods are compared on a synthetic environment (mean±se over

250 runs). 157

E.15 Different values ofM for the mutual information maximization approach are compared

(mean±se over 100 runs). 158

xx

Chapter 1

Introduction

In recent years, we have seen enormous effort to integrate robots and systems equipped with artificial

intelligence (AI) into the society. While these agents are increasingly becoming part of our lives,

most of their current interactions with the humans is one-way, e.g., a driver commands a vehicle

to park autonomously, or the vehicle warns the driver about weather conditions. However, their

successful integration will require them to intelligently learn, adapt to, and influence the humans

and other AI agents.

These two-way interactions, where agents need to learn, adapt to, and influence each other;

appear in almost all real-life scenarios. Human teams that are good at collaborating are often the

ones where each individual adapted themselves to the others, e.g., sports teams train together rather

than trying to improve individually. However, AI agents are not yet capable of this adaptation: their

inability to model others led to problems in several occasions. For example, price-setting bots tried

to sell a book for 23.7 million dollars on an online retail website after blindly competing with each

other and not realizing that by increasing the price, the other bots will increase the price as well,

while no human would be willing to pay this price [188]. Though this is an old example, we still see

similar issues arise: autonomous cars fail to change lanes because they do not know the other drivers

will slow down if they simply nudge in front of them [137]. The approach in this thesis to enable the

robots to achieve the two-way interactions is inspired by how humans interact: we efficiently infer

our partners’ goals to optimize our behavior. For example, we move to one side of the sidewalk when

we see a cyclist is approaching. If there is a mismatch between the inferred goal and our own goal,

we try to influence our partners, e.g., if the cyclist moves to the same side, we stop for a second to

imply we want to stay on this side and they should use the other side.

To achieve this human-like interaction, robots should understand the objective in the task, which

encodes what they need to do and how they should do what they do. Designing these objective by

hand, known as reward function, is extremely challenging. A more promising approach is to learn

it from humans. Recent works dominantly focused on learning from human demonstrations of the

1

1.1. THESIS APPROACH 2

task. However, human demonstrations are often suboptimal due to various reasons, e.g., difficulty

of teleoperation, robots’ high degrees of freedom, humans’ cognitive limitations, etc. Therefore,

many questions arise: What are some other forms of human feedback that enables robots to more

reliably learn reward functions? How can robots learn from multiple data modalities? How can

these methods extend to the cases where the reward function is multimodal or non-stationary? How

can robots optimize for data-efficiency to mitigate the high costs of data collection? In this thesis,

we attempt to answer these questions.

1.1 Thesis Approach

Figure 1.1: (top) The robot should
first learn a model of the agent it is in-
teracting with. (bottom) It will then
adapt to and influence the other agent
in the task.

Integrating robots and systems equipped with AI into the soci-

ety requires a thorough understanding of how they may learn,

adapt to and influence other agents. Our approach is to divide

this problem into two parts (see Figure 1.1) [33]. First, machine

learning techniques that we develop in this thesis will enable AI

agents to model the behaviors and goals of the other agents by

leveraging different forms of information they provide. Next,

these learned behaviors and goals will enable these agents to

better interact with the others to achieve online adaptation,

e.g., an autonomous vehicle will adapt to both its driver and

the other vehicles to better optimize its route and driving style.

In this thesis, we focus on the first aspect and study how robots

can learn from human feedback.

Although recent works mostly focused on learning from

demonstrations, they often suffer from the suboptimality of

demonstrations. In this thesis, we propose using comparative

feedback to learn the objectives, where human users are asked

to compare multiple trajectories of a robot based on their preferences. We develop various forms

of comparative feedback, and further study how they can be collected actively to improve data-

efficiency, which is crucial in robotics, especially because the data are coming from human users.

For these, we bridge ideas from machine learning, information theory, human-robot interaction,

optimization and control theory.

1.2 Contributions

This thesis makes the following contributions.

The goal of this thesis is to develop rewards learning methods for robots that leverage

1.2. CONTRIBUTIONS 3

comparative feedback from humans in a data-efficient way.

Learning Reward Functions via Comparative Feedback

In Chapter 3, we study various forms of comparative feedback, how to learn reward functions us-

ing them, and how to utilize them along with user demonstrations that are possibly suboptimal.

Specifically, we develop and analyze the following feedback modalities:

• Pairwise comparisons: The user selects their preferred trajectory among two options [34,

39, 40, 120].

• Scale feedback: The user uses a slider bar to indicate how much they prefer one trajectory

over the other in a pairwise comparison setting [208].

• Ordinal feedback: In addition to pairwise comparisons, the user also labels each trajectory

with an ordinal feedback. e.g., “Bad”, “Neutral” and “Good” [135].

• Best-of-many choices: We extend the pairwise comparisons so that the user will now choose

their most preferred trajectory out of multiple options, possibly more than two [43, 38, 36, 41,

26].

• Hierarchical choices: To handle non-stationary reward functions, we develop hierarchical

choice queries in which the user first responds to a standard best-of-many choice query. After

their response, a new best-of-many choice query is presented such that its trajectories start

from the final state of the user’s preferred trajectory in the first query [23].

• Rankings. The user ranks multiple (more than two) trajectories from their most preferred

to the least preferred [154]. This helps robots learn multimodal reward functions, e.g., when

the data are coming from multiple people.

In addition, we study different forms of reward functions that encode how a robot or an AI agent

should perform the task:

• Parametric reward functions: Most of the thesis focuses on reward functions that are

parametric [34, 39, 120, 43, 38, 36, 41, 26]. In principle, such functions may range from linear

functions to neural networks. However, as we take a Bayesian learning approach, functions with

large parameter spaces are difficult to learn in practice. This restricts us to simple functional

forms.

• Non-parametric reward functions: To solve this issue and be able to learn more complex

rewards, we employ Gaussian processes and learn non-parametric reward functions [40, 135].

1.3. THESIS ORGANIZATION 4

• Multimodal reward functions: If the data are coming from multiple people with different

objectives, or the same person with varying objectives, unimodal reward functions fail to

encode their preferences. Hence, we model the multimodal reward as a mixture of multiple

parametric unimodal reward functions [154].

• Non-stationary reward functions: As a specific case of multimodal reward functions, we

study rewards that are non-stationary with some structure: the users’ preferences change based

on the history in the environment according to a parametric transition function [23].

Active Querying for Comparative Feedback

In Chapter 4, we address the problem of data inefficiency when learning from comparative feedback.

As opposed to user demonstrations of the task, where each state in a trajectory receives an action

label; comparisons contain very little information – they only say some trajectories are better than

some others. This means a robot may require enormous amounts of data to learn useful reward

functions via comparative feedback, especially when there are no demonstrations to warm-start the

learning. To mitigate this problem, we develop active learning techniques to actively query the users

for the most informative comparative feedback.

Specifically, we study active learning objectives that are based on volume removal [171, 34, 39,

36, 41], mutual information [38, 43, 41, 40, 135, 208, 154], and max-regret [207, 208]. While doing

this, we follow a similar structure to Chapter 3: we describe how each section of Chapter 3 can be

extended with active querying. As a result of this choice, we defer all simulation and experiment

results to Chapter 4 where we not only investigate the learning performance but also analyze the

benefits of active querying.

1.3 Thesis Organization

Chapter 2 is geared towards a reader who is inexperienced at robot learning: we present an intro-

ductory overview of reinforcement learning (RL) and inverse reinforcement learning (IRL) problems.

While doing this, we do not focus on any particular solution – instead we keep the problem formu-

lations general enough so that we can present learning from comparative feedback using the same

formulation. In fact, the focus of this thesis, learning reward functions from comparative feedback

is closely related to the inverse reinforcement learning problem. In both of these problems, the goal

is to learn a reward function that encodes the desired behavior of the robot or the AI agent.

Chapter 3 then starts with building upon an existing IRL solution, namely Bayesian inverse

reinforcement learning [164], where the reward function is learned using human demonstrations of

the task. Again taking a Bayesian approach, we study how comparative feedback can be used to learn

the reward function. For this, we start with best-of-many choice queries (Section 3.1, [38, 159, 43]).

We then focus on a specific version of these queries with only two options to compare, i.e., pairwise

1.3. THESIS ORGANIZATION 5

comparisons. Using this simpler query form enables us to learn non-parametric reward functions

that are modeled via Gaussian processes (Section 3.2, [40]), which we later improve with ordinal

feedback (Section 3.3, [135]). We then extend the pairwise comparisons by providing the users with

a slider bar to indicate how much they prefer one trajectory over the other, which would not be

practical with general best-of-many choice queries (Section 3.4, [208]). After this detour, we go

back to queries with more than two options, and study ranking queries which enable us to learn

multimodal reward functions (Section 3.5, [154]). Finally, we look at a specific case of multimodal

rewards where users transition between different modes according to the latest behavior of the robot

(Section 3.6, [23]). Section 3.7 summarizes Chapter 3.

In Chapter 4, we focus on how to improve data-efficiency when we use learning from comparative

feedback where information is very sparse as opposed to demonstrations. We follow a similar struc-

ture to Chapter 3, i.e., we follow almost the same order to present the active querying techniques

for each section in Chapter 3. We first introduce volume removal (Section 4.1, originally proposed

in [171]) and mutual information (Section 4.2, [38, 43]) based active learning objectives for best-

of-many choice queries. We then proceed with mutual information based active querying when the

reward is non-parametric and modeled as a Gaussian process (Section 4.3, [40]), and extend it to the

case where we also use ordinal feedback (Section 4.4, [135]). In addition to mutual information, we

introduce max-regret based active querying in Section 4.5 where we focus on scale feedback [208].

Following the same order as in Chapter 3, we next present active methods for ranking queries when

the reward is multimodal (Section 4.6, [154]) and for hierarchical choice queries when users transition

between different reward modes (Section 4.7, [23]). All these active querying methods require solv-

ing an optimization problem for each and every query, which might be computationally expensive

and makes the querying process non-parallelizable. Hence, in Section 4.8, we present various batch

active learning methods where multiple queries are optimized together in batches [34, 39]. Finally,

Section 4.9 summarizes the chapter.

Chapter 5 is the final chapter of the thesis in which we discuss the limitations and open challenges,

and conclude the ideas presented throughout the thesis. Additional material, e.g., proofs, derivations,

implementation and experiment details, and additional results, are presented in the appendices.

Chapter 2

Background

2.1 Reinforcement Learning (RL)

We first start with defining the reinforcement learning (RL) problem. The goal of reinforcement

learning is to find how a dynamical system can be optimally controlled. For this, we will first

mathematically define dynamical systems. As a running example, let’s consider a robot trying to

reach an object on a desk.

We use a discrete-time Markov decision process (MDP) to define a dynamical system. An MDP

is a tuple M = ⟨S, π0,A, T , T, r⟩ with the following variables. S denotes the state space. Each

s ∈ S fully characterizes a state of the world, e.g., the robot’s and the object’s poses and velocities.

Each episode in the system starts with an initial state s0 ∈ S drawn randomly from the initial state

distribution π0:

s0 ∼ π0(·) . (2.1)

A denotes the action space such that each a ∈ A is an action taken in the system, e.g., the robot

is given some control input. The transition distribution T then governs how this system evolves.

Based on the action at at time step t, the system transitions from state st to a new state st+1

according to:

st+1 ∼ T (· | st, at) . (2.2)

It is important that each state fully characterizes the state of the world: knowing the current state

and action is sufficient to best predict the next state, i.e.,

T (· | s0, a0, s1, a1, . . . , st, at) = T (· | st, at) . (2.3)

6

2.1. REINFORCEMENT LEARNING (RL) 7

This is known as the Markov property. The system evolves for T < ∞ time steps, known as the

horizon of the MDP.1

At each time step t, the decision maker (the agent) receives a scalar reward, based on the reward

function r. For example, the robot may experience some positive reward for getting close to the

target object, or negative reward (cost, or penalty) for colliding with some obstacles around. The

goal of the agent is to select its actions to maximize the expected cumulative reward over the time

steps of an episode. In literature, there are different conventions about how a reward function is

defined. The three options are to define them as a function of:

• only the current state: r : S → R,
• the current state and action: r : S ×A → R,
• the current state, action, and the next state: r : S ×A× S → R.

In this thesis, we will be focusing on learning from comparative feedback where multiple trajectories

of a robot (or multiple episodes in an MDP) are compared. Therefore, we will use trajectory

reward functions. For this, we first let a trajectory be a sequence of state-action pairs, i.e., ξ =

(s0, a0, s1, a1, . . . , sT , aT), and Ξ denote all possible trajectories of the system. This trajectory

reward function R : Ξ→ R can then be defined for each of the reward function conventions above:

R(ξ) :=

T∑
t=0

r(st), (2.4)

R(ξ) :=

T∑
t=0

r(st, at), or (2.5)

R(ξ) :=

T−1∑
t=0

r(st, at, st+1) . (2.6)

In fact, trajectory reward function can be defined more broadly: it does not have to be additive

over time steps. Hence, it is more expressive and general. Consequently in our setup, the goal of

the agent is to maximize the trajectory reward. This is the problem that reinforcement learning

methods attempt to solve: how should an agent decide its actions (based on the state of the system)

so that the trajectory will acquire as much reward as possible?

Reinforcement learning is still a very active area of research. Over the past decade, several

methods have been successfully implemented for various versions or applications of this problem.

Although the details of those methods are beyond the scope of this thesis, we include a list of

widely-used methods: deep Q-networks (DQN) [151], deep deterministic policy gradient (DDPG)

[138], asynchronous advantage actor-critic (A3C) [152], trust region policy optimization (TRPO)

1In this thesis we only consider finite-horizon MDPs. Extending to infinite-horizon MDPs requires an additional
variable: discount factor. We refer to the standard text on reinforcement learning by Sutton and Barto for more
details [189].

2.2. INVERSE REINFORCEMENT LEARNING (IRL) 8

[175], proximal policy optimization (PPO) [176], hindsight experience replay (HER) [12], actor-

critic using Kronecker-factored trust region method (ACKTR) [215], actor-critic with experience

replay (ACER) [201], twin delayed DDPG (TD3) [90], and soft-actor critic (SAC) [104].

2.2 Inverse Reinforcement Learning (IRL)

Inverse reinforcement learning (IRL), as its name implies, tries to solve an inverse problem. In IRL,

an agent who is already acting (near-)optimally in a system provides some data, i.e., they control

the system. For example, an expert operator provides demonstrations of a task by teleoperating a

robot. The goal in IRL is to use these expert demonstrations to identify the objective of the task,

i.e., the reward function [1, 2, 155, 157, 87].2

Formally in IRL, we are given some trajectory demonstrations ξ
(1)
D , ξ

(2)
D , · · · ∈ Ξ (or more gener-

ally: state-action pairs, or transition tuples that also include the next state) that are known to be

(near-)optimal with respect to the target task, encoded by an unknown reward function r. The goal

is to learn this reward function r.

It might not be obvious why IRL is an important problem: if we already have an agent that is

able to successfully control the system, why do we try to learn a reward function? The most common

reason is automation. It is usually the case that the expert agent is a human, which means we need

that expert human every time we need to control the system. However, if we can learn the reward

function that encodes the task, then we can perform reinforcement learning in this system with the

learned reward function to be able to control the system even in the absence of the expert. This is

not the only use case of IRL. Another interesting application is behavior modeling [140]. Imagine

we are trying to develop an autonomous vehicle that predicts the actions of the other cars around

so that it will seamlessly interact with them in traffic. To do this, understanding the objective of

the other cars is crucial: if our car can infer their objective, i.e., their reward function, then it may

better predict their actions. IRL has also applications in recommendation systems: Given a user’s

browsing history (a demonstration), the goal is to learn their preferences (reward function) so that

the system can make better recommendations in future (learn a better policy).

Similar to reinforcement learning, IRL is also an active research area. Arguably the most in-

fluential methods in IRL have been apprenticeship learning [1], maximum margin planning [167],

Bayesian inverse reinforcement learning [164], and maximum entropy inverse reinforcement learning

(MaxEnt-IRL) [226].

In this section, we reviewed the standard IRL problem where the goal is to learn a reward function

given expert demonstrations. However in many cases, especially in robotics, expert demonstrations

2Another interesting and very related problem is imitation learning [160, 168, 109, 182, 88, 181], where the goal is
to directly learn an optimal control policy from expert demonstrations. Although the research community does not
have a consensus on the scope of these terms, we use this convention: IRL tries to learn the reward function, imitation
learning tries to learn the optimal policy; both from expert demonstrations.

2.2. INVERSE REINFORCEMENT LEARNING (IRL) 9

may not be available, or all users of the system might be providing suboptimal demonstrations [98].

Two common reasons for this are (1) good demonstrations might require a high level of expertise

[197], and (2) it is often too difficult to manually operate robots, especially manipulators with high

degrees of freedom (DoF) [5, 84, 115, 123]. Moreover, even when operating the high DoF of a robot is

not an issue, people might have cognitive biases or habits that cause their demonstrations to not align

with their actual reward functions. For example, in [131] we have shown that people tend to perform

consistently risk-averse or risk-seeking actions in risky situations, depending on their potential losses

or gains, even if those actions are suboptimal. As another example from the field of autonomous

driving, Basu et al. [21] suggest that people prefer their autonomous vehicles to be more timid

compared to their own demonstrations. These problems show that, even though demonstrations

carry an important amount of information about what the humans want, one should either try

to learn from suboptimal demonstrations [53, 64, 58, 99, 214] or go beyond demonstrations, e.g.,

corrections [19, 20, 142, 221, 136], rankings [52, 51, 53, 64], critiques [14, 78], trajectory assessments

[178], or ordinal feedback [74], to properly capture the underlying reward functions. The latter

approach is also the theme of this thesis: We will go beyond demonstrations and present methods

that (actively) learn reward functions from comparative feedback where users compare multiple

trajectories of the system. This type of feedback has been shown to be successful in several other

domains such as classification [65], bandit problems [54], and reinforcement learning [212].

Chapter 3

Learning Reward Functions via

Comparative Feedback

Having presented the reinforcement learning (RL) and inverse reinforcement learning (IRL) problems

in Chapter 2, we are now ready to start presenting our learning methods. In this chapter, we present

alternative IRL solutions in which we learn reward functions using comparative feedback. Although

the novelty of our methods is due to the use of comparative feedback, we still allow the use of

demonstrations as in the standard IRL framework. To this end, Section 3.1 presents how we can

incorporate the information from best-of-many choices [38, 43] into Bayesian IRL [164] that originally

learns from demonstrations. Although we reduce the emphasis on demonstrations in later sections,

the same Bayesian approach easily extends to all methods in this chapter except Section 3.6 where we

assume humans have non-stationary rewards, which makes the generation process of demonstrations

ambiguous.

3.1 Incorporating Comparisons into IRL

Let’s start with briefly going over the other works in the literature that attempt to incorporate

comparative feedback into the IRL framework.

Learning reward functions from rankings and best-of-many choices. Two helpful and

closely related sources of information that can be used to learn reward functions is rankings and

best-of-many choices. In rankings, a human expert ranks a set of trajectories in the order of their

preference [51] whereas in best-of-many choices they just pick their favorite trajectory [36]. A special

case of both of these, which we also adopt in our experiments, is when these queries are pairwise

[7, 133, 72, 114, 52, 205, 212, 6, 92, 184, 210]. While these works experimented their methods on

some simulation environments, others leveraged pairwise comparison questions for various real-life

10

3.1. INCORPORATING COMPARISONS INTO IRL 11

applications, including exoskeleton gait optimization [193], and trajectory optimization for robots

in interactive settings [57, 159].

Learning reward functions from both demonstrations and comparisons. Ibarz et al. [114]

have explored combining demonstrations and comparisons, where they take a model-free approach

to learn a reward function in the Atari domain. Our motivation, physical autonomous systems,

differs from theirs, leading us to a structurally different method. It is difficult and expensive to

obtain data from humans controlling physical robots. Hence, model-free approaches are presently

impractical. In contrast, we give special attention to data-efficiency as we will discuss in detail in

Sections 4.1 and 4.2. As the resulting training process is not especially time-intensive, we efficiently

learn personalized reward functions.

3.1.1 Formulation

Building on prior work, we integrate demonstrations and comparative feedback to learn the human’s

reward function. Here we formalize this problem setting, and introduce the two forms of human

feedback that we will focus on: demonstrations and best-of-many choices. Our formulation revisits

the definitions in Section 2.1 and extends it for comparative feedback.

MDP. Let us consider a fully observable dynamical system describing the evolution of the robot,

which should ideally behave according to the human’s preferences. We formulate this system as a

discrete-time Markov Decision Process (MDP) M = ⟨S,A, T , r, T ⟩. At time t, st ∈ S denotes the

state of the system and at ∈ A denotes the robot’s action. The robot transitions to a new state

according to its dynamics distribution: st+1 ∼ T (· | st, at). At every time step the robot receives

reward r(s), and the task ends after a total of T time steps.

Trajectory. A trajectory ξ ∈ Ξ is a finite sequence of state-action pairs, i.e., ξ =
(
(st, at)

)T
t=0

over

the time horizon T .

Reward. The reward function captures how the human wants the robot to behave. Similar to

related works [1, 155, 226] where the reward is a linear combination of features, we assume the reward

is a parametric function of some trajectory features. Consistent with prior work [45, 19, 226], we

will assume that the trajectory features Φ(ξ) for any given trajectory ξ are known. In practice, they

can be based on the state features along that trajectory. Or more generally, the trajectory features

Φ(ξ) can be defined as any function over the entire trajectory ξ as we discussed in Section 2.1.

To understand what the human wants, the robot must simply learn the true parameters of the

reward function which we denote with w∗. Accordingly, we denote a trajectory reward function

parameterized with w as:

Rw(ξ) = fw(Φ(ξ)) . (3.1)

Demonstrations. One way that the human can convey their reward function parameters w to

3.1. INCORPORATING COMPARISONS INTO IRL 12

Figure 3.1: Example of a demonstration (top) and a best-of-many choice query with |Q| = 2, i.e., a pairwise
comparison query (bottom). During the demonstration the robot is passive, and the human teleoperates the
robot to produce trajectory ξD from scratch. By contrast, the preference query can be active: the robot
chooses two trajectories ξ1 and ξ2 to show to the human, and the human answers by selecting their preferred
option.

the robot is by providing demonstrations. Each human demonstration is a trajectory ξD, and we

denote a dataset of human demonstrations as DD = {ξ(1)D , ξ
(2)
D , . . . , ξ

(|DD|)
D }. In practice, these

demonstrations could be provided by kinesthetic teaching, by teleoperating the robot, or in virtual

reality (see Figure 3.1, top).

Best-of-many Choices. Another way the human can provide information is by giving feedback

about the trajectories the robot shows. We define a best-of-many choice query Q = {ξ1, ξ2, . . . , ξ|Q|}
as a set of |Q| robot trajectories. The human answers this query by picking a trajectory q ∈ Q

that matches their personal preferences (i.e., maximizes their reward function). In practice, the

robot could play |Q| different trajectories, and let the human choose their favorite (see Figure 3.1,

bottom).

Problem. Our overall goal is to accurately and efficiently learn the human’s reward function from

multiple sources of data. In this section, we will only focus on demonstrations and best-of-many

choices. Our approach should learn the reward parameters w with a combination of demonstrations

and best-of-many choice queries.

3.1. INCORPORATING COMPARISONS INTO IRL 13

Figure 3.2: Overview of our DemPref approach. The human starts by providing a set of high-level demon-
strations (left), which are used to initialize the robot’s belief over the human’s reward function through
w. The robot then fine-tunes this belief by asking questions (right): the robot actively generates a set of
trajectories, and asks the human to choose their favorite.

3.1.2 Our Approach

We now overview our approach for integrating demonstrations and best-of-many choices to efficiently

learn the human’s reward function. Intuitively, demonstrations provide an informative, high-level

understanding of what behavior the human wants; however, these demonstrations are often noisy,

and may fail to cover some aspects of the reward function. By contrast, preferences are fine-grained :

they isolate specific, ambiguous aspects of the human’s reward, and reduce the robot’s uncertainty

over these regions. It therefore makes sense for the robot to start with high-level demonstrations

before moving to fine-grained preferences. Indeed — as we will show in Theorem 3 — starting with

demonstrations and then shifting to actively collected comparative feedback is the most efficient

order for gathering data. Our algorithm, which we call DemPref (short for demonstrations and

preferences) leverages this insight to combine high-level demonstrations and low-level best-of-many

choice queries (see Figure 3.2).

Initializing a Belief from Offline Demonstrations

DemPref starts with a set of offline trajectory demonstrations DD. These demonstrations are

collected passively : the robot lets the human show their desired behavior, and does not interfere or

probe the user. We leverage these passive human demonstrations to initialize an informative but

imprecise prior over the true reward function parameters w.

Belief. Let the belief b be a probability distribution over w. We initialize b using the trajectory

demonstrations, so that b0(w) = P (w | DD). Applying Bayes’ Theorem:

b0(w) ∝ P (DD | w)P (w)

= P (ξ
(1)
D , ξ

(2)
D , . . . , ξ

(|DD|)
D | w)P (w)

(3.2)

We assume that the trajectory demonstrations are conditionally independent, i.e., the human does

3.1. INCORPORATING COMPARISONS INTO IRL 14

not consider their previous demonstrations when providing a new demonstration. Hence, Equa-

tion (3.2) becomes:

b0(w) ∝ P (w)
∏

ξD∈DD

P (ξD | w) (3.3)

In order to evaluate Equation (3.3), we need a model of P (ξD | w) — in other words, how likely is

the demonstrated trajectory ξD given that the human’s reward function parameters are w?

Boltzmann Rational Model. DemPref is not tied to any specific choice of the human model in

Equation (3.3), but we do want to highlight the Boltzmann rational model that is commonly used in

inverse reinforcement learning [226, 164]. Under this particular model, the probability of a human

demonstration is related to the reward associated with that trajectory:

P (ξD | w) ∝ exp
(
βDRw(ξD)

)
(3.4)

= exp
(
βDfw(Φ(ξD))

)
. (3.5)

Here βD ≥ 0 is a temperature hyperparameter, commonly referred to as the rationality coefficient,

that expresses how noisy the human demonstrations are, and we substituted Equation (3.1) for R.

Leveraging this human model, the initial belief over w given the offline demonstrations becomes:

b0(ω) ∝ exp

(
βD ·

∑
ξD∈DD

fw(Φ(ξD))

)
P (w) (3.6)

Summary. Human demonstrations provide an informative but imprecise understanding of w. Be-

cause these demonstrations are collected passively, the robot does not have an opportunity to inves-

tigate aspects of w that it is unsure about. We therefore leverage these demonstrations to initialize

b0, which we treat as a high-level prior over the human’s reward. Next, we will introduce how we up-

date this belief using best-of-many choice questions to remove uncertainty and obtain a fine-grained

posterior.

Updating the Belief with Proactive Queries

After initialization, DemPref iteratively performs two main tasks: actively choosing the right

preference query Q to ask, and applying the human’s answer to update b. In this section we focus

on the second task: updating the robot’s belief b. We will explore how robots should proactively

choose the right question in Sections 4.1 and 4.2 under Chapter 4.

Posterior. The robot asks a new question at each iteration i ≥ 1. Let Q(i) denote the i-th best-

of-many choice query, and let q(i) be the human’s response to this query.1 Again applying Bayes’

1For the ease of notation, we will slightly abuse the notation and use q(i) as a random variable when the user’s
response has not been elicited yet, and as a constant after their response is revealed. Similarly, we will use Q(i) as an
optimization variable when we are optimizing for the next query in Chapter 4, but it will be a constant as soon as
the query is made to the user.

3.1. INCORPORATING COMPARISONS INTO IRL 15

Theorem, the robot’s posterior over w becomes:

bi(w) ∝ P (q(1), . . . , q(i) | Q(1), . . . , Q(i), w) · b0(w) , (3.7)

where b0 is the prior initialized using human demonstrations. We assume that the human’s re-

sponses q are conditionally independent, i.e., only based on the current query and reward function

parameters. Equation (3.7) then simplifies to:

bi(w) ∝ b0(w) ·
i∏

i′=1

P (q(i
′) | Q(i′), w) (3.8)

We can equivalently write the robot’s posterior over w after asking i questions as:

bi(w) ∝ P (q(i) | Q(i), w) · bi−1(w) (3.9)

Human Model. In Equation (3.9), P (q(i) | Q(i), w) denotes the probability that a human with

reward function parameters w will answer query Q(i) by selecting trajectory q(i) ∈ Q(i). Put another

way, this likelihood function is a probabilistic human model, and previous work demonstrated the

importance of modeling imperfect human responses [129]. One way to do this is to model a noisily

optimal human as selecting q(i) from a strict best-of-many choice query Q(i) by

P (q(i) = Q
(i)
j | Q

(i), w) =
exp(βCRw(Q

(i)
j))∑|Q(i)|

j′=1 exp(βCRw(Q
(i)
j′))

, (3.10)

where βC is the rationality coefficient for comparisons. We call the query strict because the human

is required to select one of the trajectories. This model, backed by neuroscience and psychology

[81, 147, 28, 146], is routinely used [36, 100, 196, 211]. It is also known as the multinomial logits

(MNL) model [67].

Although we present this human choice model and use its variants in most of the subsequent

sections, our DemPref approach is agnostic to the specific choice of P (q(i) | Q(i), w) — we test

different human models in our experiments presented in Section 4.2. For now, we simply want to

highlight that this human model defines the way users respond to queries.

Having defined the learning algorithm that incorporates both demonstrations and best-of-many

choices, and a human model, we now have a computational method of learning reward functions

from comparative feedback in addition to demonstrations. In Sections 4.1 and 4.2, we will boost

the data-efficiency of this algorithm by developing active querying techniques. We also defer our

experiments to those sections. Prior to them in the subsequent sections of this chapter, we will

extend this framework to other forms of comparative feedback and relax some of the assumptions.

The next section relaxes the parametric reward assumption.

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 16

3.2 Learning Non-parametric Rewards via Pairwise Compar-

isons

In Section 3.1, we showed a Bayesian learning approach that incorporates demonstrations and best-

of-many choice queries. An important assumption we made is that the reward function is a para-

metric function of some known trajectory features. One might think that this is general enough,

because we did not impose any other constraints on the functional form, so for example, deep neural

networks could be good enough in most practical applications. However, computational issues often

arise in practice: since we are taking a Bayesian learning approach, learning becomes infeasible as

the number of parameters to learn increases. Given that deep neural networks often contain large

number of learnable parameters, this means the approach is limited to simple functional forms. In

fact, we will mostly focus on linear reward functions when we present our experiments as in the

prior work [1, 155, 226].

Alternative approaches to Bayesian learning includes training a deep neural network using

gradient-based optimization methods with a loss function that minimizes the log-likelihood where

the likelihood simply comes from our belief distribution b [120]. However, these approaches are

usually limited in the sense that they only give a point-estimate of the reward function, whereas

the Bayesian learning approach enables us to model the uncertainty by learning a distribution over

reward functions. Motivated by this, we relax the parametric reward function assumption by ex-

plicitly learning a distribution over reward functions using Gaussian processes (GP) in this section.

To do this, we focus on a special case of best-of-many choice queries with |Q| = 2, i.e., pairwise

comparisons where users just compare two trajectories and choose their favorite. Our results, which

we again defer until we present the corresponding active querying methods in Section 4.3, show this

significantly improves the expressive power of the learned reward function.

3.2.1 Related Work

Gaussian process regression. In the machine learning literature, González et al. [97] and Chu and

Ghahramani [73] proposed methods for preference-based Bayesian optimization and GP regression,

respectively, but they were not collecting data actively. Furthermore, González et al. [97] required to

regress a GP over 2d-dimensions to model a d-dimensional function, which causes a computational

burden. More relevantly, Houlsby et al. [113] presented an active method for preference-based GP

regression. However, similar to [97], the regression was over a 2d-dimensional space where the learned

model predicts the outcome of a comparison rather than outputting a reward value. Jensen and

Nielsen [116] showed how to update a GP with preference data, but the active query generation

was not an interest. Kapoor et al. [119] developed an active learning approach for classification

with GPs. This is a specific case of our problem, as the labels in classification are consistent, i.e.,

the labels assigned to the samples in the dataset, even if they are incorrect, do not change during

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 17

training. In our case, the user can respond to the same pairwise comparison query inconsistently

depending on their noise model. Houlsby et al. [112] and Daniel et al. [80] proposed active GP fitting

methods for classification and reward learning, respectively. While the latter focused on robotics

tasks, they were not preference-based. Hence, they may be infeasible in many applications as it is

difficult for humans to assign actual reward values.

In this section, we study a method for preference-based GP regression that learns from pairwise

comparisons, and extend it with active query generation in Section 4.3. This method does not

require the humans to assign actual reward values to the trajectories for fitting the GP.

3.2.2 Formulation

We again model the environment the robot is going to operate in as a discrete-time finite-horizon

MDP. We use st ∈ S to denote the state and at ∈ A for the action (control inputs) at time t.

A trajectory ξ ∈ Ξ within this MDP is a sequence that consists of the state and actions: ξ =

(s0, a0, s1, a1, . . . , sT , aT), where T is the finite time horizon.

We assume a reward function over trajectories, R : Ξ → R, that encodes the human user’s

preferences about how they want the system to operate.

We assume the reward function R can be formulated as R(ξ) = f(Φ(ξ)), where Φ : Ξ → Rd

defines a set of trajectory features, e.g. average speed and minimum distance to the closest car in a

driving trajectory. However, we emphasize that this formulation of R enables a more general form

of functions that does not require strong assumptions – such as linearity in the features – which is

commonly put in place when learning reward functions (as in [1, 155, 226]). We use a GP to model

f , which allows us to avoid strong assumptions about the form of f .2

Our goal is to learn this more general form of reward functions using preference data in the form

of pairwise comparisons. The robot will demonstrate a query Q consisting of two trajectories, ξ1

and ξ2 as shown in Figure 3.3 with blue and green curves, to the user, and will ask which trajectory

they prefer. The user will respond to this query based on their preferences. The user’s response

provides useful information about the underlying preference reward function R. Of course, we

cannot assume human responses are perfect for every query, so we model the noise in their responses

using the commonly adopted probit model (an alternative to the human choice model we presented

in Equation (3.10)), which assumes humans make a binary decision between the two trajectories

noisily based on the cumulative distribution function (cdf) of the difference between the two reward

values:

P (q = ξ1 | Q = {ξ1, ξ2}) = P (R(ξ1)−R(ξ2) > ϵ) , (3.11)

where q ∈ Q denotes the user’s choice, and ϵ ∼ N (0, 2σ2
C) for some standard deviation σC

√
2.

2Due to computation reasons, we assume d is small. Compared to previous works which assume R to be linear in
features or a small dimensional parameter space for parametric reward functions, this is a very mild assumption.

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 18

Human Teacher

2

1

Figure 3.3: The user is trying to teach the robot how to play a variant of mini-golf, where the reward differs
among eight targets. In preference-based learning, instead of trying to design a reward function by hand
or controlling the robot to provide demonstrations, the user simply compares two demonstrated trajectories
on the robot. Here, ξ1 and ξ2 demonstrate two trajectories that correspond to hitting the ball towards the
blue or green targets.

Therefore, equivalently:

P (q = ξ1 | Q = {ξ1, ξ2}) = Φ

(
R(ξ1)−R(ξ2)√

2σC

)
, (3.12)

where Φ is the cumulative distribution function of the standard normal. This is an example of a

Thurstonian model [149].

Having defined the problem setting, we are now ready to present our method for learning ex-

pressive reward functions using GPs.

3.2.3 Our Approach

In this section, we first give some background information about Gaussian Processes. We then

introduce preference-based GP regression, where we show how to update a GP with the results

of pairwise comparisons. We will present our approach to active preference query generation in

Section 4.3, where we discuss how to find the most informative query that accelerates the learning.3

3We make our Python code for preference-based GP regression and active query generation publicly available at
https://github.com/Stanford-ILIAD/active-preference-based-gpr.

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 19

To simplify the notation, we replace Φ(ξ) with Φ, with superscripts and subscripts when needed in

this subsection and the related appendices.

Gaussian Processes

We start by introducing the necessary background on GPs for our work. We refer the readers to

[166] for other uses of GPs in machine learning.

Suppose we have a finite trajectory space Ξ = {Φ(i)}|Ξ|
i=1, where Φ

(i) ∈ Rd is the features of the

ith trajectory according to some arbitrary indexing in Ξ. We employ a probabilistic point of view

for f by modeling it using a GP, which enables us to model nonlinearities and uncertainties well

without introducing parameters. We have:

P (f | µ,K) =
exp

(
− 1

2 (f − µ)⊤K−1(f − µ)
)

(2π)|Ξ|/2|K|1/2
, (3.13)

where f = [f(Φ(1)), f(Φ(2)), . . . , f(Φ(|Ξ|))]⊤, µ and K are the mean vector and the covariance matrix

of the GP distribution for the |Ξ| items in the dataset. Put it in another way, f follows a multivariate

distribution. The covariance matrix depends on the used kernel. In this work, we use a variant of

radial basis function (RBF) kernel with hyperparameter ϑ:

k(Φ(i), Φ(j)) = exp
(
−ϑ∥Φ(i) − Φ(j)∥22

)
− k̄(Φ(i), Φ(j)),

k̄(Φ(i), Φ(j)) = exp
(
−ϑ∥Ψ(i) − Φ̄∥22 − ϑ∥Φ(j) − Φ̄∥22

)
,

where Φ̃ ∈ Rd is an arbitrary point for which we assume f(Φ̃) = 0. This helps in practice because

the query responses only depend on the relative difference between the two reward function values

at the trajectories, i.e., f(Φ)+ ϵ for any ϵ ∈ R would have the same likelihood for a dataset as f(Φ).

By setting f(Φ̃) = 0 for some arbitrary Φ̃ ∈ Rd, we dissolve this ambiguity. It does not introduce an

assumption because for any function f ′ and for any point Φ̃, one can define f(Φ) = f ′(Φ) − f ′(Φ̃)
without loss of generality—both f ′ and f will encode the same preferences. Finally, this variant of

the RBF kernel is still positive semi-definite, because it is equivalent to the covariance kernel of a

GP which is initialized with an initial data point and a standard RBF kernel prior.

Preference-based GP Regression

Although the previous subsection was needed to explain how GPs work, we only focus on preference-

based learning without any demonstrations in this section. In preference-based learning with pairwise

comparisons, we have a dataset DC = (Q(i), q(i))
|DC |
i=1 = ((Φ

(i)
1 , Φ

(i)
2), q(i))

|DC |
i=1 , consisting of pairs of

trajectory features Φ
(i)
1 , Φ

(i)
2 ∈ Rd, and user responses q = (q(i))

|DC |
i=1 , where q(i) ∈ {Q(i)

1 , Q
(i)
2 }

indicates whether the user preferred Φ
(i)
1 or Φ

(i)
2 . Accordingly, K is now a 2|DC | × 2|DC | matrix,

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 20

whose rows and columns correspond to Φ
(i)
j ,∀i ∈ {1, . . . , |DC |},∀j ∈ {1, 2}. Similarly, µ is a 2|DC |-

vector. Using a Bayesian approach to update the GP with new preference data (Q(i), q(i)) gives:

P (f | µ,K, Q(i), q(i)) ∝ P (q(i) | f,µ,K, Q(i))P (f | µ,K, Q(i))

= P (q(i) | f,Q(i))P (f | µ,K). (3.14)

Here, the first term is just the probabilistic human response model given in Equation (3.12), and the

second term is Equation (3.13). However, this posterior does not follow a GP distribution similar

to Equation (3.13), and becomes analytically intractable [116].

Prior works have shown it is possible to perform some approximation such that the posterior is

another GP [116, 166]. The most common approximation techniques are:

1. Laplace approximation, where the idea is to model the posterior as a GP such that the mode

of the likelihood is treated as the posterior mean, and a second-order Taylor approximation

around the maximum of the log-likelihood gives the posterior covariance. This technique is

computationally very fast.

2. Expectation Propagation (EP), where the idea is to approximate each factor of the product

by a Gaussian. EP is an iterative method that processes each factor iteratively to update the

distribution to minimize its KL-divergence with the true posterior. While it is more accurate

than Laplace approximation, it is slower in practice [156].

In this section, we use the former for its computational efficiency. Hence, we now show how to

compute the quantities for Laplace approximation, i.e., posterior mean and covariance.

Finding the posterior mean. We use the mode of the posterior as an approximation to the

posterior mean:

f̂ = argmax
f

(log (P (q | Q, f)) + log (P (f | Q,µ,K))) , (3.15)

where Q denotes the queries that correspond to the responses q. Because the preference data are

conditionally independent, the first term can be written as:

log (P (q | Q, f)) =
|DC |∑
i=1

logP (q(i) | Q(i), f)

=

|DC |∑
i=1

log Φ

(
f(Φ

(i)
1)− f(Φ(i)

2)√
2σC

)

due to Equation (3.12). Adopting a zero-mean prior for f , we can write the second term of the

3.2. LEARNING NON-PARAMETRIC REWARDS VIA PAIRWISE COMPARISONS 21

optimization (3.15) as:

log (P (f | Φ),µ,K) = −1

2
log|K| − |DC | log 2π −

1

2
f⊤K−1f

Armed with these two expressions, we can now optimize the log-likelihood and thus find the mode

of it to approximate the posterior mean.

Finding the posterior covariance matrix. Following [166], and omitting the derivation details

for brevity, the posterior covariance matrix is K̂ = (K−1 +W)−1 where W is the negative Hessian

of the log-likelihood:

Wij = −
∂2 log (P (q | Q, f))

∂f (i)∂f (j)
.

Now, we know how to approximate the posterior mean and the posterior covariance for the

Laplace approximation of Equation (3.14). This allows us to model and update the reward with

preference data using a GP.

We also want to perform inference from this approximated GP. Inference is not only useful for

active query generation as we will show in Section 4.3, but it also enables us to compute the reward

expectations and variances given a trajectory.

Inference. Given two points Φ∗
1, Φ

∗
2 ∈ Rd, we want to be able to compute the expected mean

rewards µ∗ and also the covariance matrix between those two points K∗, both of which will be

useful for active query generation in Section 4.3. These are given by:

µ∗ = E [f∗ | Q,q, Φ∗
1, Φ

∗
2] = k∗⊤K−1f , (3.16)

where k∗ is a 2 × 2|DC | matrix whose ith row consists of k(Φ∗
i , Φ

(j)
1) and k(Φ∗

i , Φ
(j)
2) values for

j ∈ {1, . . . , |DC |}, and

K∗ = K0 − k∗
(
I2|DC | +WK

)−1
Wk⊤∗ , (3.17)

where K0ij = k
(
Φ∗
i , Φ

∗
j

)
is a 2× 2 matrix, I2|DC | is the 2|DC | × 2|DC | identity matrix.

Having a way to find the posterior mean and covariance as well as to perform inference means

we now know how to learn a reward function modeled using a GP. In practice, the posterior mean

can be used as a point estimate of the reward function, and the posterior covariance is useful for

modeling the uncertainty over rewards. In the next section, we incorporate ordinal feedback on

top of pairwise comparisons (as in [74]), which also enables us to define a region of avoidance for

safety-critical applications.

3.3. INCORPORATING ORDINAL FEEDBACK ALONG WITH COMPARISONS 22

Figure 3.4: The Atalante exoskeleton, designed by Wandercraft, has 12 actuated joints, 6 on each leg. The
experiments explore four gait parameters: step length, step duration, pelvis roll, and pelvis pitch.

3.3 Incorporating Ordinal Feedback along with Comparisons

Learning from comparative feedback naturally involves demonstrating some suboptimal trajectories

to the human expert. In some cases, this might be problematic. For example, suppose we are

trying to learn optimal gait parameters of a lower body exoskeleton (see Figure 3.4) where each

gait corresponds to a trajectory. The human user who will give the comparison feedback will wear

this exoskeleton and make comparisons about how comfortable they feel. Asking them comparison

questions that involve highly suboptimal trajectories will cause them to feel uncomfortable and/or

unsafe. In practice, we need to avoid this as much as possible.

Although we only focus on learning from offline datasets in this chapter and defer active compar-

ison data collection until Chapter 4, we now present how we can define such regions in the trajectory

space Ξ to avoid by utilizing ordinal feedback (in addition to pairwise comparisons) from humans.

More formally in this section, we denote this region of undesirable trajectories as the “Region

of Avoidance” (ROA) and the region of remaining trajectories as the “Region of Interest” (ROI).

In prior work on the highly-related area of safe exploration [185, 174, 30, 187], unsafe trajectories

(or actions, or parameters) are considered to be catastrophically bad and therefore must be avoided

completely. However, the resulting algorithms can be overly conservative in settings such as ours,

where occasionally sampling from bad regions is tolerable.

This section, together with Section 4.4, proposes the Region of Interest Active Learning (ROIAL)

algorithm, a novel active learning framework which queries the user for qualitative (ordinal) or

preference (comparative) feedback to locate the ROI and estimate the reward function as accurately

as possible over the ROI. In this section, we describe the learning algorithm, and Section 4.4 focuses

on active querying.

The vast majority of prior work on preference learning obtains at most 1 bit of information

per pairwise comparison query [112, 193, 192, 216, 91, 190, 207, 161, 186, 29]. ROIAL additionally

3.3. INCORPORATING ORDINAL FEEDBACK ALONG WITH COMPARISONS 23

learns from ordinal labels [74], which assign trajectories to discrete ordered categories such as “bad,”

“neutral,” and “good.” Ordinal feedback enables ROIAL to both: 1) locate the ROI by learning

the boundary between the least-preferred category (ROA) and remaining trajectories (ROI), and 2)

estimate the reward function more efficiently within the ROI. Compared to the 1 bit of information

obtained per pairwise comparison query, each ordinal query yields up to log2(|Bo|) bits of information

where Bo is the set of ordinal labels. Since ordinal feedback is identical for trajectories within each

ordinal category, pairwise comparisons provide finer-grained information about the reward function’s

shape within the categories.

We describe the learning algorithm that performs GP regression using both pairwise comparisons

and ordinal feedback, and learns the ROA in the subsequent subsections. In Section 4.4, we extend

it with active query generation to complete the description of the ROIAL algorithm, and validate it

both in simulation and experimentally using the aforementioned lower-body exoskeleton task.

3.3.1 Formulation

We again consider a learning problem over a finite (but potentially-large) trajectory space Ξ, with

a trajectory feature function Φ : Ξ → Rd. Each trajectory ξ ∈ Ξ is assumed to have an un-

derlying reward to the user, R(ξ) = f(Φ(ξ)). The algorithm aims to learn the unknown re-

ward function R : Ξ → R. The trajectories’ rewards can be written in the vectorized form

f := [f(Φ(ξ(1))), f(Φ(ξ(2))), ..., f(Φ(ξ(|Ξ|)))]⊤, where {ξ(j) | j = 1, . . . , |Ξ|} are the trajectories in

Ξ.

Specific to this section, we slightly change the comparison dataset structure: instead of having

pairwise comparisons between two arbitrary trajectories, we assume the human user experiences (or

watches) trajectories one by one and compares each trajectory to the previous one. This choice

is made as it is more natural and time-efficient for the lower-body exoskeleton task we mentioned.

However mathematically, this does not change anything: the learning algorithm could still handle

pairwise comparison datasets with arbitrary trajectories as in the previous sections.

Accordingly, we let ξ(i) ∈ Ξ be the trajectory selected in trial i. We receive qualitative information

about f after each trial i, consisting of an ordinal label q
(i)
o and a comparison between ξ(i) and ξ(i−1)

for i ≥ 2. We use ξ(i1) ≻ ξ(i2) to denote a preference for trajectory ξ(i1) over ξ(i2), and following each

trial i, collect these pairwise comparisons into a dataset D(i)
C = {ξ(i1) ≻ ξ(i2) | i = 1, 2, ..., |DC |}.

The ordinal labels are similarly collected into D(i)
O = {(ξ(i), q(i)o) | i = 1, 2, ..., |DO|}. Again assuming

no expert demonstrations in this section, the full user feedback dataset after iteration i is defined as

D(i) := D(i)
C ∪ D

(i)
O .

Ordinal feedback assigns one of pre-determined ordered labels to each sampled action. These

(possibly noisy) labels are assumed to reflect ground truth ordinal categories (e.g., “bad,” “neutral,”

“good,” etc.), which partition Ξ into the sets that correspond to each ordinal label. We define the

region of avoidance (ROA) as the trajectories that would fall into the set of lowest ordinal label. For

3.3. INCORPORATING ORDINAL FEEDBACK ALONG WITH COMPARISONS 24

instance, in the lower-body exoskeleton setting, it consists of gaits that make the user feel unsafe or

uncomfortable. Similarly, the ROA could be defined as the union of multiple sets that correspond

to the bottom ordinal labels. We define the region of interest (ROI) as the complement of the ROA,

i.e., Ξ \ ROA.

3.3.2 Learning Algorithm

This subsection describes the learning algorithm, which leverages qualitative human feedback to

estimate the ROI and reward function (code available at https://github.com/kli58/ROIAL). We

first discuss Bayesian modeling of the reward function, and then explain the procedure for rendering

it tractable in high dimensions. We then detail the process for estimating the ROI.

Bayesian Posterior Inference

To simplify notation, this section omits the iteration i from all quantities. Given the feedback dataset

D = DC ∪ DO, the utilities f have posterior:

P (f | DC ,DO) ∝ P (DC | f)P (DO | f)P (f), (3.18)

where P (f) is a Gaussian prior over the utilities f :

P (f) =
1

(2π)|Ξ|/2|K|1/2
exp

(
−1

2
f⊤K−1f

)
,

in which K ∈ R|Ξ|×|Ξ|, Kjj′ = k(Φ(ξ(j)), Φ(ξ(j
′))), and k is a kernel of choice. This section and

Section 4.4 use the squared exponential kernel.

Comparison feedback. We assume that the users’ preferences are corrupted by noise as in [73],

such that:

P (ξ(1) ≻ ξ(2) | f) = gC

(
f(Φ(ξ(1)))− f(Φ(ξ(2)))

σC

)
, (3.19)

where gC : R → (0, 1) is a monotonically-increasing link function, and σC > 0 quantifies noisiness

in the comparisons. Note that this is a generalized version of the Thurstonian model we used in

Equation (3.12).

Ordinal feedback. We define set of thresholds Bo such that −∞ = Bo0 < Bo1 < Bo2 < . . . < Bo|Bo| =

∞. These thresholds partition the trajectory space into |Bo| ordinal categories Bo1,Bo2, . . . ,Bo|Bo|.

For any ξ ∈ Ξ, if f(Φ(ξ)) < Bo1 , then ξ ∈ Bo1, and ξ has an ordinal label of 1. Similarly, if

Boj ≤ f(Φ(ξ)) < Boj+1, then ξ ∈ Boj+1, and ξ corresponds to an ordinal label of j + 1. We assume

3.3. INCORPORATING ORDINAL FEEDBACK ALONG WITH COMPARISONS 25

that the users’ ordinal labels are corrupted by noise as in [74], such that:

P (qo | f , ξ) = gO

(
Boqo − f(Φ(ξ))

σO

)
− gO

(
Boqo−1 − f(Φ(ξ))

σO

)
, (3.20)

where gO : R→ (0, 1) is a monotonically-increasing link function, and σO > 0 quantifies the ordinal

noise.

Assuming conditional independence of queries, the likelihoods P (DC | f) and P (DO | f) are:

P (DC | f) =
|DC |∏
i=1

gC

(
f(Φ(ξ(i1)))− f(Φ(ξ(i2)))

σC

)
,

P (DO | f) =
|DO|∏
i=1

gO
Boq(i)o

− f(Φ(ξ(i)))

σO

− gO
Boq(i−1)

O

− f(Φ(ξ(i)))

σO

 .
Our simulations and experiments in Section 4.4.2 fix the hyperparameters σC , σO, and {Boj | j =

1, . . . , |Bo| − 1} in advance. One could also estimate them during learning using strategies such

as evidence maximization, but this can be computationally very expensive, especially with large

trajectory spaces.

Common choices of link function (gC and gO) include the Gaussian cumulative distribution

function [73, 74] and the sigmoid function, g(x) = (1 + e−x)−1 [192]. We model feedback via

the sigmoid link function because empirical results suggest that a heavier-tailed noise distribution

improves performance. We use the Laplace approximation to approximate the posterior as Gaussian

as in Section 3.2: P (f | D(i)) ≈ N (f̂ (i), K̂(i)) [209].

High-Dimensional Tractability

Calculating the model posterior is the algorithm’s most computationally expensive step, and is in-

tractable for large trajectory spaces. Most existing work in high-dimensional Gaussian process learn-

ing requires quantitative feedback [118, 200]. Previous work in preference-based high-dimensional

Gaussian process learning [192] restricts posterior inference to one-dimensional subspaces. How-

ever, the approach in [192] is more amenable to the regret minimization problem because each

one-dimensional subspace is biased toward regions of high posterior reward. Instead, to increase the

online computing speed over high-dimensional spaces, in each iteration i we select a subset Ξ
(i)
S ⊂ Ξ

of trajectories uniformly at random, and evaluate the posterior only over Ξ
(i)
S .

Estimating the Region of Interest

Since we lack prior knowledge about the ROI, it must be estimated during the learning process.

In each iteration i, we model the ROI as the following set of trajectories: {ξ ∈ Ξ | f̂ (i−1)(Φ(ξ)) +

εσ̂(i−1)(ξ) > Bo1}, where σ̂(i−1)(ξ) is the posterior standard deviation associated with ξ. The variable

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 26

ε is a user-defined hyperparameter that determines the algorithm’s conservatism in estimating the

ROI; positive ε’s are optimistic, while negative ε’s are more conservative in avoiding the ROA. In

practice, we evaluate trajectories in the randomly-selected subset Ξ
(i)
S and define Ξ

(i)
ROI = {ξ ∈ Ξ

(i)
S |

f̂ (i−1)(Φ(ξ)) + εσ̂(i−1)(ξ) > Bo1} in each iteration i. Note that this definition is optimistic, whereas

safe exploration approaches use pessimistic definitions [185, 174, 30, 187].

Summary

In Section 3.2, we studied a GP regression method that uses pairwise comparisons. In this section,

we extended it with ordinal feedback, and defined region of avoidance (ROA) and region of interest

(ROI) based on the ordinal categories. Together, these two sections present a computational method

of learning non-parametric reward functions from pairwise comparisons and ordinal feedback. We

will extend these methods with active querying in Chapter 4 and present experiment results that

include the lower-body exoskeleton task we mentioned in the beginning of this section. The sub-

sequent sections in this chapter goes back to parametric reward functions and focuses on reward

learning algorithms that make use of other forms of comparative feedback. Since the Bayesian learn-

ing approach is maintained, they can be easily extended to non-parametric reward functions with

GPs via Laplace approximation as long as the reward function is stationary and unimodal.4

3.4 More Expressive Feedback: Scale Questions

In Section 3.1, we introduced best-of-many choice queries and presented a Bayesian approach for

learning parametric reward functions using them along with expert demonstrations. In Sections 3.2

and 3.3 we focused on a special case of best-of-many choice queries where the user is presented with

only 2 options, making it a pairwise comparison question between the options. Using this special

case, we showed how we can learn non-parametric reward functions by modeling them as Gaussian

processes, optionally along with ordinal feedback.

Pairwise comparisons, or best-of-many choices in general, although simple to collect, are limiting

in a number of ways. Consider the example shown in Figure 3.5, where a robot is tasked to serve

a drink to a customer. The customer might have different preferences over the type of drink to

have (milk, orange juice, or water), or the specifics of the trajectory the robot takes (e.g., if it goes

over the stove or around it which can affect the temperature of the drink or the likelihood of the

robot accidentally hitting the pan handle). A strict pairwise comparison between two trajectories,

although minimizing interface complexity and mental effort for the user, does not really capture

these intricacies of human preferences. In addition, when the user is indifferent towards both options,

4In fact, best-of-many choice queries as presented in Section 3.1 could also be used for GP regression. However,
we intentionally focused on pairwise comparisons as we adopt them later when we introduce active query generation
in Sections 4.3 and 4.4.

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 27

Figure 3.5: Scale feedback allows users to provide finely detailed comparisons between different options.

learning becomes difficult since users may become noisier in their responses. We thus need to have

a more expressive way of collecting data from humans.

Several works, e.g., Holladay et al. [110] and Basu et al. [22], investigate modifications of learning

from pairwise comparisons where users can also answer About Equal (which we also experiment with

in Section 4.2). These two forms of pairwise comparison feedback are usually referred to as strict

and weak pairwise comparisons. When the user chooses the neutral answer, the robot learns to

assign about equal reward to the presented trajectories.

In the proposed scale feedback framework in this section, we take the weak pairwise comparisons

approach one step further: Instead of three discrete values for feedback (prefer A, prefer B, neutral)

users give quasi-continuous feedback. Our key insight is that allowing users to provide a scaled

approach on a slider (as shown in Figure 3.5) can provide a more expressive medium for learning

from humans and capture nuances in their preferences. This allows the user to indicate how much

they prefer one option over the other.

Slider bars have been used in robotics for tuning parameters [163]. More related to our work, Cabi

et al. [56] proposed using them for reward sketching. Instead of assigning a numerical preference

between presented options, users continuously indicate the robot’s progress towards some goal.

However, this requires users to assign scores to different parts of trajectories. Developing the scale

feedback for preference-based learning, we retain the ease of comparing trajectories.

To this end, we propose scale feedback as a new mode of interaction: Instead of a strict question

on which of the two proposed trajectories the user prefers, we allow for more nuanced feedback using

a slider bar. We design a Gaussian model for how users provide scale feedback, and learn a reward

function capturing human preferences. Similar to Section 3.1 and prior work in robotics, we assume

this reward is a parametric function of a set of trajectory features [1, 206, 159, 110], where the main

task of learning from scale feedback is to recover the parameters of this reward function.

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 28

We demonstrate the performance benefit of scale feedback over pairwise comparisons in a driving

simulation. Further, we investigate its practicality in two user studies with the real robot experiment

shown in Figure 3.5. Our results suggest scale feedback leads to significant improvements in learning

performance. We present these simulation and experiment results in Chapter 4 after we develop the

active querying methods for scale feedback in Section 4.5.

3.4.1 Formulation

We now introduce the notation we use in this section and formulate the learning from scale feedback

problem.

Reward function. We again consider the scenario where a robot needs to learn a reward function

from a user, for example for customizing its behavior to the preferences of the user. We assume

the user evaluates robot trajectories ξ ∈ Ξ from a potentially infinite trajectory space Ξ based on a

vector of features Φ(ξ) ∈ Rd. Similar to Section 3.1 and prior works in robotics [1, 206, 159, 110],

we define a parametric reward function R that assigns a numerical value to any trajectory ξ:

Rw(ξ) = fw(Φ(ξ)) . (3.21)

These features are usually provided by a domain expert incorporating the core factors that the

reward needs to capture, e.g., collision with other objects, or distance to the goal.

Further, we assume in this section the robot has access to a motion planner that finds an optimal

trajectory given reward function parameters, i.e., the planner is a (deterministic) function ρ where

ρ(w) = argmaxξ∈ΞRw(ξ).

Regret. Similar to [207], we define the regret between any two parameter sets (w,w′) as the

difference in the reward w′ assigns to the trajectories ρ(w) and ρ(w′):

R(w,w′) = Rw′(ρ(w′))−Rw′(ρ(w)) , (3.22)

which quantifies the suboptimality when the true weights are w′, but the trajectory is optimized

using w.

Learning. Let w∗ denote the true weights for the reward function. These weights are not known

to the robot; the only information initially available is a prior distribution b0 = P (w = w∗), which

might be initialized using offline demonstrations as in Section 3.1. The robot learns w∗ by iteratively

presenting the user with two trajectories Q(i) =
(
ξ
(i)
1 , ξ

(i)
2

)
for iterations i ∈ {1, 2, . . .}. We extend

the learning from pairwise comparisons framework, where users simply indicate the trajectory they

prefer, to a setting where they instead provide a more finely detailed scale feedback.

Scale Feedback. Presented with two trajectories ξ1 and ξ2, the user returns numerical feedback

q ∈ [−1, 1]. If q = 0, this means the user has no preference between the trajectories, q = 1 equals a

strong preference for trajectory ξ1 and q = −1 a strong preference for trajectory ξ2.

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 29

From an interface design and expressiveness perspective, it is undesirable to have users give a

numerical value for q. Instead, they can express such a feedback with a slider bar with a more

fine-grained set of options. An example is illustrated in Figure 3.5. We let DS = {(Q(i), q(i)}|DS |
i=1 =

{(ξ(i)1 , ξ
(i)
2 , q(i))}|DS |

i=1 be the set of recorded scale feedback from the user.

Performance Measures. Let ŵ be the robot’s estimate of w∗. We consider two performance

metrics. One is alignment of parameters [171, 38], Alignment = ŵ·w∗

∥ŵ∥·∥w∗∥ , measuring the cosine

similarity of vectors ŵ and w∗, i.e., how well the parameters of the user’s reward function are

learned. Alternatively, Wilde et al. [207] proposed the relative error in cost. We adapt this as the

Relative Reward = Rw∗ (ρ(ŵ))
Rw∗ (ρ(w∗)) , measuring how much the user likes the trajectory optimized for ŵ

compared to the one optimized for w∗.

Problem Statement. Given a robot motion planner ρ and a user whose preferences come from

the prior b0 = P (w = w∗), our goal in this section is to develop a learning model that maximizes

either of the performance measures by performing inference of reward function parameters from

scale feedback. Later in Section 4.5, we will develop an adaptive querying policy for querying the

user with maximally informative scale feedback questions for some number of rounds.

3.4.2 Our Approach

We now briefly review learning from pairwise comparisons from a new perspective, and then extend

the framework to scale feedback.

Pairwise Comparisons Feedback

When presented with two trajectories ξ1 and ξ2, a user returns an ordering ξ1 ⪰ ξ2 (ξ1 is preferred)

or ξ1 ⪯ ξ2 (ξ2 is preferred). In a noiseless setting, we have

Rw∗(ξ1)−Rw∗(ξ2) ≥ 0 ⇐⇒ ξ1 ⪰ ξ2 . (3.23)

That is, the trajectory ξ1 has a reward that is at least as high as that of ξ2 with respect to the hidden

true user weights w∗. Equation (3.23) already contains an observation model: If the user chooses

trajectory ξ1, the robot can infer that ξ1 has a higher reward with respect to w∗. This inequality

defines a subset in the parameter space: Λ(ξ1, ξ2) = {w | (Rw(ξ1) − Rw(ξ2)) ≥ 0} containing all

weights that are feasible given the observed user choice. Over |DC | iterations, we can intersect the

subsets Λ(ξ
(1)
1 , ξ

(1)
2), . . . ,Λ(ξ

(|DC |)
1 , ξ

(|DC |)
2) to obtain the feasible set F (|DC |). An example is shown

in Figure 3.6a for a linear reward function.

Scale Feedback

Scale feedback allows the robot to gain more information: the robot can also infer by how much the

user prefers ξ1, allowing for learning tighter feasible sets. We extend the model in (3.23) and show

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 30

Figure 3.6: Different feasible sets learned from pairwise comparison and scale feedback under the linear
reward model. Shown is the updated weight space (green) after observing user feedback for one (ξ1, ξ2) pair.
If q̄ = 1, scale feedback enables us to learn a tighter half-space; when q̄ ∈ (0, 1), scale feedback enables us to
learn an equality, i.e., a hyperplane.

how a noiseless user would provide scale feedback and then study how a robot can learn from it.

Definition 1 (Maximum Reward Gap). Given true parameters w∗ for a user, the maximum reward

gap is

δ∗ = max
ξ1,ξ2∈Ξ

(Rw∗(ξ1)−Rw∗(ξ2)) . (3.24)

We notice that the maximum reward gap cannot be computed, since w∗ is unknown to the robot.

Nevertheless, we can formulate the user choice model and then derive an observation model.

User model. The maximum reward gap helps to define when a noiseless user would indicate a

strong preference. We assume this occurs if and only if the difference in reward of ξ1 and ξ2 with

respect to w∗ is at least ϱ∗δ∗ for some 0 < ϱ∗ ≤ 1. Here ϱ∗ is a saturation parameter which governs

at what reward difference (w.r.t. to the maximum gap) the user’s feedback gets saturated to a

strong preference. For any other (ξ1, ξ2) where |Rw∗(ξ1)−Rw∗(ξ2)| ∈ [0, ϱ∗δ∗), we assume the user

to linearly scale the noiseless response q̄ between −1 and 1, which leads to the following model.

Definition 2 (Noiseless User Model). Presented with two trajectories ξ1 and ξ2, a noiseless user

with the saturation parameter ϱ∗ ∈ (0, 1] will always provide the following feedback:

q̄ =


1 if Rw∗(ξ1)−Rw∗(ξ2) ≥ ϱ∗δ∗,

−1 if Rw∗(ξ2)−Rw∗(ξ1) ≥ ϱw
∗
δw

∗
,

Rw∗ (ξ1)−Rw∗ (ξ2)
ϱ∗δ∗ otherwise .

(3.25)

We illustrate the noiseless user model in Figure 3.7a under different saturation parameters ϱ∗.

In Figure 3.7b, we show a simulated example: for a fixed w∗ we simulate how users with different

values for ϱ∗ would provide scale feedback to the same 20 queries. For larger ϱ∗, they position the

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 31

(a) User model for providing scale feedback with
ϱ∗ = 1 (blue) and ϱ∗ = 0.7 (green).

(b) Example slider feedback for different ϱ. The boxplots indicate
the four quartiles of the absolute slider values.

Figure 3.7: Noiseless user model.

slider closer to the neutral position. Finally, we derive an observation model for the noiseless user:

q̄ = −1 =⇒ Rw∗(ξ1)−Rw∗(ξ2) ≤ q̄ϱ∗δ∗

q̄ ∈ (−1, 1) =⇒ Rw∗(ξ1)−Rw∗(ξ2) = q̄ϱ∗δ∗,

q̄ = 1 =⇒ Rw∗(ξ1)−Rw∗(ξ2) ≥ q̄ϱ∗δ∗.

(3.26)

Figures 3.6b and 3.6c illustrate the resulting feasible sets from (3.26) for a linear reward model.

Moreover, we notice the user-specific and unknown parameters ϱ∗ and δ∗ always appear as a product.

Thus, this product can be seen as a single additional parameter, and the notion of feasible set F
can be readily extended to this augmented parameter space.

Probabilistic User Feedback

In practice, users are often noisy; they might consider additional or slightly different features than the

robot, not follow the parametric reward function, or simply be uncertain in some answers. Since we

cannot expect users to always provide slider feedback following (3.25), we introduce a probabilistic

model where we add uncertainty to the placement of the slider.

Another practical limitation is the fact that we cannot collect truly continuous feedback from

the users. Instead, the slider bar has a step size ν ∈ (0, 1] such that the user provides feedback of

the form nν for n ∈ Z and −ν−1 ≤ n ≤ ν−1. Note that ν → 0 retains the continuous scale feedback,

whereas ν = 1 gives the standard weak pairwise comparison model where the feedback is always in

{−1, 0, 1}.

Definition 3 (Probabilistic User Model). Given a user w∗ and a query (ξ1, ξ2), let q̄ be the user

feedback defined in the noiseless user model in (3.25). A probabilistic user using a slider bar with a

step size of ν then provides feedback

q = round(q̄ + ϵ, ν) (3.27)

where ϵ is a zero-mean Gaussian noise, i.e., ϵ ∼ N (0, σ2
S) with standard deviation σS, and round(x, ν)

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 32

outputs nν closest to x such that n ∈ Z ∩ [−ν−1, ν−1].

Probabilistic Observation Model. Given the probabilistic user model, we now show how a robot

can infer about w∗ from scale feedback. In the noiseless case, user feedback defines a feasible set. For

the probabilistic case, we instead derive a distribution over w and ϱ. Let δ(w) = maxξ1,ξ2∈Ξ(Rw(ξ1)−
Rw(ξ2)), similar to (3.24). Then for 0 < ϱ ≤ 1, the belief is defined

P (w, ϱ | q̄, ξ1, ξ2) =


P̃ (w, ϱ | q̄, ξ1, ξ2) if q̄ ∈ (−1, 1),

P+(w, ϱ | q̄, ξ1, ξ2) if q̄ = 1,

P−(w, ϱ | q̄, ξ1, ξ2) if q̄ = −1,

(3.28)

where

P̃ (w, ϱ | q̄, ξ1, ξ2) ∝

1 if Rw(ξ1)−Rw(ξ2) = q̄ϱδ(w),

0 otherwise .
(3.29)

P+(w, ϱ | q̄, ξ1, ξ2) ∝

1 if Rw(ξ1)−Rw(ξ2) ≥ q̄ϱδ(w),

0 otherwise .
(3.30)

P−(w, ϱ | q̄, ξ1, ξ2) ∝

1 if Rw(ξ1)−Rw(ξ2) ≤ q̄ϱδ(w),

0 otherwise.
(3.31)

Given noisy user feedback q as in (3.27), we can define a probabilistic density function P (q̄ | q).
Together with (3.28) we derive a compound probability distribution

P (w, ϱ | q, ξ1, ξ2) =
∫ 1

−1

P (w, ϱ | q̄, ξ1, ξ2)P (q̄ | q)dq̄. (3.32)

where we can write P (q̄ | q) for q̄ ∈ [−1, 1] as

P (q̄ | q) ∝


Φ
(
q−q̄+ν/2

σS

)
if q = −1,

Φ
(
q̄−q+ν/2

σS

)
− Φ

(
q̄−q−ν/2

σS

)
if q ∈ (−1, 1),

Φ
(
q̄−q+ν/2

σS

)
if q = 1,

(3.33)

and P (q̄ | q) = 0 for q̄ ̸∈ [−1, 1]. Here, Φ denotes the cdf of the standard normal distribution.

Finally, given a dataset DS = {(ξ(i)1 , ξ
(i)
2 , q(i))}|DS |

i=1 and some prior b0(w, ϱ), the joint posterior is

b|DS |(w, ϱ) ∝ b0(w, ϱ)
|DS |∏
i=1

P (w, ϱ | q(i), ξ(i)1 , ξ
(i)
2). (3.34)

3.4. MORE EXPRESSIVE FEEDBACK: SCALE QUESTIONS 33

Here, we can factor b0(w, ϱ) as P (w)P (ϱ) by assuming w and ϱ are independent and we also have a

prior for ϱ∗. We can then take the expectation of the posterior P (w, ϱ | DS) as a point estimate of

the learned user model.

3.4.3 Algorithm Design

We now outline the learning algorithm. Over |DS | iterations: (i) the robot generates a query

(ξ
(i)
1 , ξ

(i)
2) (active query generation for scale feedback will be presented in Section 4.5), (ii) the

user provides scale feedback to the query in the form of the slider value q(i) (in the noiseless case,

q(i) = q̄(i)), and (iii) the robot updates its dataset and posterior using Equation (3.34). After

iteration |DS |, the algorithm returns the expected parameters ŵ = E [w | DS].

Worst Case Error Bound

To compare scale feedback to pairwise comparisons, we establish a worst case bound on the perfor-

mance measures for both frameworks. We introduce the worst-case error as the maximum negative

performance measure, 1−Alignment(w,w∗) (the bounds also generalize to 1−Relative Reward(w,w∗),

but we use only Alignment for brevity). The constant in front ensures a positive value, which we

then discount with the posterior belief, given observations DS (or DC in the case of pairwise com-

parisons):

Errmax(w∗,DS) = max
w

b|DS |(w)(1− Alignment(w,w∗)) (3.35)

where b|DS |(w) is obtained by marginalizing the posterior b|DS |(w, ϱ) over ϱ. This describes the

worst w the robot could pick, discounted by the posterior distribution learned from data DS . In the

noiseless setting, this simplifies to maxw∈Λ 1− Alignment(w,w∗) where Λ is the feasible set.

Proposition 1 (Upper error bound). Let DS denote the dataset of scale feedback and DC be the

dataset of pairwise comparisons for the same set of queries (trajectory pairs). For any user weights

w∗, it holds in the noiseless setting that Errmax(w∗,DS) ≤ Errmax(w∗,DC).

The proof follows from the observation ΛScale ⊆ ΛChoice, i.e., scale feedback removes more volume

from the parameter space. Hence, the worst choice of an estimate ŵ given observations is guaranteed

to have a smaller worst-case error when using scale feedback. The full proof is in Appendix A.1.

We defer the simulation and user study results to Section 4.5 where we will also present an active

querying approach for scale feedback. In the remainder of this chapter, we move to more complex

settings where the reward functions to be learned are either multimodal or non-stationary.

3.5. LEARNING MULTIMODAL REWARDS VIA RANKING QUERIES 34

(a) Fetch robot putting a banana on one
of the three shelves. The two users have
different preferences, and so they provide
different rankings to the robot. The robot
needs to be able to model multimodal re-
ward functions for successfully achieving
the task.

(b) The red car does not observe the blue car due to the occluding
truck until it comes to the intersection. It is possible to avoid accident
by (left) completing the turn aggressively or (right) making a hard-
brake. An autonomous vehicle trying to learn from such mixture
data must be able to model multimodal reward functions for safe and
efficient driving.

Figure 3.8: Examples of why multimodal reward functions might be needed.

3.5 Learning Multimodal Rewards via Ranking Queries

Up to this point in the thesis, we focused on learning a unimodal reward function that models human

preferences on a target task. However, this unimodality assumption does not always hold: human

preferences are usually more complex and need to be captured via a multimodal representation.

Further, even if the preferences of a human are truly unimodal, we often use a mixture of data from

multiple humans, which can be difficult to disentangle, leading to multimodality.

As an example, consider a robot placing a banana on one of the three shelves (see Figure 3.8a).

The middle shelf is often used for fruits, but it has no room left and if the robot tries to put the

banana there, it may cause other fruits to fall. The top shelf has some space but it has been used

for cooked meals. The bottom shelf has a lot of free space, but is usually used only for toys. In such

a scenario, people may have very different preferences about what the robot should do. If we try to

learn a unimodal reward using data collected from multiple people, the robot is likely to fail in the

task, because the data will include inconsistent preferences.

As another example, consider the driving scenario presented in [59] (see Figure 3.8b), where

the red car attempts to make an unprotected left turn, but fails to observe the blue car occluded

behind a truck. An aggressive driver might accelerate and avoid the accident by completing the

turn before the blue car reaches the collision point. Similarly, a timid driver would move slowly and

brake sharply the moment it sees the blue car, which also prevents the accident. Even though both

modes can avoid the accident, a driving policy learned by a mixture of this data is likely to fail while

trying to comply with both modes. In fact, Cao et al. [59] demonstrated simply applying imitation

3.5. LEARNING MULTIMODAL REWARDS VIA RANKING QUERIES 35

learning using such a mixture data fails in this case, and a separation of different modes is needed.

One solution is of course to label the different modes in the data. For example, one could

separate the data based on the preferred shelf in the banana placing example, and learn different

reward functions for each shelf. However, this separation is not always straightforward. For example

in the driving example, it is unclear what should be labeled as aggressive or timid driving. Clustering

the data based on the human who provided the data is also not viable as it will introduce data-

inefficiency issues, and perhaps more importantly, humans are not always unimodal: a usually timid

driver can drive more aggressively when in a hurry.

These examples motivate us to develop methods that can learn multimodal reward functions

using datasets that are not specifically labeled with the modes. To this end, previous work proposed

learning from demonstrations to learn multimodal policies [107, 86] or reward functions with multiple

possible intentions [16, 165, 109]. However, learning from expert demonstrations is often extremely

challenging in robotics as we discussed in earlier sections, e.g., providing demonstrations on a robot

with high degrees of freedom is non-trivial [5], and humans have difficulty giving demonstrations

that align with their preferences due to their cognitive biases [21, 131]. Thus, it is desirable to

have methods that learn from other more reliable sources of data, e.g., pairwise comparisons of

trajectories [51, 22].

While learning from pairwise comparisons provides a rich source of data for learning reward

functions, the theoretical results by Zhao et al. [223] imply that extending the pairwise-comparison-

based reward learning techniques to multimodal reward functions is not possible, i.e. failure cases

can be constructed, where pairwise comparisons are not sufficient for identifying different modes of

a multimodal function. Our insight is that it is possible to learn a multimodal reward function by

going beyond pairwise comparisons and instead using rankings.

We want to emphasize this is a different problem from learning nonlinear rewards. Nonlinear

reward functions allow users to have multiple sets of desired behavior: a user may prefer both

aggressive and timid driving over a behavior that is in between which can cause an accident. However,

the existing methods that handle nonlinearities assume unimodal human feedback, which means the

user must have a consistent preference towards either of the modes. Therefore, either (aggressive

≻ timid ≻ accident) or (timid ≻ aggressive ≻ accident) is expected. In this work, we relax this

assumption and learn multimodal reward functions without requiring consistent rankings in the

dataset. Our framework allows both (aggressive ≻ timid ≻ accident) and (timid ≻ aggressive ≻
accident) to be in the dataset, and we recover both modes of the reward function.

To achieve this, we formulate multimodal reward learning as a mixture learning problem in this

section, and use rankings from humans to learn the mixture.

3.5. LEARNING MULTIMODAL REWARDS VIA RANKING QUERIES 36

Computational Models for Rankings

Before we move into formulation, we briefly review computational models for human rankings. In

the previous sections, we introduced different examples of such models for best-of-many choice

queries (Equation (3.10)), pairwise comparisons (Equations (3.10) and (3.12)), and scale queries

(Equation (3.25)). In fact, our best-of-many choice model is known as the multinomial logits (MNL)

model [67], and it has been widely used for human preferences in many fields [27, 211, 41, 26]

including robotics [171, 34, 22]. Similarly, the model is known as the Bradley-Terry model for the

special case of pairwise comparisons [66].

To extend these models to rankings, Plackett-Luce [150, 13] and Mallows models [144, 198, 145,

55] are commonly employed. In this section, we use the Plackett-Luce model as it is a natural

extension of MNL, which we already used in Section 3.1. We formalize this model in Section 3.5.1.

Learning Mixture Models from Rankings.

Our approach to learning multimodal reward functions is through mixture models, where we assume

the data come from different individual models with some unknown probabilities. Relatedly, previous

works considered mixtures of MNLs [82, 70], Plackett-Luce models [223], and Mallows models [139].

Other works adopt different methods to model multimodality, such as by assuming latent state

dynamics that transition between different modes [153] or by learning the different modes from

labeled datasets [59, 162]. To avoid these modeling assumptions, we focus on directly learning the

mixture model.

While Zhao et al. [223] have theoretically studied the mixture of Plackett-Luce choice models,

which also informs our algorithm in terms of the query sizes, they only focus on learning the rewards

of a discrete set of items. In this section, we deal with a continuous hypothesis space under a mixture

of Plackett-Luce models.

3.5.1 Formulation

Setup. We again consider a fully-observable dynamical system. A trajectory ξ in this system is a

series of states and actions, i.e., ξ = (s0, a0, . . . , sT , aT). The set of feasible trajectories is Ξ.

We assume there is a set of M individual reward functions that are possibly different, each of

which encodes some preference between the trajectories in Ξ. For the rest of the formalism, we refer

to each individual reward function as an expert for the clarity of the presentation.

Following the common assumption in reward learning [226, 43, 207], we assume each preference

can be modeled as a parametric reward function over a known fixed feature space, so the reward

associated with a trajectory ξ with respect to the mth expert is Rwm
(ξ) = fwm

(Φ(ξ)), where wm

is the unknown vector of parameters. Across the expert population, there exists some unknown

distribution, corresponding to the ratio of the data provided by the experts. We represent this

3.5. LEARNING MULTIMODAL REWARDS VIA RANKING QUERIES 37

distribution with mixing coefficients αm such that
∑M
m=1 αm = 1. We will then learn both the

unknown reward functions {wm}Mm=1 and the mixing coefficients {αm}Mm=1, using ranking queries

made to the M experts.

Ranking Model. We define a ranking query to be a set of the form Q = {ξ1, . . . , ξ|Q|} for a fixed

query size |Q|. The response to a ranking query is a ranking over the items contained therein, of the

form q = (ξι1 , . . . , ξι|Q|), where ι1 is the index of the expert’s top choice, ι2 is the second top choice,

and so on. While it is not known which expert provided the response to the query, we know the prior

that a response comes from expert m with some unknown probability αm, i.e., P (R = Rwm
) = αm.

Going back to our banana placing example, a ranking query of |Q| robot trajectories is generated

by the algorithm, and a user—whose identity is unknown to the algorithm—responds to this query.

We then capture how human experts respond to these ranking queries by modeling a ranking

distribution through an iterative process using Luce’s choice axiom [147]. In this process, the experts

repeatedly select their top choice ι1 with a probability distribution generated with the softmax rule

to generate a ranking from the order items were selected:

P (q1 = ξι1 | R = Rwm
, wm) =

exp
(
βCRwm(ξι1)

)∑|Q|
j=1 exp

(
βCRwm(ξιj)

) .
where βC is the rationality coefficient for comparative feedback. In the following iterations, the

experts select their top choice among the remaining trajectories:

P
(
qj = ξιj | q1, . . . , qj−1, R = Rwm

, wm
)
=

exp
(
βCRwm

(ξιj)
)∑|Q|

j′=j exp
(
βCRwm(ξιj′)

) . (3.36)

This is known as the Plackett-Luce ranking model [150, 13]. Together with the prior over experts

αm, the resulting distribution over rankings q is a mixture of Plackett-Luce models with mixing

coefficients αm and weights proportional to exp (Rwm(ξ)).

Hence, the ranking distribution first selects the reward function Rwm
with probability αm, and

then selects trajectories from Q sequentially with probability proportional to the exponent of their

reward, i.e., exp (Rwm
), among the remaining trajectories until none is left, generating a ranking of

the trajectories.

So given knowledge of the true reward function weights wm and mixing coefficients αm, we have

the following joint mass over responses q from a query Q:

P (q | Q,w, α) =
M∑
m=1

αm

|Q|∏
j=1

exp
(
βCRwm(ξιj)

)∑|Q|
j′=j exp

(
βCRwm

(ξιj′)
) . (3.37)

Objective. Our goal is to design a series of adaptive queries Q(i) to optimally learn the reward func-

tion parameters wm and corresponding mixing coefficients αm upon observing the query responses

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 38

q(i). We constrain all queries to consist of a fixed number of trajectories |Q|.
In the subsequent section, we present our learning framework. We defer the active query genera-

tion algorithm that makes the queries adaptive to Section 4.6 along with simulation and experiment

results.

3.5.2 Our Approach

To learn the reward parameters wm and mixing coefficients αm, we again adopt a Bayesian learning

approach. For this, we maintain a posterior over the parameters wm and αm. Given a dataset of

rankings DR, this posterior can be written as

P (w,α | DR) = P (w,α | Q(1), q(1), . . . , Q(|DR|), q(|DR|))

∝ P (w,α)P (Q(1), q(1), . . . , Q(|DR|), q(|DR|) | w,α)

= P (w,α)

|DR|∏
i=1

P (q(i), Q(i) | w,α,Q(1), q(1), . . . , Q(i−1), q(i−1))

∝ P (w,α)
|DR|∏
i=1

P (q(i) | w,α,Q(i)) , (3.38)

where we use the conditional independence of rankings q(i) given w,α and the conditional inde-

pendence of the Q(i) on w,α given Q(1), q(1), . . . , Q(i−1), q(i−1) in the last equation. To be able

to compute this posterior, we assume some prior distribution over the reward parameters and the

mixing coefficients, which is system-dependent and may come from domain knowledge, and use

Equation (3.37) to calculate the likelihood terms. For example, in our simulations and user stud-

ies in Section 4.6, we adopted a Gaussian prior wm ∼ N (0, I) and a uniform prior over the unit

M − 1 simplex for α. Learning this posterior distribution in Equation (3.38), one can compute a

maximum likelihood estimate (MLE) or expectation as the predicted reward parameters and mixing

coefficients.

Having presented the learning framework for multimodal rewards from rankings, we are now

ready to proceed to the last section of Chapter 3, where we will relax the stationarity assumption

of the reward function, assume a specific mode transition model, and develop a new query type

(namely, hierarchical choice queries) for learning these nonstationary rewards.

3.6 Hierarchical Comparison Queries for Non-stationary Re-

wards

In the previous sections, we assumed a stationary reward function, which is not expressive enough to

match human preferences in all environments. Real world is often non-stationary due to environment

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 39

complexity or changes in objectives in the environment. Surrounding agents continuously change

their behavior which in turn requires the robot to adapt to these changes. For example in driving,

people continuously adapt their reward functions in response to traffic complexity and behavior of

other drivers. It is quite common for us to get impatient behind a slow driver and make drastic

maneuvers different from our usual driving style. Here, we may weigh efficiency more than collision

avoidance than we usually do.

As an important class of non-stationary environments, human-robot and robot-robot adaptation

have recently attracted much attention, where the aim is to ensure robots adapt to their changing

environments and other agents [158, 8]. In contrast, our goal in this section is to learn the reward

functions that dynamically change depending on the interactions between the agents and the en-

vironment. We augment learning from comparative feedback to recover such multimodal reward

functions.

Prior works theoretically investigated how to perform preference-based learning for multimodal

reward functions [223, 139, 70], which we also discussed in Section 3.5. In this section, we relax this

problem by assuming there is a structure between the modes, i.e., the mode from which the next

comparison data will come can be estimated based on the current comparative feedback. Although

we assume and explicitly model these transitions between modes, the problem is not necessarily

easier, because we are also interested in learning how users’ preferences transition between the

modes.

Modeling behaviors in such environments is a well-studied problem especially for driving. For

example, Dong et al. [83] characterize driving styles based on sensor data using deep learning. In a

more related paper, Morton and Kochenderfer [153] modeled the drivers with a latent state space

which can affect their driving behavior. While they stated these latent states might change over time,

both of these works made the assumption that latent states remain unchanged over the trajectories

of interest, so they did not address changing behaviors. Berndt et al. [31] modeled the latent states

of the drivers using Hidden Markov Models (HMM) where they also allow adaptation. However,

they did not specifically learn reward functions, and they focused on identifying the maneuvers the

drivers will perform from a predefined database. With a similar objective, Kulic and Croft [130]

used HMM for latent state estimation for human-robot interaction. We recently studied how trust

of humans in a robot, a specific latent state, changes based on the performance in a task [49].

In this section, we propose to learn an expressive representation of preferences in non-stationary

scenarios, where interactions and adaptations better reflect the real-world conditions. We assume

that the non-stationary scenarios arise from changing behaviors of other agents interacting with our

system, which in turn affect human preferences. We formalize the reward dynamics which encodes

not only different human preferences but also how they change.

Our insight is that a dynamic reward model may match human preferences more accu-

rately in a wide range of scenarios than a stationary reward function.

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 40

We tailor best-of-many choice queries to capture longer term interactions between the robot

and the surrounding agents, and develop a probabilistic model of user responses for any number of

stationary reward functions and the transitions between them.

In this section, we make the following contributions:

Reward dynamics. User preferences may change based on the behaviors of other agents in the

environment. We encode the momentary human preference by a static reward function and assume

at any point of time the human has an internal preference mode (mood) which dictates what reward

function the human will optimize next. We introduce the notion of reward dynamics as a tuple of

reward functions and parameters governing transitions between those.

Hierarchical choice queries. We formalize the hierarchical choice queries as a sequence of best-

of-many choice queries, each of which we call a sub-query. The sub-queries sequentially follow each

other so that the user moods are reflected into their choices.

3.6.1 Formulation

Let us consider a robot that should match human preferences in an environment of interest that

includes other agents (e.g. driving scenarios). These other agents can act differently at different

times. For example, in the case of driving, some cars aggressively swerve through the traffic and

others may follow a more cooperative strategy of allowing other cars to merge smoothly. Prior works

on autonomous driving [170, 169, 172, 173, 18, 177, 89, 183] assume the robot should follow the same

reward function over time in both of the above scenarios. We argue user preferences may vary in

response to the changing behaviors of the environment agents in both driving and potentially other

multi-agent environments. Our goal is to learn an expressive reward function corresponding to these

dynamic preferences.

We model the environment as a fully-observable dynamical system. For driving, the continuous

state of the system s ∈ S includes the positions and the velocities of the robot and the other agents.

The state of the system changes based on actions of all the agents through the transition function

T , which we can now write as

st+1 ∼ T (· | st, arobott, aotherst) (3.39)

where aotherst are the actions of the other agents at time step t, which affect the reward function

and in turn the actions of the robot.5 We define a finite trajectory ξ ∈ Ξ as a sequence of continuous

state-action pairs ξ = (s0, arobot0, aothers0, . . . , sT , arobotT , aothersT) over a finite horizon T , and Ξ is

the set of all feasible trajectories that satisfy the dynamics of the system.

Our goal is to learn human preferences for how the robot should behave in the presence of different

5More generally, the other agents in the environment can be thought of as part of the environment. All information
regarding them, including their trajectories, can be encoded into the states. This will reduce the setup to the setup
we used in earlier sections, e.g., Section 3.1

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 41

Figure 3.9: (a) 1-step comparison query. In any two iterations a user with bimodal preference may pick
the trajectories optimal with respect to two different true weights w∗

1 and w∗
2 . (b) This ambiguity shows

up as noise in 1-step comparison based learning where the goal is to learn a single reward function w∗ (on
the left). In reality the true preference function of the user changes between w∗

1 and w∗
2 depending on the

environment, θ∗ governs the transition. Our algorithm learns such a bimodal preference: w1 close to w∗
1 and

a w2 close to w∗
2 (on the right). (c) Our proposed hierarchical query consists of 3 sub-queries. In iteration

i of querying, Q(i,0) is a context sub-query, Q(i,1) is a comparison between two trajectories, each a different
continuation of Q(i,0), and Q(i,2) continues the preferred trajectory from Q(i,1).

environment agents. We learn this reward function by making hierarchical comparison queries to

the users.

3.6.2 Hierarchical Comparison Queries

Prior works learned static reward functions by asking people to compare between two different

trajectories of robots. There, each query is a pair of short videos that demonstrate two trajectories

of the system [171, 72]. Such short trajectories do not capture the nuances of interaction in a

non-stationary multi-agent system. As an example, in a 1-step comparison query in Figure 3.9a,

an environment agent (white car) aggressively merged in front of the ego agent (orange car). One

option for the ego agent is to slow down (optimize a cooperative reward function). This sudden

slow down may have frustrated the user, causing a mode change. So in a similar situation later (in

another query) the user prefers a trajectory optimal with respect to a competitive reward function

and prevents the other agents in the environment from merging in front. This change in preference

manifests as noise in 1-step preference-based learning approaches (see Figure 3.9b). However, we

would like to learn a composite reward function that not only captures both of these preferences but

also how they have changed in such a non-stationary environment.

To do so, we allow the users to change their preferences within the same query. We present

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 42

each query Q(i) as a sequence of several sub-queries. Each sub-query Q(i,j) in the sequence is a

continuation from the final state of the preferred trajectory of the previous sub-query Q(i,j−1). This

allows us to learn how the behavior of other interacting agents in one sub-query affects user preference

in the next sub-query. We assume that the users’ next immediate preference mode depends only on

their current experience. We, therefore, reset their preference mode at the beginning of each query

with a demonstration, which we denote as Q(i,0). After Q(i,0), each sub-query is a best-of-many

choice between trajectories from Ξ: Q
(i,1)
1 , Q

(i,1)
2 , . . . , Q

(i,1)

|Q(i,1)| are all continuations of Q(i,0), where

|Q(i,1)| denotes the number of trajectories (options) in sub-query Q(i,1). In general, for the rest of

the sub-queries, Q
(i,j)
j′ for j′ = 1, 2, . . . , |Q(i,j)| are continuations from q(i,j−1), which is the answer

for the (j − 1)th sub-query, as shown in Figure 3.9c.

3.6.3 Reward Dynamics Model

Preliminaries

Throughout this section, we will use [n] to denote the integer set {1, 2, . . . , n} for n ∈ Z>0.

We denote the jth sub-query in query i as Q(i,j). |Q(i)| denotes the number of sub-queries in

query i (as opposed to number of options in a question as in other sections where queries were not

hierarchical), and |Q(i,j)| denotes the number of options in the sub-query.

We assume there is a finite set of modes [M] where M is the number of modes. We also assume

the mode of the user is stable during a sub-query. Slightly abusing the notation, we denote the mode

in the jth sub-query of query i as M(i, j) ∈ [M].

Each sub-query Q(i,j) consists of |Q(i,j)| trajectories: Q(i,j)
1 , Q

(i,j)
2 , . . . , Q

(i,j)

|Q(i,j)| ∈ Ξ. When j = 0,

|Q(i,j)| = 1, as the 0th sub-query is only for setting the initial mode of the user. The user selects one

of the trajectories in a sub-query as their response to that sub-query. The user’s response to Q(i,j)

is q(i,j) ∈ Q(i,j).

In addition, we assume a trajectory features function Φ : Ξ→ Rd that maps every trajectory to

a d-dimensional feature space. This function may depend on both the robot and the other agents in

the environment. We assume Φ is known. For example, some representative features for driving are

distance to the closest environment car, distance to the road boundaries, the speed and the heading

angle of the ego vehicle.

Human Preference Model

Reward functions under known modes. We define a user-specific reward function parameterized

by the mode of the user, for example, two different reward functions representing calm and rushed

driving: Rwm : Ξ → R for m ∈ [M]. With a parametric assumption, it is defined as: Rwm(ξ) =

fwm
(Φ(ξ)) where ξ ∈ Ξ and w is a user-specific reward parameter matrix, and wm is the mth column

of w, with each column corresponding to a particular mode for a user. Then, the user response to a

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 43

sub-query Q(i,j) is probabilistic based on the softmax model [147, 110], as we also used before:

P (q(i,j) | Q(i,j),M(i, j) = m,w) =
exp(βCRm(q(i,j)))∑
ξ∈Q(i,j) exp(βCRm(ξ))

(3.40)

for any q(i,j) ∈ Q(i,j). This models the probability of the human making a choice given a sub-query,

the humans’ mode during that sub-query, and the user-specific preferences.

Prior on mode transitions. We also learn how people change modes. For example, how likely

a person is to transition from aggressive driving to defensive driving or vice versa. We assume

that a prior G ∈ RM×M over the mode transitions is given by the designer. The matrix G alone

represents the natural propensity to transition between different modes and is independent of the

sub-queries and the current state of the learning algorithm. For example, some mode transitions are

naturally more likely than the others: If we have three modes that correspond to defensive, neutral

and offensive moods, then it would be more likely for a defensive user to switch to the neutral mode

than to the offensive mode. G captures this prior. Hence, it is constrained to be a proper Markov

chain matrix. We note that Markov chains are employed similarly for mood changes by psychiatrists,

e.g. [111]. We explain the formulation of the mode transitions next.

Mode transition model. The users change their mode based on what they experienced in the

previous sub-query and their previous mode. We define a mode-utility function to capture this

effect of the sub-queries. Specifically, we model the mode transitions as follows: The user has an

underlying mode-utility function that quantifies the previous trajectories. If the user thinks they

would have higher utility with mode m, then they transition to m. As an example, imagine you are

driving in a very calm mood. If someone suddenly cuts in front of you, you would think “if I were

aggressive, I could keep a shorter headway with the car in front and the other car would not have

been able to cut in front of me”, and you also switch to an aggressive mood. It is of course also

possible that you keep calm. Hence, the transition should be stochastic.

We model the mode-utility as a function of trajectories: Ruθm : Ξ→ R for m ∈ [M]. Again with

the assumption that it is a parametric function, it is defined as: Ruθm(ξ) = fuθm (Φ(ξ)) where θ is

another user-specific parameter matrix and θm is the mth column of θ.

The probability of transitioning from any mode m in sub-query Q(i,j) to any mode m′ in the

next sub-query Q(i,j+1) is given by multiplying the prior G with the likelihood computed using the

mode-utility function:

Pmm′(Q(i,j), q(i,j), θ) := P (M(i, j + 1) = m′ |M(i, j) = m,Q(i,j), q(i,j), θ)

=
1

Z

exp(Rum′(q(i,j)))∑
m′′∈[M] exp(R

u
m′′(q(i,j)))

Gmm′ (3.41)

where Z is the normalization constant. In a completely “neutral case”, when the likelihood (softmax)

gives equal values for each mode, the transition is solely defined by the prior G. Some examples of

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 44

G are:

• Gmm′ = 1/M for ∀(m,m) ∈ [M]2 means that the user may change from any mode to any

other mode just based on the previous sub-query with a uniform prior. This is suitable when

the modes are categorical, not sequential.

• G = I means the user will not ever change her mode and will remain in her initial mode. Note

that the initial mode will also be modeled in a probabilistic way.

• If G is a band matrix, then the user can only change between the modes that are “close”. This

is suitable for sequential modes.

While our learning model is valid for any feasible G, we will do simplifying assumptions to

actively select the hierarchical queries for sample-efficient learning in Section 4.7.

Definition 4. Reward dynamics of a user is a tuple of (w, θ), which governs both the user preferences

and how they transition between modes with the interactions the user is involved in.

Therefore, our aim is to learn the reward dynamics rather than a static unimodal reward function.

Initial Mode. We do not know the initial modeM(i, 0) of the user, which is the active mode during

Q(i,0). One simple way is to assume uniform distribution over all modes. However, imagine G is

such that transitioning to a mode m is very unlikely from any mode. Then, the uniform assumption

will not hold, because the user is unlikely to be in mode m. Then a better model is the following:

Pm := P (M(i, j) = m) = Ḡm (3.42)

where Ḡm denotes the probability of mode m in the stationary distribution of the Markov chain G.

If there exist several stationary distributions, the designer should pick one of them using domain

knowledge.

3.6.4 Learning Reward Dynamics

To make the learning of reward dynamics effective and efficient, we should restrict the continuous

space of reward dynamics. For that, we make assumptions on the norms of the columns of w and θ

similar to [171, 34], i.e., we assume those norms are not larger than 1.

There is also the problem of label switching. That is, all the probabilities will remain the same

if we switch the order of modes both in w and θ. Since this can completely disable the learning, we

enforce another constraint on the ordering, as mentioned by [223], such that θ1,1 > θ2,1 > · · · > θM,1

where θm,1 is the first element of mth column of θ.

Our goal is to learn a distribution over the reward dynamics by using hierarchical choice queries.

We start with a uniform prior over the space of all feasible (w, θ). After receiving all the responses

3.6. HIERARCHICAL COMPARISON QUERIES FOR NON-STATIONARY REWARDS 45

to a query Q(i), (q(i,1), q(i,2), . . . , q(i,|Q
(i)|)), we perform a Bayesian update:

P (w, θ | q(i,1), q(i,2), . . . , q(i,|Q
(i)|), Q(i,1), Q(i,2), . . . , Q(i,|Q(i)|))

∝ P (q(i,1), q(i,2), . . . , q(i,|Q
(i)|) | w, θ,Q(i,1), Q(i,2), . . . , Q(i,|Q(i)|))P (w, θ) (3.43)

Next we derive the expression for the update function, i.e., the first term in the right-hand side

of Equation (3.43), and present some simplifications that we adopted for our implementation.

3.6.5 Derivation and Simplifications

In this section, we present how we compute the update function for the prior p(w, θ). We note Q(i,0)

does not receive any response. For the simplicity of notation, we let q(i,0) denote the only trajectory

in Q(i,0), so that Pmm′(Q(i,j), q(i,j), θ) is well-defined for ∀(m,m′) ∈ [M]2 when j = 0. We then

derive

P (q(i,1), q(i,2), . . . , q(i,|Q
(i)|) | w, θ,Q(i,1), Q(i,2), . . . , Q(i,|Q(i)|))

=
∑

(m0,...,m|Q(i)|)∈[M]|Q
(i)|+1

Pm0Pm0m1(Q
(i,0), q(i,0), θ) . . . Pm|Q(i)|−1

m|Q(i)|
(Q(i,|Qi|−1), q|Q(i)|−1, θ)

|Qi|∏
j=1

P (q(i,j)|w,Q(i,j),M(i, j) = mj) (3.44)

In our implementation, we restrict ourselves to the cases where |Q(i)| = 3 for all iterations

i = 1, 2, Then, the above equation is simplified as

P (q(i,1), q(i,2) | w, θ,Q(i,0), Q(i,1), Qi,2)

=
∑

m0∈[M]

∑
m1∈[M]

∑
m2∈[M]

Pm0Pm0m1(Q
(i,0), q(i,0), θ)Pm1m2(Q

(i,1), q(i,1), θ)

P (q(i,1) | w,Q(i,1),M(i, 1) = m1)P (q
(i,2) | w,Q(i,2),M(i, 2) = m2) (3.45)

To eliminate the normalization Z from the equation, we assume Gmm′ ∈ {0, 1/cm} for ∀(m,m′) ∈
[M]2 where cm is an appropriate constant. That is, we assume the model designer will just decide

on whether or not it is possible to move between any two modes and will not assign specific prior

probabilities. Then,

Pmm′(Q(i,0), q(i,0), θ) =
exp(Ruθm′ (q

(i,0)))∑
m′′∈[M]:Gmm′′=1/cm

exp(Ruθm′′ (q
(i,0)))

(3.46)

If we further assumeM = 2 and Gmm′ = 1/2 for ∀(m,m′) ∈ [M]2, such as the case of cooperative

3.7. CHAPTER SUMMARY 46

and competitive modes, we also have Pm = 1
2 , so we can write:

P (q(i,1), q(i,2) | w, θ,Q(i,0), Q(i,1), Q(i,2))

=
∑

(m1,m2)∈{1,2}2

∏
j∈{1,2}

exp(Rwmj
(q(i,j)))∑

ξ∈Q(i,j) exp(Rwmj
(ξ))

exp(Ruθmj
(q(i,j−1)))

exp(Ruθ1(q
(i,j−1))) + exp(Ruθ2(q

(i,j−1)))
(3.47)

This formulation enables us to update P (w, θ). We will present our active hierarchical choice query

selection algorithm that improves data-efficiency in Section 4.7.

3.7 Chapter Summary

In this chapter, we developed reward learning techniques that use comparative feedback from humans

instead of or in addition to expert demonstrations. This problem setup is closely related to inverse

reinforcement learning as we discussed in Section 2.2. However, it brings an important advantage

in practice: we do not need to collect human demonstrations of the task that are (almost) optimal,

which is infeasible or extremely challenging in many domains, e.g., regular users of a lower-body

exoskeleton (see Section 3.3) are people with paralysis (a group with nearly 5.4 million people in the

US alone [15]), who cannot possibly give demonstrations to these systems.

On the other hand, comparative feedback is easy to collect and does not require expertise on

controlling the system. In most cases, a human user who has the knowledge of the target task can

easily compare two (or more) trajectories of a robot in terms of their task performance. Motivated

by this, we developed and investigated various techniques for reward learning using comparative

feedback. We studied different query types and functional forms for the reward function (as we

outlined in Section 1.2).

An important limitation of comparative feedback, especially when we are working on trajectory

level, i.e., human users comparing trajectories rather than individual states or actions, is the fact that

each comparison query carries a small amount of information compared to expert demonstrations.

Although we showed in Section 3.1 that demonstrations can still be used together with comparative

feedback, this limitation hurts the practicality and scalability of the methods we developed. There-

fore, techniques that actively query the users for the highest information gain are crucial. In the

next chapter, we will focus on such approaches that are based on active learning optimizations. We

will also present the simulation and experiment results that we deferred in Chapter 3.

Chapter 4

Active Querying for Comparative

Feedback

Even though having humans provide comparative feedback does not suffer from similar problems to

collecting demonstrations, each comparison question is much less informative than an expert demon-

stration. For example, each pairwise comparison query can provide at most 1 bit of information.

A promising approach to tackle this problem is to actively generate the queries for comparative

feedback [171, 121, 207].

In Chapter 3, we covered how the robot can update its understanding of the reward function

parameters w given the human’s comparative feedback; but how does the robot choose the right

questions in the first place? Active query generation deals with this problem. Unlike demonstrations

— where the robot is passive — here the robot is active, and purposely probes the human to get

fine-grained information about specific parts of w that are unclear. By actively querying the user,

the robot attempts to get as much information as possible, mitigating the data-inefficiency issue of

learning from comparative feedback. At the same time, the robot needs to remember that a human

is answering these questions, and so the options need to be easy and intuitive for the human to

respond to. Proactively choosing intuitive queries is arguably the most challenging part of learning

from comparative feedback. Accordingly, we will explore methods for actively generating queries Q

in the subsequent sections.

Greedy Robot. Ideally, the robot must find the best adaptive sequence of queries to clarify the

human’s reward. Unfortunately, reasoning about a sequence of queries is — in general — NP-hard

[4]. We therefore proceed in a greedy fashion throughout this chapter: at every iteration i, the robot

chooses Q(i) while thinking only about the next posterior belief bi (e.g., see Equation (3.9)).

In Section 4.1, we start with describing the maximum volume removal based active querying

47

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 48

method [171], which has been the dominant approach for active query generation to maximize data-

efficiency [159]. However, in Section 4.2, we will show optimizing mutual information is a better

approach for data-efficiency, and also helps with generating easier questions for the human users. We

will then use this technique to extend the majority of the methods we presented in Chapter 3 with

active querying in Sections 4.3 through 4.7. Finally, Section 4.8 will introduce various batch-active

querying techniques that enable actively generating queries in batches for all the methods presented

until that point. All sections in this chapter will also present simulation and experiment results both

for the active querying techniques and the corresponding learning methods from Chapter 3.

4.1 Choosing Queries with Volume Removal

In this section, we introduce an active querying method that is called maximum volume removal. The

objective in this method is to maximize the amount of space that will be removed from the hypothesis

space of reward function parameters w, and the overall optimization problem is submodular, allowing

this approach to enjoy some theoretical guarantees as shown by Sadigh et al. [171].

Although the volume removal objective can be used with any of the query types we introduced

in Chapter 3, we will use the DemPref method we introduced in Section 3.1 for its simplicity. This

will also enable us to show in the next section that active comparative feedback must be collected

after the demonstrations are incorporated into the belief distribution via Equation (3.6). However,

we would like to note once again that demonstrations can be used along with any, possibly actively

collected, comparative feedback type, as long as the reward function is stationary and unimodal.

4.1.1 Maximum Volume Removal Optimization

Maximizing volume removal is a widely used strategy for selecting queries. The method attempts

to generate the most-informative queries by finding the Q(i) that maximizes the expected difference

between the prior and unnormalized posterior [171, 159]. Formally, the method generates a query

of |Q(i)| ≥ 2 trajectories at iteration i by solving:

argmax
Q(i)={ξ1,...,ξ|Q(i)|}

Eq(i)
[∫ (

bi−1(w)− bi−1(w)P (q(i) | Q(i), w)
)
dw

]
(4.1)

where the prior is on the left and the unnormalized posterior from Equation (3.9) is on the right.

The integration is over the all possible values of w. This optimization problem can equivalently be

written as:

Q
(i)
∗ = argmax

Q(i)={ξ1,...,ξ|Q(i)|}
Eq(i)Ew∼bi−1

[
1− P (q(i) | Q(i), w)

]
, (4.2)

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 49

or in the special case of pairwise comparison queries, i.e., |Q(i)| = 2, as we show in Appendix A.2,

Q
(i)
∗ = argmax

Q(i)={ξ1,ξ2}
min
q(i)

Ew∼bi−1

[
1− P (q(i) | Q(i), w)

]
. (4.3)

The distribution bi−1 can get very complex and thus — to tractably compute the expectations

in Equation (4.2) — we are forced to leverage sampling. Letting Ω denote a set of samples drawn

from the prior bi−1, and
·
= denote asymptotic equality as the number of samples |Ω| → ∞, the

optimization problem in Equation (4.2) becomes:

Q
(i)
∗

·
= argmin
Q(i)={ξ1,...,ξ|Q(i)|}

∑
q(i)∈Q(i)

(∑
w∈Ω

P (q(i) | Q(i), w)

)2

(4.4)

In practice, we can use, for example, Metropolis-Hastings [69] for sampling from the prior belief

bi−1.

Intuition. When solving Equation (4.4), the robot looks for queries Q(i) where each answer q(i) ∈
Q(i) is equally likely given the current belief over w. These questions appear useful because the

robot is maximally uncertain about which trajectory the human will prefer.

When Does This Fail? Although prior works have shown that volume removal can work in

practice, we here identify two key shortcomings. First, we point out a failure case: the robot may

solve for questions where the answers are equally likely but uninformative about the human’s reward.

Second, the robot does not consider the human’s ability to answer when choosing questions — and

this leads to challenging, indistinguishable queries that are hard to answer!

Uninformative Queries

The optimization problem used to identify maximum volume removal queries fails to capture our

original goal of generating informative queries. Consider a trivial query where all options are iden-

tical: Q(i) = {ξ1, ξ1, . . . , ξ1}. Regardless of which answer q(i) the human chooses, here the robot

gets no information about the right reward function; put another way, bi = bi−1. Asking a trivial

query is a waste of the human’s time — but we find that this uninformative question is actually a

best-case solution to Equation (4.2).

Theorem 1. The trivial query Q = {ξ1, ξ1, . . . , ξ1} (for any ξ1 ∈ Ξ) is a global solution to Equa-

tion (4.2).

Proof. For a given Q(i) and w,
∑
q(i) P (q

(i) | Q(i), w) = 1. Thus, we can upper bound the objective

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 50

Figure 4.1: Sample queries generated with the volume removal and information gain methods on Driver and
Tosser tasks. Volume removal generates queries that are difficult, because the options are almost equally
good or equally bad.

in Equation (4.2) as follows:

Eq(i)|Q(i),bi−1Ew∼bi−1 [1− P (q(i) | Q(i), w)] (4.5)

= 1− Ew∼bi−1

 ∑
q(i)∈Q(i)

P (q(i) | Q(i), w)2

 ≤ 1− 1/|Q(i)| , (4.6)

recalling that |Q(i)| is the total number of options in Q(i). For the trivial query Q = {ξ1, ξ1, . . . , ξ1},
the objective in Equation (4.2) has value Eq(i)|Q(i),bi−1Ew∼bi−1

[
1− P (q(i) | Q(i), w)

]
= 1− 1/|Q(i)|.

This is equal to the upper bound on the objective, and thus the trivial, uninformative query of

identical options is a global solution to Equation (4.2).

Challenging Queries

Volume removal prioritizes questions where each answer is equally likely. Even when the options

are not identical (as in a trivial query), the questions may still be very challenging for the user to

answer. We explain this issue through a concrete example (also see Figure 4.1):

Example 1. Let the robot query the human while providing |Q| = 2 different answer options, i.e.,

with a pairwise comparison query, ξ1 and ξ2.

Question A. Here the robot asks a question where both options are equally good choices. Consider

query QA such that P (q = ξA,1 | QA, w) = P (q = ξA,2 | QA, w) ∀w ∈ Ω. Responding to QA is

difficult for the human, since both options ξA,1 and ξA,2 equally capture their reward function.

Question B. Alternatively, this robot asks a question where only one option matches the human’s

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 51

Figure 4.2: Comparing preference queries that do not account for the human’s ability to answer to queries
generated using our information gain approach. Here the robot is attempting to learn the user’s reward
function, and demonstrates two possible trajectories. The user should select the trajectory that better
aligns with their own preferences. While the trajectories produced by the state-of-the-art volume removal
method are almost indistinguishable, our information theoretic approach results in questions that are easy
to answer, which eventually increase the robot’s overall learning efficiency.

true reward. Consider a query QB such that:

P (q = ξB,1 | QB , w) ≈ 1 ∀w ∈ Ω(1) (4.7)

P (q = ξB,2 | QB , w) ≈ 1 ∀w ∈ Ω(2) (4.8)

Ω(1) ∪ Ω(2) = Ω, |Ω(1)| = |Ω(2)| (4.9)

If the human’s weights w lie in Ω(1), the human will always answer with ξB,1, and — conversely —

if the true w lies in Ω(2), the human will always select ξB,2. Intuitively, this query is easy for the

human: regardless of what they want, one option stands out when answering the question.

Incorporating the Human. Looking at Example 1, it seems clear that the robot should ask

question QB . Not only does QA fail to provide any information about the human’s reward (because

their response could be equally well explained by any w), but it is also hard for the human to answer

(since both options seem equally viable). Unfortunately, when maximizing volume removal the robot

thinks QA is just as good as QB : they are both global solutions to its optimization problem! Here

volume removal gets it wrong because it fails to take the human into consideration. Asking questions

based only on how uncertain the robot is about the human’s answer can naturally lead to confusing,

uninformative queries. Figure 4.1 demonstrates some of these hard queries generated by the volume

removal formulation.

Theorem 1 and Example 1 make it clear that volume removal is not the true objective we should

be optimizing for. It works in practice not despite the local optima, but thanks to them! Therefore,

in the next section, we will introduce a new active querying approach that is based on maximizing the

mutual information. We will show this approach does not suffer from similar issues. It will further

enable us to show demonstrations must be incorporated into the belief before actively querying the

user for comparative feedback. Before we move into this new objective, we present our experiment

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 52

Figure 4.3: Views from simulation domains, with a demonstration in orange: (a) LunarLander, (b)
FetchReach (simulated), (c) FetchReach (physical).

results with the volume removal optimization.

4.1.2 Experiments

We conduct two sets of experiments to assess the performance of DemPref with volume removal

maximization under various metrics. In all experiments, we assume a reward function that is linear

in trajectory features, i.e., Rw(ξ) = w⊤Φ(ξ) for any trajectory ξ ∈ Ξ with ∥w∥ ≤ 1.1 We start

by describing the simulation domains and the user study environment. Each subsequent subsection

presents a set of experiments and tests the relevant hypotheses.

Simulation Domains

In each experiment, we use a subset of the following domains, shown in Figures 4.1 and 4.3, as well

as a linear dynamical system:

LunarLander. We use the continuous “LunarLander” environment from OpenAI Gym [50], where

the lander has to safely reach the landing pad. The trajectory features correspond to the lander’s

average distance from the landing pad, its angle, its velocity, and its final distance to the landing

pad.

FetchReach. Inspired by [19], we use a modification of the “FetchReach” environment from OpenAI

Gym (built on top of MuJoCo), where the robot has to reach a goal with its arm, while keeping

its arm as low-down as possible (see Figure 4.3). The trajectory features correspond to the robot

gripper’s average distance to the goal, its average height from the table, and its average distance to

a box obstacle in the domain. See Appendix D.1 for the formal feature definitions.

For our user studies, we employ a version of the FetchReach environment with the physical Fetch

robot (see Figure 4.3) [213].

1In this section, unless otherwise noted, we adopt βD = 0.02, βC = 1, and assume a uniform prior over reward
parameters w, i.e., P (w) is constant for any ∥w∥2 ≤ 1. We use Metropolis-Hastings algorithm [69] for sampling the
set Ω from belief distribution over w.

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 53

Evaluation Metric

To judge convergence of the inferred reward function parameters to true parameters in simulations,

we adopt the alignment metric from [171]:

Alignment =
1

|Ω|
∑
w̄∈Ω

w∗ · w̄
∥w∗∥2∥w̄∥2

, (4.10)

where w∗ is the true reward function parameters.

We are now ready to present our two sets of experiments each of which demonstrates a different

aspect of the proposed DemPref framework:

1. The utility of initializing with demonstrations,

2. The advantages comparative feedback provide over using only demonstrations,

Initializing with Demonstrations

We first investigate whether initializing the learning framework with user demonstrations is helpful.

Specifically, we test the following hypotheses:

H1. DemPref accelerates learning by initializing the prior belief b0 using user demonstrations.

H2. The convergence of DemPref improves with the number of demonstrations used to initialize the

algorithm.

To test these two claims, we perform simulation experiments in Driver, LunarLander and

FetchReach environments. For each environment, we simulate a human user with hand-tuned re-

ward function parameters w, which gives reasonable performance. We generate demonstrations by

applying model predictive control (MPC) to solve: maxξ Rw∗(ξ). After initializing the belief with

varying number of such demonstrations (|DD| ∈ {0, 1, 3}), the simulated users in each environment

respond to 25 pairwise comparison queries (|Q| = 2) according to Equation (3.10), each of which is

actively synthesized with the volume removal optimization.2 We repeat the same procedure for 8

times to obtain confidence bounds.

The results of the experiment are presented in Figure 4.4. On all three environments, initializing

with demonstrations improves the convergence rate of the preference-based algorithm significantly;

to match the Alignment value attained by DemPref with only one demonstration in 10 pairwise

comparison queries, it takes the pure preference-based algorithm, i.e., without any demonstrations,

30 pairwise comparisons on Driver, 35 on LunarLander, and 20 on FetchReach. These results provide

strong evidence in favor of H1.

The results regarding H2 are more complicated. Initializing with three instead of one demon-

stration improves convergence significantly only on the Driver and LunarLander domains. (The

improvement on Driver is only at the early stages of the algorithm, when fewer than 10 pairwise

2The environments we use are deterministic, i.e., state transitions are not stochastic. Hence, we fix the initial state
and simply optimize over the sequence of actions to solve the volume removal maximization problem.

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 54

Figure 4.4: The results of our first experiment, investigating whether initializing with demonstrations im-
proves the learning rate of the algorithm, on three domains. On the Driver, LunarLander, and FetchReach
(simulated) environments, initializing with one demonstration improved the rate of convergence significantly.

comparisons are used.) However, on the FetchReach domain, initializing with three instead of one

demonstration hurts the performance of the algorithm. (Although, we do note that the results

from using three demonstrations are still an improvement over the results from not initializing

with demonstrations). This is unsurprising. It is much harder to provide good demonstrations on

the FetchReach environment than on the Driver or LunarLander environments, and therefore the

demonstrations are of lower quality. Using more demonstrations when they are of lower quality leads

to the prior being more concentrated further away from the true reward function, and can cause the

the learning algorithm to slow down.

In practice, we find that using a single demonstration to initialize the algorithm leads to reliable

improvements in convergence, regardless of the complexity of the domain.

DemPref vs. IRL

Next, we analyze if preference elicitation improves learning performance. To do that, we conduct a

within-subjects user study where we compare our DemPref algorithm with Bayesian IRL [164]. The

hypotheses we are testing are:

H3. The robot which uses the reward function learned by DemPref will be more successful at the

task (as evaluated by the users) than the IRL counterpart.

H4. Participants will prefer to use the DemPref framework as opposed to the IRL framework.

For these evaluations, we use the FetchReach domain with the physical Fetch robot. Participants

were told that their goal was to get the robot’s end-effector as close as possible to the goal, while (1)

avoiding collisions with the block obstacle and (2) keeping the robot’s end-effector low to the ground

(so as to avoid, for example, knocking over objects around it). Participants provided demonstrations

via teleoperation (using end-effector control) on a keyboard interface; each user was given some time

to familiarize themselves with the teleoperation system before beginning the experiment.

Participants trained the robot using two different systems. (1) IRL: Bayesian IRL with 5 demon-

strations. (2) DemPref: our DemPref framework (with the volume removal optimization) with 1

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 55

Figure 4.5: (Left) Our testing domain, with two trajectories generated according to the reward functions
learned by IRL and DemPref from a specific user in our study. (Right) The results of our usability study
– the error bars correspond to standard deviation and significant results are marked with an asterisk. We
find that users rated the robot trained with DemPref as significantly better at accomplishing the task and
preferred to use our method for training the robot significantly more than they did IRL. However, we did
not find evidence to suggest that users found our method easier to use than standard IRL.

demonstration and 15 proactive pairwise comparison queries3. We counter-balanced across which

system was used first, to minimize the impact of familiarity bias with our teleoperation system.

After learning from human feedback, the robot was trained in simulation using Proximal Policy

Optimization (PPO) with the reward function learned from each system [176]. To ensure that the

robot was not simply overfitting to the training domain, we used different variants of the domain

for training and testing the robot. We used two different test domains (and counter-balanced across

them) to increase the robustness of our results against the specific testing domain. Figure 4.5 (left)

illustrates one of our testing domains. We rolled out three trajectories in the test domains for each

algorithm on the physical Fetch robot. After observing each set of trajectories, the users were asked

to rate the following statements on a 7-point rating scale:

1. The robot accomplished the task well. (Accomplished)

2. The robot did what I wanted. (Did Wanted)

3. It was easy to train the robot with this system. (Easy)

4. I would want to use this system to train a robot in the future. (Would Use Again)

They were also asked two comparison questions:

1. Which robot accomplished the task better? (Better at Task)

2. Which system would you prefer to use if you had to train a robot to accomplish a similar task?

(Preferred)

They were finally asked for general comments.

For this user study, we recruited 15 participants (11 male, 4 female), six of whom had prior

3The number of demonstrations and pairwise comparisons used in each system were chosen such that a simulated
agent achieves similar convergence to the true reward on both systems.

4.1. CHOOSING QUERIES WITH VOLUME REMOVAL 56

experience in robotics but none of whom had any prior exposure to our system.

We present our results in Figure 4.5 (right). When asked which robot accomplished the task

better, users preferred the DemPref system by a significant margin (p < 0.05, Wilcoxon paired

signed-rank test); similarly, when asked which system they would prefer to use in the future if they

had to train the robot, users preferred the DemPref system by a significant margin (p < 0.05). This

provides strong evidence in favor of both H3 and H4.

As expected, many users struggled to teleoperate the robot. Several users made explicit note of

this fact in their comments: “I had a hard time controlling the robot”, “I found the [IRL system]

difficult as someone who [is not] kinetically gifted!”, “Would be nice if the controller for the [robot]

was easier to use.” Given that the robot that employs IRL was only trained on these demonstrations,

it is perhaps unsurprising that DemPref outperforms IRL on the task.

We were however surprised by the extent to which the IRL-powered robot fared poorly: in many

cases, it did not even attempt to reach for the goal. Upon further investigation, we discovered

that IRL was prone to, in essence, “overfitting” to the training domain. In several cases, IRL had

overweighted the users’ preference for obstacle avoidance. This proved to be an issue in one of our

test domains where the obstacle is closer to the robot than in the training domain. Here, the robot

does not even try to reach for the goal since the loss in value (as measured by the learned reward

function) from going near the obstacle is greater than the gain in value from reaching for the goal.

Figure 4.5 (left) shows this test domain and illustrates, for a specific user, a trajectory generated

according to reward function learned by each of IRL and DemPref.

While we expect that IRL would overcome these issues with more careful feature engineering

and increased diversity of the training domains, it is worth noting DemPref was affected much less

by these issues. These results suggest learning from comparative feedback methods may be more

robust to poor feature engineering and a lack of training diversity than IRL; however, a rigorous

evaluation of these claims is beyond the scope of this thesis.

It is interesting that despite the challenges that users faced with teleoperating the robot, they

did not rate the DemPref system as being “easier” to use than the IRL system (p = 0.297). Several

users specifically referred to the time it took to generate each query (∼45 seconds) as negatively

impacting their experience with the DemPref system: “I wish it was faster to generate the preference

[queries]”, “The [DemPref system] will be even better if time cost is less.” Additionally, one user

expressed difficulty in evaluating the preference queries themselves, commenting “It was tricky to

understand/infer what the preferences were [asking]. Would be nice to communicate that somehow

to the user (e.g. which [trajectory] avoids collision better)!”, which highlights the fact that volume

removal formulation may generate queries that are extremely difficult for the humans. Hence, we

analyze in the next section how mutual information objective improves the experience for the users.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 57

4.2 Choosing Queries with Mutual Information

As we just showed both mathematically and empirically, maximizing volume removal sometimes fails

to generate informative queries, and also does not consider the ease and intuitiveness of every query

for the human-in-the-loop. This can lead to queries that are difficult for the human to answer, e.g.,

two queries that are equally good (or bad) from the human’s perspective.

We resolve this issue with a second active querying method, mutual information: here the robot

balances (a) how much information it will get from a correct answer against (b) the human’s ability

to answer that question confidently. We also present a set of tools that can be used to enhance the

user’s experience, including an optimal condition for determining when the robot should stop asking

questions.

4.2.1 Maximum Mutual Information Optimization

At each iteration, we find the query Q(i) that maximizes the mutual information about w. We do

so by solving the following optimization problem:

Q
(i)
∗ = argmax

Q(i)

I(w; q(i) | Q(i), bi−1)

= argmax
Q(i)

H(w | Q(i), bi−1)− Eq(i)|Q(i),bi−1H(w | q(i), Q(i), bi−1), (4.11)

where I is the mutual information and H is Shannon’s information entropy [77]. Approximating the

expectations via sampling, we re-write this optimization problem below (see Appendix B.1 for the

full derivation):

Q
(i)
∗

·
= argmax
Q(i)={ξ1,...,ξ|Q(i)|}

1

|Ω|
∑

q(i)∈Q(i)

∑
w∈Ω

(
P (q(i) | Q(i), w) log2

(
|Ω| · P (q(i) | Q(i), w)∑
w′∈Ω P (q

(i) | Q(i), w′)

))
,

(4.12)

where Ω again denotes the samples from the prior belief bi−1.

Intuition. To see why accounting for the human is naturally part of the mutual information

solution, re-write Equation (4.11):

Q
(i)
∗ = argmax

Q(i)

H(q(i) | Q(i), bi−1)− Ew∼bi−1H(q(i) | w,Q(i)) (4.13)

Here the first term in Equation (4.13) is the robot’s uncertainty over the human’s response: given a

query Q(i) and the robot’s understanding of w, how confidently can the robot predict the human’s

answer? The second entropy term captures the human’s uncertainty when answering: given a

query and their true reward, how confidently will they choose option q(i)? Optimizing for mutual

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 58

information with Equations (4.11) or (4.12) naturally considers both robot and human uncertainty,

and favors questions where (a) the robot is unsure how the human will answer but (b) the human

can answer easily. We contrast this to maximum volume removal, where the robot purely focused

on questions where the human’s answer was unpredictable.

Why Does This Work? To highlight the advantages of this method, let us revisit the shortcomings

of volume removal. Below we show how mutual information optimization successfully addresses the

problems described in Theorem 1 and Example 1. Further, we emphasize that the computational

complexity of computing objective (4.12) is equivalent — in order — to the volume removal objective

from Equation (4.4). Thus, the mutual information based method avoids the previous failures while

being at least as computationally tractable.

Uninformative Queries

Recall from Theorem 1 that any trivial query Q = {ξ1, . . . , ξ1} is a global solution for volume

removal. In reality, we know that this query is a worst-case choice: no matter how the human

answers, the robot will gain no insight into w. Mutual information ensures that the robot will not

ask trivial queries: under Equation (4.11), Q = {ξ1, . . . , ξ1} is actually the global minimum!

Challenging Questions

Revisiting Example 1, we remember that QB was a much easier question for the human to answer,

but volume removal values QA as highly as QB . Under mutual information, the robot is equally

uncertain about how the human will answer QA and QB , and so the first term in Equation (4.13) is

the same for both. But the robot using mutual information additionally recognizes that the human

is very uncertain when answering QA: here QA attains the global maximum of the second term

while QB attains the global minimum! Thus, the overall value of QB is higher and — as desired —

the robot recognizes that QB is a better question.

4.2.2 Additional Tools and Analysis

We introduced how robots can generate proactive questions to maximize mutual information. Be-

low we highlight some additional tools that designers can leverage to improve the computational

performance and applicability of these methods. In particular, we draw the reader’s attention to an

optimal stopping condition, which tells the DemPref robot when to stop asking the human questions.

Optimal Stopping

We propose a novel extension — specifically for mutual information — that tells the robot when

to stop asking questions. Intuitively, the DemPref querying process should end when the robot’s

questions become more costly to the human than informative to the robot.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 59

Let each query Q have an associated cost c(Q) ∈ R≥0. This function captures the cost of a

question: e.g., the amount of time it takes for the human to answer, the number of similar questions

that the human has already seen, or even the interpretability of the question itself. We subtract

this cost from our mutual information objective in Equation (4.11), so that the robot (greedily)

maximizes mutual information while biasing its search towards low-cost questions:

max
Q={ξ1,...,ξ|Q|}

I(w; q | Q, bi−1)− c(Q) (4.14)

Now that we have introduced a cost into the query selection problem, the robot can reason about

when its questions are becoming prohibitively expensive or redundant. We find that the best time

to stop asking questions in expectation is when their cost exceeds their value:

Theorem 2. A robot using mutual information to perform active preference-based learning should

stop asking questions if and only if the global solution to Equation (4.14) is negative at the current

iteration.

See the Appendix A.3 for our proof. We emphasize that this result is valid only for mutual

information, and adapting Theorem 2 to volume removal is not trivial.

The decision to terminate our DemPref algorithm is now fairly straightforward. At each iteration

i, we search for the question Q
(i)
∗ that maximizes the trade-off between mutual information and cost.

If the value of Equation (4.14) is non-negative, the robot shows this query to the human and elicits

their response; if not, the robot cannot find any sufficiently important questions to ask, and the

process ends. This automatic stopping procedure makes the active learning process more user-

friendly by ensuring that the user does not have to respond to unnecessary or redundant queries.

Why Demonstrations First?

Now that we have a user-friendly strategy for generating queries and stopping, we want to determine

in what order the robot should leverage the demonstrations and the comparisons.

Recall that demonstrations provide coarse, high-level information, while comparison queries hone-

in on isolated aspects of the human’s reward function. Intuitively, it seems like we should start

with high-level demonstrations before probing low-level preferences: but is this really the right

order of collecting data? What about the alternative — a robot that instead waits to utilize the

demonstrations dataset DD until after asking questions?

When leveraging mutual information maximization to generate queries, we here prove that the

robot will gain at least as much information about the human’s preferences as any other order of

demonstrations and queries. Put another way, starting with demonstrations in the worst case is just

as good as any other order; and in the best case we obtain more information.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 60

Theorem 3. Under the Boltzmann rational human model for demonstrations presented in Equa-

tion (3.5), our DemPref approach — where best-of-many choice queries are actively generated after

collecting demonstrations — results in at least as much information about the human’s preferences

as would be obtained by reversing the order of queries and demonstrations.

Proof. Let Q
(i)
∗ be the (greedily) optimal query with respect to the mutual information optimization

after collecting demonstrations. From Equation (4.14), Q
(i)
∗ = argmaxQ(i)

(
I(w; q(i) | Q(i), bi−1)− c(Q(i))

)
.

We let q
(i)
∗ denote the human’s response to query Q

(i)
∗ . Similarly, let Q̃(i) be the mutual information

query before incorporating the demonstrations into the belief, so that Q̃(i) = argmaxQ(i)

(
I(w; q(i) | Q(i), (Q̃(j), q̃(j))i−1

j=0)− c(Q(i))
)
.

Again, we let q̃(i) denote the human’s response to query Q̃(i). Noting the total cost of queries will

not change (and hence, the theorem and the proof extend to the case where c(Q) = 0 for all queries

Q), we can compare the overall mutual information for each order of questions and demonstrations:

I
(
w;DD, (q(1)∗ , q

(2)
∗ , . . .) | (Q(1)

∗ , Q
(2)
∗ , . . .)

)
= I(w;DD) + I

(
w; (q

(1)
∗ , q

(2)
∗ , . . .) | (b0, Q(1)

∗ , Q
(2)
∗ , . . .)

)
≥ I(w;DD) + I

(
w; (q̃(1), q̃(2), . . .) | (b0, Q̃(1), Q̃(2), . . .)

)
= I

(
w; (q̃(1), q̃(2), . . . ,DD) | (Q̃(1), Q̃(2), . . .)

)
(4.15)

Intuition. We can explain Theorem 3 through two main insights. First, the mutual information

from a passively collected demonstration dataset is the same regardless of when that demonstration

is incorporated as long as it is conditioned on the same variables. Second, proactively generating

questions based on a prior leads to more incisive queries than choosing questions from scratch. In

fact, Theorem 3 can be generalized to show that active information resources should be utilized after

passive resources.

Bounded Regret

At the start of this chapter we mentioned that — instead of looking for the optimal sequence of

future questions — our techniques will greedily choose the best query at the current iteration. Prior

work has shown that this greedy approach is reasonable for volume removal, where it is guaranteed to

have bounded suboptimality in terms of the volume removed [171]. However, this volume is defined

in terms of the unnormalized distribution, and so this result does not say much about the learning

performance. Unfortunately, the mutual information also does not provide theoretical guarantees,

as it is only submodular, but not adaptive submodular.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 61

Algorithm 1 DemPref with a Human-in-the-Loop

1: Collect human demonstrations: DD = {ξ(1)D , ξ
(2)
D , . . . , ξ

(|DD|)
D }

2: Initialize belief over the human’s reward weights w: b0(w) ∝ exp
(
βDw ·

∑
ξD∈DD

Φ(ξD)
)
P (w)

3: for i← 1, 2, . . . do

4: Choose proactive question Q(i): Q
(i)
∗ ← argmaxQ(i) I(w; q(i) | Q(i), bi−1)− c(Q(i))

5: if I(w; q(i) | Q(i), bi−1)− c(Q(i)) < 0 then
6: return bi−1

7: end if
8: Elicit human’s answer q(i) to query Q(i)

9: Update belief over w given query and response: bi(w) ∝ P (q(i) | Q(i), w)bi−1(w)
10: end for

4.2.3 Algorithm

We present the complete DemPref pseudocode with active querying in Algorithm 1. This algorithm

involves two main steps: first, the robot uses the human’s offline trajectory demonstrations DD to

initialize a high-level understanding of the human’s preferred reward. Next, the robot actively gen-

erates user-friendly questions Q to fine-tune its belief b over w. These questions can be selected using

volume removal or mutual information objectives (we highlight the mutual information approach in

Algorithm 1). As the robot asks questions and obtains a precise understanding of what the human

wants, the informative value of new queries decreases: eventually, asking new questions becomes

suboptimal, and the DemPref algorithm terminates.

Advantages. Before moving to the simulation and experiment results, we conclude our presentation

of DemPref with mutual information maximization by summarizing its two main contributions:

1. The robot learns the human’s reward by synthesizing two types of information: high-level

demonstrations and fine-grained best-of-many choice queries.

2. The robot generates questions while accounting for the human’s ability to respond, naturally

leading to user-friendly and informative queries.

4.2.4 Experiments

We conduct three sets of experiments to evaluate the performance of DemPref with mutual informa-

tion maximization. Similar to Section 4.1, we assume a reward function that is linear in trajectory

features in all experiments, i.e., Rw(ξ) = w⊤Φ(ξ) for any trajectory ξ ∈ Ξ.4

4Unless otherwise noted, we adopt βD = 0.02, βC = 1, constant c(Q) for ∀Q, and assume a uniform prior over
reward parameters w, i.e., P (w) is constant for any ∥w∥2 ≤ 1. We use Metropolis-Hastings algorithm [69] for sampling
the set Ω from belief distribution over w.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 62

Simulation Domains

In each experiment in addition to the experiment domains presented in Section 4.1.2, we use a subset

of the following domains. These domains are shown in Figure 4.1 (and see Figure 4.3 for the domains

adopted from Section 4.1.2).

Linear Dynamical System (LDS). We use a linear dynamical system with six dimensional state

and three dimensional action spaces. State values are directly used as state features without any

transformation.

Driver. We use a 2D driving simulator [170], where the agent has to safely drive down a high-

way. The trajectory features correspond to the distance of the agent from the center of the lane,

its speed, heading angle, and minimum distance to other vehicles during the trajectory (white in

Figure 4.1 (top)). See Appendix D.1 for the formal feature definitions.

Tosser. We use a “Tosser” robot simulation built in MuJoCo [191] that tosses a capsule-shaped

object into baskets. The trajectory features are the maximum horizontal distance forward traveled

by the object, the maximum altitude of the object, the number of flips the object does, and the

object’s final distance to the closest basket. See Appendix D.1 for the formal feature definitions.

For our user studies, we again employ the same version of the Fetch environment as in Sec-

tion 4.1.2 with the physical Fetch robot (see Figure 4.3) [213].

Human Choice Models

As we described in Section 3.1, we require a probabilistic model for the human’s response q(i) in a

query Q(i) conditioned on their reward function parameters w. In the results we presented in this

section, we use two specific models. One is the softmax model we introduced in Equation (3.10),

re-stating:

P (q(i) = Q
(i)
j | Q

(i), w) =
exp(βCRw(Q

(i)
j))∑|Q(i)|

j′=1 exp(βCRw(Q
(i)
j′))

. (4.16)

As the second model, we generalize pairwise comparison queries and this preference model to

include an “About Equal” option. This is similar to scale queries we introduced in Section 3.4.

However, we are using a different, simpler choice model as we are not allowing any choice other than

“About Equal” and the trajectory choices. We denote this new “About Equal” option by Υ and

define a weak pairwise comparison query Q+ := Q ∪ {Υ} when |Q| = 2.

Building on prior work by Krishnan [126], we incorporate the information from the “About

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 63

Equal” option by introducing a minimum perceivable difference parameter ς ≥ 0, and defining:

P (q(i) = Υ | Q(i)+, w) = (exp(2ς)− 1)P (q(i) = Q
(i)
1 | Q(i)+, w)P (q(i) = Q

(i)
2 | Q(i)+, w) ,

P (q(i) = Q
(i)
j | Q

(i)+, w) =
1

1 + exp(ς +Rw(Q
(i)
j′)−Rw(Q

(i)
j))

, {Q(i)
j , Q

(i)
j′ } = Q(i)+ \ {Υ} .

(4.17)

Notice that Equation (4.17) reduces to Equation (3.10) when ς = 0; in which case we model the

human as always perceiving the difference in options. All derivations in Sections 3.1, 4.1 and 4.2

hold with weak pairwise comparison queries. In particular, we include a discussion of extending our

formulation to the case where ς is user-specific and unknown in Appendices B.1.1 and E.1.1. The

additional parameter causes no trouble in practice. For all our experiments in this section, we set

|Q| = 2, and ς = 1 (whenever relevant).

We note that there are alternative choice models compatible with our framework for weak pair-

wise comparisons (e.g., [110] and our scale feedback model in Section 3.4). Additionally, one may

generalize the weak pairwise comparison queries to |Q| > 2, though it complicates the choice model

as the user must specify which of the trajectories create uncertainty.

We are now ready to present our three sets of experiments each of which demonstrates a different

aspect of the proposed active DemPref framework:

1. The advantages of mutual information formulation over volume removal,

2. The order of demonstrations and preferences, and

3. Optimal stopping condition under the mutual information objective.

We again use the Alignmentmetric to quantitatively evaluate the performance (see Equation (4.10)).

Mutual Information vs. Volume Removal

To investigate the performance and user-friendliness of the mutual information and volume removal

methods for learning from comparative feedback, we conduct experiments with simulated users in

LDS, Driver, Tosser and FetchReach environments; and real user studies in Driver, Tosser and

FetchReach (with the physical robot). We are particularly interested in the following three hypothe-

ses:

H5. Mutual information formulation outperforms volume removal in terms of data-efficiency.

H6. Mutual information queries are easier and more intuitive for the human than those from volume

removal.

H7. A user’s preference aligns best with reward parameters learned via mutual information maxi-

mization.

To enable faster computation, we discretized the search space of the optimization problems by

generating 500,000 random pairwise comparison queries and precomputing their trajectory features.

Each call to an optimization problem then performs a loop over this discrete set.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 64

LDS Driver Tosser FetchReach
Mutual Information (Weak Queries) Mutual Information (Strict Queries) Volume Removal (Weak Queries) Volume Removal (Strict Queries)

Al
ig

nm
en

t

Figure 4.6: Alignment values are plotted (mean± standard error) to compare mutual information and volume
removal formulations. Standard errors are so small that they are mostly invisible in the plots. Dashed lines
show the weak pairwise comparison query variants. Mutual information provides a significant increase in
learning rate in all cases. While weak pairwise comparison queries lead to a large amount of improvement
under volume removal, mutual information formulation is still superior in terms of the convergence rate.

In simulation experiments, we learn the randomly generated reward functions via both strict

and weak pairwise comparison queries where the “About Equal” option is absent and present,

respectively. We repeat each experiment 100 times to obtain confidence bounds. Figure 4.6 shows

the Alignment value against query number for the 4 different tasks. Even though the “About Equal”

option improves the performance of volume removal by preventing the trivial query, Q = {ξ1, ξ1, . . . },
from being a global optimum, mutual information gives a significant improvement on the learning

rate both with and without the “About Equal” option in all environments.5 These results strongly

support H5.

The numbers given within Figure 4.7 count the wrong answers and “About Equal” choices made

by the simulated users. The mutual information formulation significantly improves over volume

removal. Moreover, weak pairwise comparison queries consistently decrease the number of wrong

answers, which can be one reason why it performs better than strict queries.6 Figure 4.7 also shows

when the wrong responses are given. While wrong answer ratios are higher with volume removal

formulation, it can be seen that mutual information reduces wrong answers especially in early queries,

which leads to faster learning. These results support H6.

In the user studies for this part, we used Driver and Tosser environments in simulation and the

FetchReach environment with the physical robot. We began by asking participants to rank a set of

features (described in plain language) to encourage each user to be consistent in their preferences.

Subsequently, we queried each participant with a sequence of 30 questions generated actively; 15

from volume removal and 15 via mutual information. We prevent bias by randomizing the sequence

of questions for each user and experiment: the user does not know which algorithm generates a

question.

Participants responded to a 7-point rating scale survey after each question:

5See Appendix E.1.2 for results without query space discretization.
6Another possible explanation is the information acquired by the “About Equal” responses. We analyze this in

Appendix E.1.3 by comparing the results with what would happen if this information was discarded.

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 65

M
ut

ua
l I

nf
or

m
at

io
n

V
ol

um
e

Re
m

ov
al

2.8 / 0.0 1.1 / 6.3 3.5 / 0.0 1.7 / 9.0 3.3 / 0.0 1.3 / 8.8 3.5 / 0.0 1.6 / 9.1

6.0 / 0.0 2.8 / 11.4 5.3 / 0.0 2.2 / 11.0 5.6 / 0.0 2.0 / 10.7 5.1 / 0.0 2.1 / 11.3

LDS Driver Tosser FetchReach
Mutual Information (Weak Queries) Mutual Information (Strict Queries) Volume Removal (Weak Queries) Volume Removal (Strict Queries)

Figure 4.7: Wrong answer ratios on different queries are shown. The numbers at top show the average
number of wrong responses and “About Equal” choices, respectively, for both strict and weak queries.
Mutual information formulation yields smaller numbers of wrong and “About Equal” answers, especially in
the early stages.

• It was easy to choose between the trajectories that the robot showed me.

They were also asked the Yes/No question:

• Can you tell the difference between the options presented?

In concluding the Tosser and Driver experiments, we showed participants two trajectories: one

optimized using reward function parameters from mutual information (trajectory A) and one opti-

mized using reward parameters from volume removal (trajectory B)7. Participants responded to a

7-point rating scale survey:

• Trajectory A better aligns with my preferences than trajectory B.

We recruited 15 participants (8 female, 7 male) for the simulations (Driver and Tosser) and

12 for the FetchReach (6 female, 6 male). We used strict pairwise comparison queries. A video

demonstration of these user studies is available at http://youtu.be/JIs43cO_g18.

Figure 4.8a shows the results of the easiness surveys. In all environments, users found mutual

information queries easier: the results are statistically significant (p < 0.005, two-sample t-test).

Figure 4.8b shows the average number of times the users stated they cannot distinguish the options

presented. The volume removal formulation yields several queries that are indistinguishable to the

users while the mutual information formulation avoids this issue. The difference is significant for

Driver (p < 0.05, paired-sample t-test) and Tosser (p < 0.005). Taken together, these results

support H6.

Figure 4.8c shows the results of the survey the participants completed at the end of experiment.

Users significantly preferred the mutual information trajectory over that of volume removal in both

environments (p < 0.05, one-sample t-test), supporting H7.

7We excluded FetchReach for this question to avoid prohibitive trajectory optimization (due to large action space).

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 66

of

 Id
en

tic
al

 O
pt

io
ns

(a) (b) (c)

{ * { * { * { * { * { * { *

Mutual Information (Strict Queries)Volume Removal (Strict Queries)

Driver Tosser TosserFetchReach FetchReachDriver TosserDriver

Figure 4.8: User study results. Error bars show std. Asterisks show statistical significance. (a) Easiness
survey results averaged over all queries and users. Queries generated using the mutual information max-
imization method are rated significantly easier by the users than the volume removal queries. (b) The
number of identical options in the experiments averaged over all users. In Driver and Tosser, users indicated
significantly less indistinguishable queries with mutual information maximization compared to volume re-
moval maximization. (c) Final preferences averaged over the users. 7 means the user strongly prefers the
optimized trajectory w.r.t. the learned reward by the mutual information formulation, and 1 is the volume
removal. Dashed line represents indifference between two methods. Users significantly prefer the robot who
learned using the mutual information maximization method for active query generation.

The Order of Information Sources

Having seen mutual information maximization provides a significant boost in the learning rate, we

checked whether the passively collected demonstrations or the actively queried preferences should

be given to the model first. Specifically, we tested:

H8. If passively collected demonstrations are used before the actively collected comparison query

responses, the learning becomes faster.

While Theorem 3 asserts that we should first initialize DemPref via demonstrations, we performed

simulation experiments to check this notion in practice. Using LDS, Driver, Tosser and FetchReach,

we ran three sets of experiments where we adopted weak pairwise comparison queries: (i) We initialize

the belief with a single demonstration and then query the simulated user with 15 pairwise comparison

questions, (ii) We first query the simulated user with 15 pairwise comparison questions and we add

the demonstration to the belief independently after each question, and (iii) We completely ignore the

demonstration and use only 15 pairwise comparison queries. The reason why we chose to have only

a single demonstration is because having more more demonstrations tends to increase the alignment

value for both (i) and (ii), thereby making the difference between the methods’ performances very

small. We ran each set of experiment 100 times with different, randomly sampled, true reward

functions. We again used the same dataset of 500,000 queries for query generation. We also used the

trajectory that gives the highest reward to the simulated user out of this dataset as the demonstration

in the first two sets of experiments. Since the demonstration is not subject to noises or biases due

to the control of human users, we set βD = 0.2.

Figure 4.9 shows the Alignment value against the number of queries. The last set of experiments

4.2. CHOOSING QUERIES WITH MUTUAL INFORMATION 67

LDS Driver Tosser FetchReach
N queries after 1 demonstration 1 demonstration after N queries N queries

Al
ig

nm
en

t

Figure 4.9: Simulation results for the order of demonstrations and preference queries. Alignment values are
plotted (mean±s.e.). It is consistently better to first utilize the passively collected demonstrations rather
than actively generated preference queries. The differences in the Alignment value is especially small in the
FetchReach simulations, which might be due to the fact that it is a simpler environment in terms of the
number of trajectory features.

has significantly lower Alignment values than the first two sets especially when the number of

pairwise comparison queries is small. This indicates the demonstration has carried an important

amount of information. Comparing the first two sets of experiments, the differences in the Alignment

values are small. However, the values are consistently higher when the demonstrations are used to

initialize the belief distribution. This supports H8 and numerically validates Theorem 3.

Optimal Stopping

Finally, we experimented our optimal stopping extension for mutual information based active query-

ing algorithm in LDS, Driver, Tosser and FetchReach environments with simulated users. Again

adopting query discretization, we tested:

H9. Optimal stopping enables cost-efficient reward learning under various costs.

As the query cost, we employed a cost function to improve interpretability of queries, which may

have the associated benefit of making learning more efficient [20]. We defined a cost function:

c(Q) = ϖ − |ψj∗ |+ max
j′∈{1,... }\{j∗}

|ψj′ |, j∗ = argmax
j

|ψj |,

where ψ = Φ(Q1)−Φ(Q2). This cost favors queries in which the difference in one feature is larger than

that between all other features. Such a query may prove more interpretable. We first simulate 100

random users and tuneϖ accordingly: For each simulated user, we record theϖ value that makes the

objective zero in the ith query (for smallest i) such that Alignmenti, Alignmenti−1, Alignmenti−2 ∈
[x, x+ 0.02] for some x. We then use the average of these ϖ values for our tests with 100 different

random users. Figure 4.10 shows the results.8 Optimal stopping rule enables terminating the process

with near-optimal cumulative active learning rewards (the cumulative difference between the mutual

information and the cost as in Equation (4.14)) in all environments, which supports H9.

8We found similar results with query-independent costs minimizing the number of queries. See Appendix E.1.4.

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 68

LDS Driver Tosser FetchReach
Mutual Information (Weak Queries) Mutual Information (Strict Queries)

Figure 4.10: Simulation results for optimal stopping. Line plots show cumulative active learning rewards
(cumulative difference between the mutual information values and the query costs), averaged over 100 test
runs and scaled for visualization. Histograms show when optimal stopping condition is satisfied, which aligns
with the desired cumulative rewards.

Following the same order as in Chapter 3, we now proceed with preference-based GP regression

where a Gaussian process model is trained using pairwise comparisons. We extend this learning

framework with mutual information based active querying to improve data-efficiency.

4.3 Active Querying for Preference-based GP Regression

While we know how to learn a non-parametric reward function f using only pairwise comparisons

from Section 3.2, this endeavor can require tremendous amount of data, because each query will give

at most 1 bit of information. Furthermore, we can expect a decreasing trend in the information gain

as we learn the reward function. Therefore, it is important to select the queries for the human such

that each query gives as much information as possible. For parametric reward models, Section 4.2

has shown that this can be done by maximizing the mutual information, which also makes the

queries easy for the user. Extending this formulation to the reward functions modeled with a GP

is not trivial, because one needs to sample from the GP many times for each trajectory, whereas a

parametric reward form allows the reward prediction after sampling the parameters only once.

Hence, in this section, our goal is to perform mutual information maximization with GPs.

4.3.1 Formulation

Formally, we want to solve the following problem, using the same notation as in Section 3.2:

Q∗ = (Φ
(1)
∗ , Φ

(2)
∗) = argmax

Φ(1),Φ(2)

I(f ; q | Φ(1), Φ(2),Q,q),

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 69

where I is the mutual information and q is the response to the query Q = (Φ(1), Φ(2)). This

optimization is equivalent to

argmax
Φ(1),Φ(2)

(
H(q | Φ(1), Φ(2),Q,q)− Ef |Q,q

[
H(q | Φ(1), Φ(2), f)

])
, (4.18)

where H is the information entropy.

This optimization can be interpreted as follows: On one hand, maximizing the first entropy term

H(q | Φ(1), Φ(2),Q,q) encourages fast convergence by maximizing the uncertainty of the outcome

of every query for the learned GP model. On the other hand, minimizing the second entropy term

H(q | Φ(1), Φ(2), f) encourages the ease of responding to the queries by the user meaning the user

should be certain about their choices.

We defer the full derivation of (4.18) to Appendix B.2, but here we give an easy-to-implement

formulation of the optimization. Denoting the posterior mean of f(Φ(i)), which is obtained using

Equation (3.16), with µ(i), the objective function can be written as

h

(
Φ

(
µ(1) − µ(2)√

2σ2
C + g(Φ(1), Φ(2))

))
−m

(
Φ(1), Φ(2)

)
(4.19)

where σC is the noise parameter of the human response model we introduced in Equation (3.12),

g(Φ(1), Φ(2)) =Var
(
f(Φ(1))

)
+Var

(
f(Φ(2))

)
− 2 Cov

(
f(Φ(1)), f(Φ(2))

)
,

whose terms can be computed using Equation (3.17); h is the binary entropy function, i.e.,

h(p) = −p log2(p)− (1− p) log2(1− p),

and

m
(
Φ(1), Φ(2)

)
=

√
π ln(2)σ2

C exp
(
− (µ(1)−µ(2))2

π ln(2)σ2
C+2g(Ψ(1),Ψ(2))

)
√
π ln(2)σ2

C + 2g(Φ(1), Φ(2))
.

Synthesizing queries that maximize this objective will give us very informative data points for

preference-based GP regression and improve data-efficiency.

Previously, we have shown in Section 4.2 for the parametric reward models that using a mutual

information based formulation accelerates the learning whereas volume removal based methods (as

in Section 4.1) rely on local optima and can produce trivial queries that compare the exact same

trajectory and so gives no information. In the following, we show our formulation in this section

also does not suffer from this trivial query problem.

Remark 1. The trivial query Q = {Φ(1), Φ(1)} does not maximize our acquisition function given in

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 70

Figure 4.11: Sample trajectories are shown for the two simulation environments. In Driver, another car is
cutting in front of the ego vehicle. In Tosser, the robot must hit the dropping capsule such that it will fall
into one of the baskets.

(4.19), and is in fact a global minimizer.

Proof. For the query Q = {Φ(1), Φ(1)}, we re-write (4.19) as

h

(
Φ

(
µ(1) − µ(1)√

2σ2
C + g(Φ(1), Φ(1))

))
−m (Φ) = 1−m(Φ(1), Φ(1))

where Var
(
f(Φ(1))

)
= Cov

(
f(Φ(1)), f(Φ(1))

)
, and so g(Φ(1), Φ(1)) = 0, and

m (Φ) =

√
π ln(2)σ2

C exp
(
− (µ(1)−µ(1))2

π ln(2)σ2
C+2g(Φ(1),Φ(1))

)
√
π ln(2)σ2

C + 2g(Φ(1), Φ(1))
= 1

which makes the objective value 0. Since the mutual information has to be nonnegative, this com-

pletes the proof that the trivial query is a global minimizer of the objective.

We now proceed with our simulations and experiments on GP regression using actively collected

pairwise comparison feedback.

4.3.2 Experiments

Simulation Experiments

In this subsection, we present our experiments in two simulation domains to demonstrate how (i)

GP rewards improve expressiveness over linear reward functions (which is often assumed as we

did in Sections 4.1.2 and 4.2.4, also see [1, 155, 226]), and (ii) active query generation improves

data-efficiency over random querying.

Environments. To validate our framework on robotics tasks, we used two simulation environments

from Section 4.2.4 with slight modifications: a 2D Driver simulation [170] and a MuJoCo [191]

environment to simulate a Tosser robot that tries to throw an object into a basket. For reader’s

convenience, we again show visuals from these environments with sample trajectories in Figure 4.11.

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 71

For example in Driver, the user is asked whether they would move forward or backward in the given

scenario. While the users would have a common response to this query, some questions may differ

among the users. For instance in Tosser, the query asks the user whether to throw the ball into

the green basket or to drop it instead. Depending on the users’ preferences about the green basket,

different users may have different responses.

Figure 4.12: Accuracies and average log-likelihoods for test set queries are shown for the Driver environment
(mean±std over 5 runs). (a) Expressiveness results when the true underlying reward function is linear. (b)
Expressiveness results when the true underlying reward function is a degree-of-two polynomial. (c) Data-
efficiency results that compare ActiveGP with RandomGP. Accuracies and average log-likelihoods for test
set queries are shown (mean±std). Active query generation improves data-efficiency over random querying
in both tasks. This can be seen through both accuracy and log-likelihood.

In these two environments, we use the following simple features for the function Φ:

• Driver : Distance to the other car, speed, heading angle, distance to the closest lane center.

• Tosser : The maximum horizontal range, and the number of capsule flips.

In contrast to the other sections and the prior work, here we do not need to fine-tune the feature

hyperparameters to learn the reward functions because GPs can effectively capture nonlinearities.

Simulated Human Model. We simulated human responses with an underlying true reward func-

tion R with some Gaussian noise, in accordance with the probit model presented in Equation (3.12).

We modeled the true R as either a degree-of-two polynomial or a linear function. In both cases, we

selected the parameters of true R as i.i.d. random samples from the standard normal distribution.

We repeated each simulation experiment 5 times with varying underlying true reward functions.

Baselines. For our analyses, we compared three methods:

• RandomGP: The reward is modeled using a Gaussian process. The two distinct trajectories

selected in each training query are sampled from a training dataset uniformly at random.

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 72

• ActiveLinear: The reward is modeled as a linear combination of features, and the active

query generation method of Section 4.2 selects the most informative comparison queries at

every step of training.

• ActiveGP: The reward is modeled as a Gaussian process. We will use our active query

generation method to generate the most informative comparison queries to efficiently learn the

reward function.

We generated a training dataset of trajectories with uniformly randomly selected actions, as

in Section 4.2.4. At every iteration of ActiveGP and ActiveLinear, we computed the mutual

information of each possible query from this dataset to select the most informative query. This

approach decreases the computation time compared to solving a continuous optimization over all

possible trajectories as it was done in Section 4.1.2 and by [171, 159].

Evaluation. We compare GP reward with linear reward in terms of expressiveness (ActiveGP

vs. ActiveLinear), and compare active query generation with random querying baseline in terms

of data-efficiency (ActiveGP vs. RandomGP).

Test Set Generation. For both analyses on the expressiveness and data-efficiency, we also gener-

ated test sets of trajectories from the same distribution as the training set. However, it would not

be fair to use the test set as is. Obtained with uniformly random action sequences, the majority of

the training set is uninteresting trajectories, e.g. the ego car moves slightly forward and backward

(similar to a random walk) in Driver, or the robot does not hit the capsule in Tosser. Using the

test set without further modifications would mean we give more importance to these uninteresting

behaviors as they form the majority in the datasets. Obviously, this is not the case. We want to

learn the reward function everywhere in the dynamically feasible region with equal importance.

N
um

be
r o

f F
lip

s

Maximum Horizontal Range

Original Set
Unif. Random
Poisson Disk

Figure 4.13: Features of 1000 Tosser trajectories are visualized in two-dimensional plane (gray). Poisson disk
sampling allows us to obtain a diverse set of 20 samples (orange), whereas sampling uniformly at random
yields mostly uninteresting trajectories (blue).

Hence, we adopted Poisson disk sampling [48] to get a diverse set of trajectories from the test

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 73

set. Poisson disk sampling makes sure the difference between trajectories9 is above some threshold

by rejecting the samples that violate this constraint. A small example set of samples is compared

to uniformly random samples in Figure 4.13 for the Tosser environment.

After obtaining the diverse test set, we stored the true (noiseless) response of the simulated user

for each possible query in this set. For the analysis on expressiveness, we computed the accuracy

and the log-likelihood of the true responses under the reward functions that are learned with |DC |
actively chosen queries (up to |DC | = 200). For data-efficiency analysis, we again used the true

human responses to the queries in the diverse test set (only from the polynomial reward functions)

to calculate the accuracy and the log-likelihood under the learned reward functions.

Figure 4.14: Accuracies and average log-likelihoods for test set queries are shown for the Tosser environment
(mean±std over 5 runs). (a) Expressiveness results when the true underlying reward function is linear. (b)
Expressiveness results when the true underlying reward function is a degree-of-two polynomial. (c) Data-
efficiency results that compare ActiveGP with RandomGP. Accuracies and average log-likelihoods for test
set queries are shown (mean±std). Active query generation improves data-efficiency over random querying
in both tasks. This can be seen through both accuracy and log-likelihood.

Expressiveness. Figures 4.12a, 4.12b, 4.14a, and 4.14b show the results of expressiveness simula-

tions. When the true reward is polynomial, the linear model results in very high variance in both

accuracy and likelihood, because its performance relies on how good a linear function can explain

the true nonlinear reward. In this case, the GP model captures nonlinearities better than the linear

model and provides better learning (Figures 4.12b and 4.14b). When the true reward function is

linear in features, a linear model naturally learns faster. However, as shown in Figures 4.12a and

4.14a, even in that case, GP model can achieve linear model’s performance. To further improve

the reward model, one can consider an approach to combine the linear and GP models by keeping

9We used L2 distance between the feature vectors.

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 74

9

8
7

6

5

4

3
2

Figure 4.15: Top view of the eight targets in the variant of mini-golf user study. The users assign distinct
scores from 2 to 9 to the targets. The figure shows an example of this ranking. While the robot is capable of
hitting the ball into the entire shaded region, the maximizers of a linear reward always lie near the corners of
the shaded region in blue. Therefore, while the GP reward model can query the user with better trajectories
(e.g. the green trajectory), the linear model only explores the boundaries (e.g. the blue trajectory that
throws the ball outside of this region). Crosses show where the ball hits the ground.

a belief distribution over whether the true reward is linear or not, and actively querying the user

according to this belief. We leave this extension as future work.

Data-Efficiency. We then evaluated how our active query generation helps with data-efficiency.

Figures 4.12c and 4.14c compare ActiveGP and RandomGP for the simulation environments. It

can be seen that active querying significantly accelerates learning over random querying. It should

be noted that the number of samples taken via Poisson disk sampling matters: While choosing a

very small number will increase the variance in the results, choosing a very large number will make

random querying seem like it performs comparable to (or even better than) the active querying as

the test set will mostly consist of uninteresting trajectories, which are also abundant in the training

set, as we stated earlier.

User Studies

Experiment Setup. We also compare our method ActiveGP with ActiveLinear and Ran-

domGP on a user study with a Fetch mobile manipulator robot [213]. In this study, the human

subjects teach the Fetch robot how to play a variant of mini golf where the robot can achieve differ-

ent scores by hitting the ball to different targets (see Figures 3.3 and 4.15 for the setup). However,

these scores are only known to the human. In fact, the robot does not even know the locations of

the targets, and it tries to learn the reward as a function of its control inputs. Fixing some of the

joints, we let the robot vary only its shot speed and angle, which are also the features of the reward

function.

This experiment setting is interesting because a linear reward function can only encode whether

the robot must hit the ball to the right or to the left, or whether it must hit with high or low

speed. It cannot particularly encourage (or discourage) hitting with a modest angle and/or speed.

4.3. ACTIVE QUERYING FOR PREFERENCE-BASED GP REGRESSION 75

Therefore, as we show in Figure 4.15, the targets that are around the middle region cannot be the

maximizers of a linear reward function.

Subjects and Procedure. We recruited 10 users (6 male, 4 female) with an age range from 19 to

28. Each user first assigned their distinct scores (from 2 to 9) to the eight targets. The robot then

queried them with 50 pairwise comparison questions: 15 for ActiveGP, 15 for ActiveLinear, 15

for RandomGP and 5 queries generated uniformly at random to create a test set. We shuffled the

order of queries to avoid any bias. We used the reward models, each of which is learned with 15

queries, to predict the user responses in the test set. The prediction score on the test set provides

an accuracy metric.

In addition to the accuracy, we assessed whether the robot could successfully learn how to perform

a good shot. For this, after the subjects responded to 50 queries, the robot demonstrated 3 more

trajectories each of which corresponds to the optimal trajectory of one method, the trajectory that

maximizes the learned reward function. Again, the order of these trajectories was shuffled. After

watching each demonstration, the subjects assigned a score to the shot from a 9-point rating scale

(1-very bad, 9-very good).

Results and Discussion We provide a video that gives an overview of user studies and their results

at https://youtu.be/SLSO2lBj9Mw.

Figure 4.16: (a) Prediction accuracy results (mean±se). Each trained with 15 queries, ActiveGP achieves
significantly higher prediction accuracy than both ActiveLinear and RandomGP (p < 0.05). (b) User
ratings on the final robot performance (mean±se). ActiveGP accomplishes the task significantly better
than both ActiveLinear and RandomGP (p < 0.05).

Figure 4.16a shows the prediction accuracy values on the test sets collected from the subjects

(averaged over the subjects). By modeling the reward using a GP and querying the users with the

most informative questions, ActiveGP achieves significantly higher prediction accuracy (0.74±0.04,
mean±se) compared to both ActiveLinear (0.62± 0.07) and RandomGP (0.62± 0.06) with p <

0.05 (Wilcoxon signed rank test). The results from this user study are aligned with our simulation

studies.

In reward learning, it is crucial to validate whether the learned reward function can encode the

desired behavior or not. Figure 4.16b shows the user ratings to the trajectories that the robot showed

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 76

after learning the user preferences via 3 different methods. ActiveGP obtains significantly higher

scores (6.9± 0.6) than both ActiveLinear (3.4± 0.7) and RandomGP (5.1± 0.7) with p < 0.05.

While ActiveLinear occasionally achieves high scores when the users’ preferred target is near the

edge, it generally fails to produce the desired behavior due to its low expressive power.

The next section will present more simulation and experiment results with active preference-based

GP regression, after discussing active querying in the presence of ordinal feedback.

4.4 ROI Active Learning with Comparisons and Ordinal Feed-

back

Having seen the success of mutual information maximization based active querying for non-parametric

reward functions in Section 4.3.2, we want to extend it in the same way as we did in Chapter 3:

we want to be able to utilize ordinal feedback in addition to pairwise comparisons. Furthermore, in

Section 3.3, we established that it is sometimes desired to define a “region of avoidance” (ROA) in

the trajectory space Ξ such that we should not query the user with the trajectories in that space.

This is especially relevant when we are actively querying the user: we should constrain our active

querying optimization to avoid ROA.

Therefore in this section, we extend the GP regression model we presented in Section 3.3 with

active querying. We again use mutual information maximization. However, differently from Sec-

tion 4.3, we now select the trajectories such that:

1. Each trajectory is compared with the previous trajectory in the querying sequence (as opposed

to optimizing for a couple of trajectories for pairwise comparisons),

2. We want to maximize the information from not only the comparative feedback, but also the

ordinal feedback,

3. We try to avoid querying the user with trajectories from ROA.

We call our algorithm ROIAL, short for region of interest active learning.

At the end of this section, we will demonstrate in simulation that ROIAL estimates both the

region of interest (ROI) and the reward function within the ROI with high accuracy. We experimen-

tally demonstrate ROIAL on the lower-body exoskeleton Atalante (Figure 3.4) to learn the reward

functions of three non-disabled users over four gait parameters. The obtained landscapes highlight

both agreement and disagreement in preferences among the users. Previous algorithms for exoskele-

ton gait optimization were incapable of drawing such conclusions; thus, this work represents progress

towards establishing a better understanding of the science of walking with respect to exoskeleton

gait design.

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 77

4.4.1 Formulation

ROIAL selects samples by modeling a Bayesian posterior over the reward function using Gaussian

processes and maximizing the mutual information (over the ROI) with respect to this posterior. In

this section, we continue to use the notation in Section 3.3, as we are now making it active.

Defining f̂ (i) := [f̂ (i)(Φ(ξ(1))), . . . , f̂ (i)(Φ(ξ(|Ξ|)))]⊤ as the maximum a posteriori (MAP) estimate

of the rewards f given D(i), we aim to adaptively select the next trajectories ξ(1), ξ(2), . . . ∈ Ξ that

minimize the error in estimating f over the ROI. We model the error as Error(i) :=
∑
ξ∈ROI|f−f̂ (i)|,

where the absolute value is taken element-wise.

Trajectory Selection via Mutual Information Maximization

To learn the reward function in as few trials as possible, we select trajectories to maximize the mutual

information between the reward function and the comparison-based and ordinal human feedback.

We again adopt the greedy approach as in the previous sections to solve the following optimization

in each iteration i:

max
ξ(i)∈ROI(i)

I(f ; q(i)o , q(i) | D(i−1), ξ(i)), (4.20)

where q(i) denotes the user’s response to a pairwise comparison query between ξ(i) and ξ(i−1), and

q
(i)
o denotes the ordinal feedback for trajectory ξ(i). One can re-write (4.20) in terms of information

entropy:

max
ξ(i)

H(q(i)o , q(i) | D(i−1), ξ(i))− Ef |D(i−1)

[
H(q(i)o , q(i) | D(i−1), ξ(i),f)

]
.

Again, we can interpret the first term as the uncertainty about trajectory ξ(i)’s ordinal label and

preference relative to ξ(i−1). We aim to maximize this term, because queries with high model

uncertainty could potentially yield significant information. The second term is conditioned on f ,

and so represents the user’s expected uncertainty. If the user is very uncertain about their feedback,

then the action ξ(i) gives only a small amount of information. Hence, we aim to minimize this second

term. In this way, mutual information maximization produces queries that are both informative and

easy for users.

The second term is estimated via sampling from the Laplace-approximated Gaussian posterior

P (f | D(i−1)). Computing the first term requires the probability P (q
(i)
o , q(i) | D(i−1), ξ(i)). We derive

it as:

P (q(i)o , q(i) | D(i−1), ξ(i)) =

∫
R|Ξ|

P (f | D(i−1), ξ(i))P (q(i)o , q(i) | D(i−1), ξ(i),f)df (4.21)

= Ef |D(i−1)

[
P (q(i)o , q(i) | D(i−1), ξ(i),f)

]
, (4.22)

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 78

Algorithm 2 ROIAL Algorithm

Require: Reward prior parameters; ordinal thresholds Bo1 , . . . , B
o
|Bo|; subset size |Ξ

(i)
S | for ∀i; con-

fidence parameter ε
1: D(0) = ∅, ▷ D(i): user feedback dataset including iteration i
2: Select a trajectory ξ(1) at random
3: Add ordinal feedback to data to obtain D(1)

4: for i = 2,. . . do
5: Update the model posterior P (f | D(i−1)) ▷ Equation (3.18)

6: Determine Ξ
(i)
S by randomly selecting |Ξ(i)

S | actions
7: Determine ROI(i) ⊂ Ξ

(i)
S

8: ξ(i) ← argmaxξ∈ROI(i) I(f ; q
(i)
o , q(i) | D(i−1), ξ)

9: Add preference and ordinal feedback to data to obtain D(i)

10: end for

which we approximate with samples from P (f | D(i−1)).

ROIAL Algorithm

Algorithm 2 presents the pseudocode for the ROIAL algorithm we develop. Line 8 solves the mutual

information maximization problem, whereas the procedures for lines 5-7, which include learning and

estimating ROI, were presented in Section 3.3.

4.4.2 Simulations and Experiments

Simulation Results

We evaluate ROIAL’s performance on the Hartmann3 function—which is a standard benchmark

for learning non-convex, smooth functions—and on 3-dimensional synthetic functions, sampled from

a Gaussian process prior over a 20 × 20 × 20 grid. As evaluation metrics, we use the algorithm’s

errors in pairwise comparison and ordinal label prediction; these allow us to quantify performance

when the true reward function is unknown. The average ordinal prediction error is defined as

Error(i) := 1
i

∑i
i′=1|q̂

(i′)
o − q(i

′)
o

∗
|, and all simulations use 5 ordinal categories.10

1D illustration of ROIAL. Figure 4.17 illustrates the algorithm for a 1D objective (reward) func-

tion. Initially, ROIAL samples widely across the space (Figure 4.17a-4.17c). As seen by comparing

iterations 5 and 20 (Figure 4.17c-4.17d), the algorithm stops querying points in the ROA (points

in Bo1) because the upper confidence bound (top of the blue shaded region) there falls below the

hyperparameter Bo1 (dotted gray line).

Extending to higher dimensions. To characterize the impact of the random subset size on

10Unless otherwise stated, hyperparameters are held constant across simulations and experiments, and their values
can be found in https://github.com/kli58/ROIAL.

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 79

(a) Iteration 1 (b) Iteration 3 (c) Iteration 5 (d) Iteration 20

Figure 4.17: 1D posterior illustration. The true objective function is shown in orange, and the algorithm’s
posterior mean is blue. Blue shading indicates the confidence region for ε = 0.5. The solid grey line indicates
the true ordinal threshold Bo

1 : the ROI is above this threshold, while the ROA is below it. The dotted grey
line is the algorithm’s Bo

1 hyperparameter. The actions queried so far are indicated with “x”s. Utilities are
normalized in each plot so that the posterior mean spans the range from 0 to 1.

(a) Synthetic function
posterior

(b) Hartmann3 prediction error (c) Synthetic function prediction error

Figure 4.18: Impact of random subset size on algorithm performance. a) Example 3D synthetic objective
function and posterior learned by ROIAL with subset size = 500 after 80 iterations. Values are averaged
over the 3rd dimension and normalized to range from 0 to 1. b-c) Algorithm’s error in predicting preferences
and ordinal labels (mean ± std). Each simulation evaluated performance at 1000 randomly- selected points;
the model posterior was used to predict preferences between consecutive pairs of points and ordinal labels
at each point.

algorithmic performance, we compare performance of different sizes in simulation for both the Hart-

mann3 and synthetic reward functions. We calculate the posterior over the entire space only every

10 steps to reduce computation time, and then use this posterior to evaluate the algorithm’s error

in predicting preference and ordinal labels. Figure 4.18a provides an example of a 3D posterior,

Figure 4.18b depicts the average performance for Hartmann3 over 10 simulation repetitions, and

Figure 4.18c shows the average performance over a set of 50 unique synthetic functions. We find

that a subset size of at least 5 yields performance close to using all points.

Estimating the region of interest. We demonstrate the effect of the confidence parameter ε

on the number of points sampled from the ROA and on prediction error in the ROI. Figure 4.19a

demonstrates that across various values of ε, visits to the ROA decrease as ε decreases. To confirm

that restricting queries to the estimated ROI does not harm performance, we also compare label

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 80

(a) Number of samples in the ROA and prediction error in the ROI (b) Confusion matrices

Figure 4.19: Effect of the confidence interval. All simulations are run over 50 reward synthetic functions
with a random subset size of 500. a) Left: cumulative number of points in the ROA (Bo

1) queried at each
iteration (mean ± std). Note that as ε increases, more samples are required for the confidence interval to
fall below the ROA threshold, at which point ROIAL starts avoiding the ROA. Middle and right: error in
predicting comparison and ordinal labels for different values of ε; predictions are over 1,000 random actions
(mean ± std). b) Confusion matrices (column-normalized) of ordinal label prediction over the entire action
space at iterations 80 and 240 with ε = -0.45. The 2× 2 confusion matrices for ROI prediction accuracy are
outlined in green. Prediction accuracy increases with the number of iterations.

prediction error in the ROI across values of ε. When ε = −0.45, ROIAL achieves similar preference

prediction accuracy and slightly-improved ordinal label prediction within the ROI compared to

ε = ∞, which permits sampling over the entire space (Figure 4.19a). Additionally, the confusion

matrix (Figure 4.19b) shows that the algorithm usually predicts either the correct ordinal label or

an adjacent ordinal category. The ROI prediction accuracy (green text in Figure 4.19b) indicates

that ROIAL predicts whether points belong to the ROI with relatively-high accuracy.

Robustness to noisy feedback. Since user feedback is expected to be noisy, we evaluate the algo-

rithm’s robustness to noisy feedback generated from the distributions P (qo | f , ξ) = gO

(
Bo

qo
−f(Φ(ξ))
σO

)
−

gO

(
Bo

qo−1−f(Φ(ξ))
σO

)
and P (ξ(1) ≻ ξ(2) | f) = gC

(
f(Φ(ξ(1)))−f(Φ(ξ(2)))

σC

)
for ordinal and pairwise com-

parison feedback, respectively, with true ordinal thresholds {Boj | j = 0, . . . , |Bo|} and simulated

noise parameters σC and σO. We set σO > σC because we expect ordinal labels to be noisier than

pairwise comparisons, as they require users to recall all past experience to give consistent feedback,

whereas a pairwise comparison only involves the previous and current points (or trajectories). The

algorithm learns more slowly with noisier feedback (Figure 4.20).

Exoskeleton Experiments

After demonstrating ROIAL’s performance in simulation, we experimentally deployed it on the lower-

body exoskeleton Atalante, developed by Wandercraft (video: https://youtu.be/04lMJmKmZrQ,

ROIAL hyperparameters: https://github.com/kli58/ROIAL). Atalante, shown in Figure 3.4, is

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 81

Figure 4.20: Effect of noisy feedback. The ordinal and pairwise comparison noise parameters, σO and σC ,
range from 0.1 to 0.3 and 0.02 to 0.06, respectively. All cases use a random subset size of 500 and ε = −0.45,
and each simulation uses 1,000 random points to evaluate label prediction. Plots show means ± standard
deviation.

Figure 4.21: Confusion matrix of the validation phase results for all three subjects. The first column is gray
because trajectories in the ROA (Bo

1) were purposefully avoided to prevent subject discomfort. Percentages
are normalized across columns. Parentheses show the numbers of gait trials in each case.

an 18 degree of freedom robot designed to restore assisted mobility to patients with motor complete

paraplegia through the control of 12 actuated joints: 3 joints at each hip, 1 joint at each knee, and

2 degrees of actuation in each ankle. For more details on Atalante, refer to [3, 106, 102].

Dynamically stable crutch-less exoskeleton walking gaits are generated through nonconvex op-

timization techniques (see Section II of Tucker et al. [193]), based on the theory of hybrid zero

dynamics (HZD) introduced by Ames [9] and the HZD-based optimization method presented in

[108]. These periodic gaits are parameterized by various features, and this studies focuses on

four: step length (SL) in meters, step duration (SD) in seconds, maximum pelvis roll (PR) in

degrees, and maximum pelvis pitch (PP) in degrees (Figure 3.4). These parameters were selected

because exoskeleton users frequently suggested modifications to SL, SD, and PR in prior work

(see https://sites.google.com/view/roial-icra2021), and we wanted to further study the re-

lationship between PR and PP. We discretized these parameters into bins of sizes 10, 7, 5, and 5,

respectively, resulting in 1,750 trajectories within a 4D gait (or feature) space. ROIAL randomly

selected 500 trajectories in each iteration and used ε = 0.45 to estimate the ROI.

4.4. ROI ACTIVE LEARNING WITH COMPARISONS AND ORDINAL FEEDBACK 82

Figure 4.22: 4D posterior mean reward across exoskeleton gaits. Rewards are plotted over each pair of
gait space parameters, with the values averaged over the remaining 2 parameters in each plot. Each row
corresponds to a subject: Subject 1 is the most experienced exoskeleton user, Subject 2 is the second-most
experienced user, and Subject 3 never used the exoskeleton prior to the experiment.

The experimental procedure was conducted for three non-disabled subjects and consisted of 40

trials divided into a training phase (30 trials) and a validation phase (10 trials). Subjects were not

informed of when the validation phase began. Subjects provided ordinal labels for all 40 gaits, and

optional pairwise comparisons between the current and previous gaits for all but the first trial.11

Four ordinal categories were considered and described to the users as:

1. Very Bad (Bo1): User feels unsafe or uncomfortable to the point that the user never wants to

repeat the gait.

2. Bad (Bo2): User dislikes the gait but does not feel unsafe or uncomfortable.

3. Neutral (Bo3): User neither dislikes nor likes the gait and would be willing to try the gait

again.

4. Good (Bo4): User likes the gait and would be willing to continue walking with it for a long

period of time.

While including additional ordinal categories could increase the potential information gain from each

query, it also increases the cognitive burden for the users and thus makes the labels less reliable.

Validation gaits were selected so that at least two samples were predicted to belong to Bo2,Bo3, and
Bo4, with the remaining four validation gaits sampled at random. Gaits predicted to belong in Bo1
were excluded because they are likely to make the user feel uncomfortable or unsafe, and gaits

sampled during the training phase were explicitly excluded from the validation trials.

Experimental results. Figure 4.21 depicts the results of the validation phase for all three subjects.

11The users were given chance to not give pairwise comparisons, in which case we simply update the posterior only
with the ordinal feedback.

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 83

These results show a reliable correlation between the predicted categories and the users’ reported

ordinal labels, in which the majority of the predicted ordinal labels are within one category of the

true ordinal labels. Since less than 2% of the gait space was explored during the experiment, we

expect that the prediction accuracy would increase with additional exoskeleton trials as observed in

simulation (Figure 4.19b). Overall, these results suggest that ROIAL can yield reliable preference

landscapes within a moderate number of samples.

Figure 4.22 depicts the final posterior mean for each of the subjects. These reward functions

highlight both regions of agreement and disagreement among the subjects. For example, all subjects

strongly dislike gaits at the lower bound of PP and lower bound of PR. However, all subjects disagree

in their reward landscapes across SL and SD. This type of insight could not be derived from direct

gait optimization, which mostly obtains information near the optimum.

We also evaluated the effect of each gait parameter on the posterior rewards using the per-

mutation feature importance metric. The results of this test for each respective subject across

the four gait parameters (SL, SD, PR, PP) are: (0.20, 0.30, 0.33, 0.27), (0.26, 0.36, 0.38, 0.29),

and (0.23, 0.16, 0.21, 0.45). These values suggest that the preferences of more experienced users

(Subjects 1 and 2) may be most influenced by SD and PR, while the least-experienced user’s feed-

back may be most weighted by PP (Subject 3). The code for this test is available on GitHub:

https://github.com/kli58/ROIAL. These results demonstrate that ROIAL is capable of obtain-

ing preference landscapes within relatively-few exoskeleton trials while avoiding gaits that make

users feel unsafe or uncomfortable.

4.5 Active Querying for Scale Feedback

After presenting how to actively learn a non-parametric reward function using GPs and mutual

information maximization, we go back to parametric reward functions and continue our presentation

with other forms of comparative feedback, just like we did in Chapter 3. Following the same

structure, we proceed with scale feedback. In this section, we again use the mutual information based

active querying method, but we also introduce the max regret method (originally used by Wilde

et al. [207]) to generate the scale queries. Afterwards, we present our simulation and experiment

results with these two acquisition functions in Section 4.5.2.

4.5.1 Two Acquisition Functions for Active Scale Feedback

To learn the true reward parameters w∗ efficiently, the robot actively chooses the query Q(i) it

presents to the user at every iteration i. Two approaches for learning from pairwise comparisons are

mutual information maximization (Sections 4.2 through 4.4) and max regret optimization [207].

Mutual information based active querying method seeks to reduce the robot’s uncertainty over

w while choosing queries that are easy to answer for the user. Max regret optimization, on the other

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 84

hand, minimizes the maximum regret (as defined in Equation (3.22)) by showing mutual worst case

trajectories, which also results in easy queries. We leverage both of these methods for our active

query generation in scale feedback.

Mutual Information Maximization

We start with the mutual information. Letting H denote Shannon’s information entropy [202], a

greedy step takes the expectation over the user’s response q(i) to the query Q(i) being optimized to

actively learn both the reward parameters w and the sensitivity threshold ϱ (see Definition (3)):

Q(i) = argmax
Q(i)

H(w, ϱ | Q(i), bi)− Eq(i)|Q(i),bi
[
H(w, ϱ | q(i), Q(i), bi)

]
. (4.23)

Noting the belief distribution bi was defined over both w and ϱ when we use scale feedback, we

approximate the computation of entropies by summing over a set Ω of samples of (w, ϱ) ∼ bi. Thus,
following the derivation in Section 4.2 (thereby Appendix B.1), the new query Q

(i)
∗ solves

Q
(i)
∗ = argmax

Q(i)

∑
q(i)

∑
(w,ϱ)∈Ω

P (q(i) | Q(i), w, ϱ)

|Ω|
log2

(
|Ω| · P (q(i) | Q(i), w, ϱ)∑

(w′,ϱ′)∈Ω P (q
(i) | Q(i), w′, ϱ′)

)
. (4.24)

Max Regret Optimization

The max regret policy generates queries Q(i) = (Q
(i)
1 , Q

(i)
2) such that if the robot learned Q

(i)
1 as the

optimal trajectory but the user optimal solution would be Q
(i)
2 is a worst case. With a symmetric

perspective over Q
(i)
1 and Q

(i)
2 , we solve

max
w,ϱ,w′,ϱ′

bi(w, ϱ)bi(w′, ϱ′)

(
R(w,w′) +R(w′, w)

)
, (4.25)

where R(·, ·) is the reward difference (regret) defined in Equation (3.22). The optimal query with

respect to max regret optimization is then Q(i) = (Q
(i)
1 , Q

(i)
2) such that Q

(i)
1 and Q

(i)
2 are the optimal

trajectories with respect to w and w′, respectively. By observing feedback to such queries it greedily

improves the probabilistic worst case error. In contrast to the mutual information based approach,

obtaining queries through max regret optimization requires Q
(i)
1 and Q

(i)
2 to be optimal trajectories

for some users (w, ϱ) and (w′, ϱ′). On the other hand, maximum regret does not require a one-step

look-ahead and thus no summation over potential feedback values q(i), making it computationally

lighter.

Optimizations in (4.24) and (4.25) now give us two different policies for actively solving the initial

reward learning via scale feedback problem posed in Section 3.4.1. In the simulations, we compare

how the performance of both benefits from scale feedback.

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 85

4.5.2 Experiments

Simulation Results

Figure 4.23: Comparison of scale feedback and weak pairwise comparisons for different active querying
methods.

We now present our main simulation results. Additional results can be found in Appendix E.2. In

all simulations and experiments, we assume a parametric reward function that is linear in trajectory

features, similar to Sections 4.1.2 and 4.2.4.

Experiment Setup. We simulate the presented framework using the Driver experiment used in

[171, 207, 22] and Sections 4.2.4 and 4.3.2. We modify the setup by adding 6 new features, obtaining

a more challenging 10-dimensional problem (details on the features and the results for the original

Driver can be found in Appendices D.2 and E.2, respectively). 71 distinct true reward parameters

w∗ are drawn uniformly at random, and each user is simulated with ϱ∗ ∈ {0.25, 0.5, 0.75, 1.00},
making it 284 runs for each method. We set σS = 0.1 for the noise level. We generate a set of

200 distinct sample trajectories by drawing random reward parameters w and then computing their

optimal trajectories. The active query generation methods then optimize over this set. We evaluate

learning using the Alignment metric and the Relative Reward (see Section 3.4 for their definitions).

As a baseline we use weak pairwise comparisons (strict pairwise comparisons showed a slightly

poorer performance). To ensure a fair comparison, we emulate weak pairwise comparisons by setting

the step size to ν = 1 and use the same noise model for both forms of feedback (as opposed to using

an alternative model, such as the one presented in Equation (4.17)).

Results. Figure 4.23 shows the Alignment and Relative Reward for the Driver experiment for

mutual information, max regret and random query generation. We observe that in all cases scale

feedback significantly improves the performance over weak pairwise comparisons in both metrics

(p < 0.001 in all cases with two-sample t-test). When using the proposed scale feedback, the

Alignment after 20 iterations improves from 0.77 to 0.86 for mutual information, from 0.67 to 0.76

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 86

for max regret, and from 0.64 to 0.75 for random queries. The Relative Reward improves for mutual

information and max regret similarly from 0.97 to 1.00, i.e., the learned solution is optimal. Both

methods make most progress during the first 10 iterations. Random queries improve the final relative

reward from 0.94 to 0.97. Overall, the simulation showcases that scale feedback improves learning,

independent of the query selection method. For mutual information and max regret, scale feedback

allows for finding optimal solution within a small budget of iterations. Appendix E.4 presents the

numerical results for all plots in this section. In Appendix E.2, we show additional simulation results

for higher noise.

User Study

Next, we analyze the scale feedback in comparison with pairwise comparisons and under different

active querying methods with two user studies.12 In both studies, we used ν = 0.1 for scale queries.

Experiment Setup. We designed a serving task with a Fetch robot [213] as shown in Figure 3.5,

which we call FetchDrink. We generated a dataset of 120 distinct trajectories. Human subjects were

told they should train the robot to bring the drink to the customer in the manner they prefer, paying

attention to the following five factors: the drink (out of 3 options) to be served, the orientation of

the pan in front of the robot, moving the drink behind or over the pan, the maximum height of the

path, and the speed. The subjects were also informed about the types of queries they will respond

to.

Independent Variables. In the first experiment, we wanted to compare scale feedback and weak

pairwise comparisons under random querying, and scale feedback under random and mutual infor-

mation based querying. Hence, we varied the query type and the querying algorithm among: (i)

weak pairwise comparisons with random querying, (ii) scale feedback with random querying, and

(iii) scale feedback with mutual information based querying. In the second experiment, we wanted

to compare scale and weak pairwise comparisons under mutual information based querying. Hence,

we employed: (i) weak pairwise comparisons with mutual information based querying, and (ii) scale

feedback with mutual information based querying. For all, we took σS = 0.35 based on pilot trials

with different users (see Appendix D.3).

Procedure. We recruited 18 participants (5 female, 13 male, ages 20 – 55) for the first, and 14

participants (5 female, 9 male, ages 20 – 56) for the second experiment. Due to the pandemic

conditions, the subjects participated in the study remotely with an online interface as in Figure 3.5.

The study started with an instructions page with a two-question quiz to make sure the participants

understood how to use the interface. After reading the instructions, we had the subjects fill a form

where they indicated their preferences for each of the five individual factors described above, to

encourage them to be consistent in their responses during the data collection.

12A summary video is at https://sites.google.com/view/reward-learning-scale-feedback, and the code is at
https://github.com/Stanford-ILIAD/reward-learning-scale-feedback.

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 87

In the experiments, each participant responded to 10 queries generated with each of the algo-

rithms. After each of these 10-query sets, they were shown the optimal trajectory from the dataset

with respect to their learned reward function. The participants responded to a 5-point rating scale

survey (1-Strongly Disagree, 5-Strongly Agree) for this trajectory: “The displayed trajectory fits my

preferences on the task.” We also collected scale feedback for 10 more randomly-generated queries

(called the test set) to measure performance in each experiment. We randomized the order of these

sets (of 10 queries) to prevent any bias. The interface provided a “Sync Videos” button to restart

both videos for easier comparison.

Dependent Measures. As an objective measure of the learning performance, we calculated the

log-likelihood of the test set (of 10 scale queries13) under the posterior b|D|(w, ϱ) learned using the

10 queries generated via each algorithm, i.e., we calculated:

Log−Likelihood = logP (Dtest | D) = logEw|D [P (Dtest | w)] (4.26)

We also used the responses to the 5-point rating scale survey questions to measure how well the

learned rewards achieve the task. Finally, the users took a post-experiment survey where they

rated (from 1 to 5) the easiness and expressiveness of weak pairwise comparison and scale feedback

questions.

Hypotheses. We test the following hypotheses.

H10. Scale feedback leads to faster learning than weak pairwise comparisons.

H11. Querying based on mutual information accelerates learning compared to random querying.

H12. Users will prefer mutual information based querying over random querying in terms of the

optimized trajectories.

H13. Users will prefer scale feedback over weak pairwise comparisons in terms of the optimized

trajectories.

H14. Users will rate the scale feedback questions as easy as weak pairwise comparison questions.

H15. Users will rate the scale feedback questions as expressive as weak pairwise comparison ques-

tions.

Results. We present results of the first and the second experiments in Figures 4.24 and 4.25,

respectively. It can be seen that the log-likelihood of the test set after learning the reward function

via scale feedback is higher than learning via weak pairwise comparisons, under both random and

mutual information based querying. Besides, mutual information based query generation accelerates

the learning and leads to higher log-likelihood values compared to random querying. All of these

comparisons are statistically significant with p < 0.001 (paired-sample t-test), so they strongly

support H10 and H11.

In Figure 4.24b, it can be seen active querying led to learning reward functions that better

13We present results with a test set that consists of both scale feedback and weak pairwise comparisons in Ap-
pendix E.3.

4.5. ACTIVE QUERYING FOR SCALE FEEDBACK 88

Figure 4.24: All results are shown for the first experiment (mean±s.e. over 18 subjects).

Figure 4.25: All results are shown for the second experiment (mean±s.e. over 14 subjects).

optimize trajectories compared to random querying – this comparison was somewhat significant with

p ≈ 0.05, supportingH12. In fact, when we fit a Gaussian distribution to the ratings, we observe that

it is 1.95 times as likely to get a better rating with mutual information based querying than random

querying. Surprisingly, learning via weak pairwise comparisons achieved slightly higher reward than

learning via scale feedback when queries were randomly selected, and slightly lower reward when

queries were generated based on mutual information maximization. However, these comparisons

are not statistically significant. This is indeed analogous to the Relative Reward comparisons in

Figure 4.23: more complex tasks might be needed to better analyze the difference between the two

methods. Thus, we neither reject nor accept H13.

Finally, the subjective results in Figure 4.24c and 4.25c suggest that users find the weak pairwise

comparisons slightly, but consistently, easier than the scale feedback (p < 0.01), rejecting H14.

This is not surprising, as it is often easier to make a pairwise comparison and the “About Equal”

option in the weak pairwise comparison questions makes them even easier (see Section 4.2). On the

other hand, there was no statistically significant difference in terms of expressiveness of scale and

weak pairwise comparison questions, partially supporting H15. In summary, it is interesting that

our users perceived the weak pairwise comparison questions as easier and even more expressive at

times; even though quantitatively, the scale feedback significantly outperforms the weak pairwise

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 89

comparisons.

Appendix E.4 presents the numerical results for all plots in this section.

4.6 Active Querying for Multimodal Rewards

The results in the previous sections in this chapter imply the comparative feedback queries made

to the experts, Q(i)’s, affect how well the posterior will be learned when the reward function is

unimodal. In the case of multimodal rewards where we learn via ranking queries as we discussed in

Section 3.5, this is still true, and can be seen from Equation (3.38).

Specifically, a query Q(i) is desirable if observing the (anonymous) response to that, q(i), yields

high information about the underlying model parameters, wm and αm for all m ∈ [M]. Therefore,

we again propose using a mutual information objective to adaptively select the most informative

query at each querying step i, generalizing the approach we presented in Section 4.2.

4.6.1 Formulation

Assume at a fixed round i, we have made past ranking query observations DR =
{
Q(i′), q(i

′)
}i−1

i′=1
,

possibly with other types of feedback to obtain the belief distribution bi−1. The desired query is

then

Q
(i)
∗ = argmax

Q
I(q;w,α | Q, bi−1) (4.27)

where I(·; ·) denotes mutual information and q is the response to the query Q. Equivalently,

Q(i) = argmin
Q

Eq′,w′,α′∼q,w,α|Q,bi−1 log
Ew′′,α′′∼w,α|bi−1 P (q = q′ | Q,w = w′′, α = α′′)

P (q = q′ | Q,w = w′, α = α′)
. (4.28)

The details of this derivation are presented in Appendix B.3.

4.6.2 Overall Algorithm

To efficiently solve the optimization in Equation (4.28), we first note that we should use a Monte

Carlo approximation since the expectations are taken over continuous variables w,α and a discrete

variable q over an intractably large set of |Q|! alternatives. To perform this Monte Carlo integration,

we require samples from the posterior P (q, w, α | Q, bi−1).

Our key insight is that we can obtain joint samples from both posteriors by first sampling

w̄, ᾱ ∼ P (w,α | DR) and then sampling q̄ ∼ P (q | Q,w = w̄, ᾱ = α) since (w,α) ⊥ Q | bi−1

and q ⊥ bi−1 | Q,w, α. We perform the sampling q̄ ∼ P (q | Q,w = w̄, α = ᾱ) efficiently using

Equation (3.37). In general, exact sampling from the posterior P (w,α | bi−1) is intractable. However,

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 90

we note Equation (3.38) can be directly evaluated (using Equation (3.37)) and gives P (w,α | bi−1)

up to a proportionality constant factor.

With this unnormalized posterior of Equation (3.38), we use the Metropolis-Hastings algorithm

as described in Appendix C.1 to generate samples from the posterior P (w,α | bi−1).

We see our optimization problem simplifies to finding, for |Ω| fixed samples w̄j , ᾱj ∼ P (w,α |
bi−1) and corresponding samples: q̄j ∼ P (q | Q, w̄j , ᾱj)

Q(i)=argmin
Q

|Ω|∑
j=1

[
log

|Ω|∑
j′=1

P (q= q̄j | Q,w= w̄j′ , α= ᾱj′)− logP (q= q̄j | Q,w= w̄j , α= ᾱj)

]
.

(4.29)

We solve this optimization using simulated annealing [32] (see Appendix C.2).

Algorithm 3 Active Querying for Rankings via Mutual Information Maximization

Require: Current belief distribution bi−1

1: {w̄j , ᾱj}|Ω|
j=1 ∼ P (w,α | bi−1) with Equation (3.38) via Metropolis-Hastings

2: ∀j, q̄j ∼ P (qj | Q, w̄j , ᾱj)

3: Q
(i)
∗ ←argmin

Q

|Ω|∑
j=1

[
log

|Ω|∑
j′=1

P (q= q̄j | Q,w= w̄j′ , α= ᾱj′)− logP (q= q̄j | Q,w= w̄j , α= ᾱj)

]
4: select query Q

(i)
∗

Algorithm 3 goes over the pseudocode of our approach, and we discuss the hyperparameters in

our experiments in Appendix C.3.

Analysis

We start the analysis by stating the bounds on the required number of trajectories in each ranking

query to achieve generic identifiability. A Plackett-Luce model over Ξ is generically identifiable if for

any sets of parameters (w,α) and (w′, α′) inducing the same distribution over the responses to all

queries of size |Q| on Ξ, the mixing coefficients of (w,α) and (w′, α′) are the same and the induced

rewards Rm(ξ) are identical across Ξ up to a constant additive scaling factor.

Theorem 4 (Zhao et al. [223]). A mixture of M Plackett-Luce models with query size |Q| and
|Ξ| = |Q| is generically identifiable if M ≤

⌊
|Q|−2

2

⌋
!.

This statement follows directly from [223], which proves the above bound assuming that each

query to the Plackett-Luce mixture is a full ranking over the set of items (i.e. |Ξ| = |Q|). However,

the assumption |Ξ| = |Q| is untenable in the active learning context, as it prevents any active query

selection. To apply this result for our active learning algorithms, we relax the condition to |Ξ| ≥ |Q|.

Corollary 1. A mixture of M Plackett-Luce models with query size |Q| is generically identifiable

if M ≤
⌊
|Q|−2

2

⌋
!.

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 91

We prove Corollary 1 in Appendix A.4. In our context, generic identifiability implies if the

human response is modelled by a Plackett-Luce mixture, our Algorithm 3 will be able to recover its

true parameters (up to a constant additive factor for the rewards) in the limit of infinite queries.

Remark 2. Greedy selection of queries maximizing mutual information in Equation (4.28) is not

necessarily within a constant factor of optimality.

Appendix A.5 justifies Remark 2. In fact, greedy optimization of mutual information for adaptive

active learning can be significantly worse than a constant factor of optimality in pathological settings

[96]. Despite its lack of theoretical guarantees, mutual information is a commonly used effective

approach in adaptive active learning [112, 224]. Although other approaches like volume removal

satisfy adaptive submodularity [171], they fail in settings with noisy responses by selecting high-noise

low-information queries as we showed in Section 4.1, and in practice result in far worse performance

than mutual information.

4.6.3 Experiments

Figure 4.26: The LunarLander environment is visualized with the two tasks. Sample trajectories associated
with these tasks are shown.

Having presented our learning and active querying algorithms, we now evaluate their performance

in comparison with other alternatives. In all simulations and experiments, we assume βC = 1, and

Rwm
(ξ) = w⊤

mΦ(ξ), i.e., the trajectory reward function of each individual expert is linear in trajectory

features. We start with describing the two tasks we experimented with:

LunarLander. We used 1000 trajectories in OpenAI Gym’s discrete action space LunarLander

environment [50] shown in Figure 4.26 (see Appendix D.5.1 for details on how those trajectories

were generated).

FetchBanana. We generated 351 distinct trajectories of the Fetch robot [213] putting the banana

on the shelves as shown in Fig. 3.8a (see Appendix D.5.2 for details).

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 92

Methods

We compare our active querying via mutual information (MI) discussed in Algorithm 3 with two

baselines. A simple benchmark for active learning is random query selection without replacement.

We also benchmark against the volume removal (VR) method, which we described in Section 4.1.

See Appendix D.4 for further details of how we implemented these two baselines.

Metrics

We want to evaluate both the active querying and the learning performance. The former requires

metrics that assess the quality of the algorithm’s selected queries DR = {(Q(i), q(i))}i in terms of the

information they provide on the model parameters (w,α). We use two such metrics: Mean Squared

Error (MSE) and Log-Likelihood. Since both active and non-active methods are expected to reach

the same performance with a large number of queries, we look at the area under the curve (AUC)

of these two metrics over number of queries. To evaluate the learning performance, we quantify the

success of a robot, which learned a multimodal reward, via the Learned Policy Rewards on the

actual task.

MSE. Suppose we know the human is truly modeled by (w∗, α∗) adhering to the assumed model class

of Section 3.5.1. Given a set of queries and responses in DR, we can compute a maximum likelihood

estimate (ŵ, α̂) of the model parameters using Equation (3.37). The MSE is then the squared error

between (ŵ, α̂) and (w∗, α∗) (see Appendix D.6.1).

While this metric cannot be evaluated with real humans, we can use this metric with synthetic

human models (model with known parameters (w∗, α∗)) in simulation. A lower MSE score means

the selected queries DR allow us to better learn a multimodal Plackett-Luce model close to the true

model (w∗, α∗).

Log-Likelihood. This metric measures the Log-Likelihood of the response to a random query

given the past observations DR. If the past observations DR are informative, the true response to

a random query Q will in expectation be more likely, meaning the Log-Likelihood metric will be

greater. See Appendix D.6.2 for details on how we compute this metric.

Learned Policy Reward. We take the maximum likelihood estimate of each reward parameters

vector and train a DQN policy using them [151].14 We then run these learned policies on the

actual environment with the corresponding true reward functions (see Appendix D.6.3) to obtain

the Learned Policy Reward values.

Results

Multimodal Learning is Necessary. We first compare unimodal and multimodal models to show

the insufficiency of unimodal rewards when the data come from a mixture. To leave out any possible

14As we are using a real Fetch robot for our experiments and it would be infeasible and unsafe to train DQN on
Fetch, this metric is limited to our simulations, i.e., LunarLander in our experiments.

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 93

bias due to active querying, we make this comparison using random querying.

We let the true reward function have M = 2 modes and set a query size of |Q| = 6 items for

identifiability as Section 4.6.2 suggests, and for acquiring high information from each query. We

simulate 100 pairs of experts whose reward function parameters wm and the mixing coefficients αm

are sampled from the prior P (w,α). Having these simulated experts respond to 15 queries, we report

the MSE in Figure 4.27.

Figure 4.27: Unimodal and bimodal reward learning models are compared under MSE. Both mean and median
values (over 100 runs) are shown. Shaded regions show the first and the third quartiles.

The unimodal reward model causes an unstably increasing MSE. This is mostly due to the outliers

where the reward function parameters w1 and w2 are far away from each other and the unimodal

reward fails to learn any of them. We therefore also plot the median values and quartiles in Fig-

ure 4.27. While the bimodal reward model learned using our proposed approach decreases the MSE

over time, the unimodal model has a roughly constant MSE, which suggests it is unable to learn when

the data come from a mixture.

We present an additional unimodal learning baseline evaluated on the user study data in Ap-

pendix E.6.

Active Querying with Mutual Information is Data-Efficient. We next compare our mutual

information based active querying approach with the other baselines. For this, we use the same

experiment setup as above with M = 2 reward function modes and ranking queries of size |Q| = 6,

and simulate 75 pairs of human experts. We present the results in terms of MSE in Figure 4.28.

In LunarLander, the mutual information objective significantly outperforms both random querying

and volume removal in terms of the AUC MSE (p < 0.005, paired-sample t-test). Notably, volume

removal performs even worse than the random querying method, which might be due to the known

issues of volume removal optimization as briefly discussed in Appendix D.4.2 and in more detail in

Section 4.1. On the other hand, the difference is not statistically significant in the FetchBanana

experiment, which might be due to the small trajectory dataset, or because almost all trajectories

in the dataset minimize or maximize some of the trajectory features, accelerating and simplifying

learning under the linear reward assumption. See Appendix D.5.2 for details about the trajectory

features and how we generated the trajectory dataset.

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 94

Figure 4.28: Different querying methods are compared with the (top) MSE and (bottom) Log-Likelihood

metrics (mean±se over 75 runs).

We further analyze the querying methods in this multimodal setting under the Log-Likelihood

metric in Figure 4.28. Mutual information based querying significantly outperforms random querying

and volume removal based querying in both experiments with respect to the AUC Log-Likelihood

(p < 0.005). With respect to the final Log-Likelihood, mutual information reduces the amount

of required data in LunarLander by about 35% compared to random querying and about 60% to

volume removal. Similarly in the FetchBanana, the improvement is approximately 25% over both

baselines.

Appendix E.5 presents two additional experiments: one which clearly shows the effectiveness of

our approach for learning a mixture of more than two reward functions (specifically, M = 5), and

one which studies the robustness against misspecified M .

Mutual Information Maximization Leads to Better Learning. Having seen the superior

predictive performance of the reward learned via mutual information maximization, we next assess

its performance in the actual environment. As random querying outperforms volume removal in

terms of Log-Likelihood and MSE as in Figure 4.28, we compare the mutual information based

method with random querying.

For this, we run the multimodal reward learning with 75 pairs of randomly generated reward

function parameters (M = 2 and |Q| = 6). For each of the 150 individual reward functions, we com-

pute the Learned Policy Reward values. Figure 4.29 shows the results. While the standard errors

in the plots seem high, this is mostly because optimal trajectories for different reward parameters

differ substantially in terms of rewards, which causes an irreducible variance. However, since the

underlying true rewards are the same between the mutual information based and random querying

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 95

methods, we ran the paired sample t-test between the results and observed statistical significance

(p < 0.05). This means although the Learned Policy Reward values between different runs differ

substantially, the reward function learned via the mutual information method leads to better task

performance compared to random querying.

4.6.4 User Studies

Figure 4.29: Mutual information based and random querying methods are compared with the
Learned Policy Reward values (mean±se over 75 runs which correspond to 150 randomly generated re-
ward function parameters) in LunarLander.

We now empirically analyze the performance of our algorithm with two online user studies. We

again used the LunarLander and FetchBanana environments. We provide a summary and a video of

the user studies and their results at https://sites.google.com/view/multimodal-reward-learning.

Experimental Setup. For LunarLander, subjects were presented with either of the following

instructions at every ranking query: “Land softly on the landing pad” or “Stay in the air as long

as possible”. We randomized these instructions such that users get one of them with 0.6 and the

other with 0.4 probability. We kept the presented instructions hidden from the learning algorithms

so that they need to learn a multimodal reward without knowing which mode each ranking belongs

to.

For the FetchBanana environment, we recorded the 351 trajectories on the real robot as short

video clips so that the experiment can be conducted online under the pandemic regulations. Human

subjects participated in the experiment as groups of two to test learning from multiple users. Each

participant was instructed that the robot needs to put the banana in one of the shelves and different

shelves have different conditions (the same as in our running example in Section 3.5, see Figure 3.8a,

Appendix D.7.1).

After emphasizing there is no one correct choice and it only depends on their preferences, we asked

each participant to indicate their preferences between the shelves on an online form. Afterwards,

each group of two subjects responded to 30 ranking queries in total where each query consisted of 6

trajectories. We selected who responds to each query randomly, with probabilities 0.6 and 0.4.

Appendix D.7.2 presents details on the user interface used in our experiments.

Independent Variables. We varied the querying algorithm: active querying with mutual in-

formation and random querying. We excluded the volume removal based method to reduce the

4.6. ACTIVE QUERYING FOR MULTIMODAL REWARDS 96

experiment completion time for the subjects, as it already performed worse than random querying

in our simulations.

Procedure. We conducted the experiments as a within-subjects study. We recruited 24 participants

(ages 19 – 56; 9 female, 15 male) for LunarLander and 26 participants (ages 19 – 56; 11 female, 15

male) for the FetchBanana. Each subject in the LunarLander, and each group of two subjects in the

FetchBanana experiment responded to 40 ranking queries; 15 with each algorithm and 10 random

queries for evaluation at the end. The order of the first 30 queries was randomized to prevent bias.

Dependent Measures. Learning the multimodal reward functions via the 15 rankings collected by

each algorithm, we measured the Log-Likelihood of the final 10 rankings collected for evaluation.

Hypotheses. With LunarLander and FetchBanana, we test the following hypotheses respectively:

H16. Querying the participants, who are trying to teach two different tasks, actively with mutual

information maximization will lead to faster learning than random querying.

H17. While learning from two people with different preferences, active querying with mutual infor-

mation maximization will lead to faster learning than random querying.

Figure 4.30: User study results (mean±se over 24 users for LunarLander and 13 groups for FetchBanana).

Results. Figure 4.30 visualizes how Log-Likelihood of the evaluation queries changes over the

course of learning by both algorithms. Active querying with mutual information maximization leads

to significantly faster learning compared to random querying in LunarLander. Indeed, the difference

in AUC Log-Likelihood is statistically significant (p < 0.05). Furthermore, the active querying

method enabled reaching the final performance of random querying after only 9 or 10 queries, for

around a 35% reduction in the amount of data needed, supporting H16.

As FetchBanana experiments have an easier task with a small number of variables between the

trajectories, both querying methods converge to similar performances by the end of 15 queries. How-

ever, active querying accelerates learning in the early stages—the difference in AUC Log-Likelihood

is again statistically significant (p < 0.05). Looking at the final performance with random querying,

improvement in data efficiency is about 10%, supporting H17.

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 97

4.7 Active Generation of Hierarchical Queries

A special case of multimodal rewards we studied in Section 3.6 is a setting where the user’s reward

function transitions from one mode to another based on a parametric model that depends on the

behavior observed in the previous trajectories. We showed that using hierarchical queries, such non-

stationary rewards could be learned along with the transition models. In this section, we extend

that learning algorithm with active querying based on the maximum volume removal approach we

presented in Section 4.1. One could also use the mutual information maximization based active

querying technique from Section 4.2 to avoid the shortcomings of maximum volume removal, which

we discussed in detail in Section 4.1.

Similar to Sections 4.2 through 4.6, and [22], we will actively select hierarchical choice queries

from a query database to learn a probability distribution over reward dynamics: a collection of

unimodal reward functions representing different moods and a set of parameters for the transitions

between the moods.

In this section, we provide this algorithm which actively selects hierarchical choice queries in order

to efficiently learn reward dynamics. We evaluate our active querying algorithm on an autonomous

driving example, which we also used as a running example in Section 3.6. We show in simulations

that we can efficiently learn changes in preferences when preferences indeed vary based on behavior

and interactions in the environment.

4.7.1 Active Querying based on Maximum Volume Removal

In this section, DH denotes the dataset of all the hierarchical choice queries and their responses up to

the current iteration i. Each response tuple (q(i,1), q(i,2)) removes some volume from the hypothesis

space of (w, θ), where, volume removed is given as the difference between the unnormalized posterior

distribution over (w, θ), and its prior distribution. We have a belief over what the user responses

could be. We leverage this probabilistic model to actively select a query at each iteration that will

maximize the expected volume removal. We again restrict our implementation to the case where

|Q(i)| = 3, i.e., we first show a trajectory to the user, and then ask 2 best-of-many choice questions

where the trajectories in the first question start from the last state of the first trajectory and the

trajectories in the second question start from the last state of the user’s choice in the first question.

Then, we need to solve the following optimization problem:

(Q
(i,0)
∗ , Q

(i,1)
∗ , Q

(i,2)
∗) = argmax

Q(i,0),Q(i,1),Q(i,2)

Eq(i,1),q(i,2)|DH ,Q(i,0),Q(i,1),Q(i,2)

[
Ew,θ|DH

[
1− P (q(i,1), q(i,2) | w, θ,Q(i,0), Q(i,1), Q(i,2))

]]
(4.30)

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 98

To compute the inner expectation, we first sample (w, θ) from P (w, θ | DH) using Markov Chain

Monte Carlo methods. Similar to previous sections, we use Metropolis-Hastings algorithm [69]. Now,

we let w̄ and θ̄ represent those samples, so:

(Q
(i,0)
∗ , Q

(i,1)
∗ , Q

(i,2)
∗)

·
= argmin
Q(i,0),Q(i,1),Q(i,2)

Eq(i,1),q(i,2)|DH ,Q(i,0),Q(i,1),Q(i,2)

[
∑
w̄,θ̄

P (q(i,1), q(i,2) | w̄, θ̄, Q(i,0), Q(i,1), Q(i,2))
]

where
·
= denotes asymptotic equality as the number of samples (w̄, θ̄) goes to infinity. Expanding

Eq(i,1),q(i,2)|DH ,Q(i,0),Q(i,1),Q(i,2) , the minimization objective is

∑
q(i,1),q(i,2)

P (q(i,1), q(i,2) | Q(i,0), Q(i,1), Q(i,2),DH)
∑
w̄,θ̄

P (q(i,1), q(i,2) | w̄, θ̄, Q(i,0), Q(i,1), Q(i,2))

where the first sum is over all possible response sequences, i.e., Q(i,1) × Q(i,2). By the law of large

numbers, we can write the optimization as:

argmin
Q(i,0),Q(i,1),Q(i,2)

∑
(q(i,1),q(i,2))∈Q(i,1)×Q(i,2)

∑
w̄,θ̄

p(q(i,1), q(i,2) | w̄, θ̄, Q(i,0), Q(i,1), Q(i,2))

2

, (4.31)

because P (q(i,1), q(i,2) | Q(i,0), Q(i,1), Q(i,2),DH) = Ew̄,θ̄
[
P (q(i,1), q(i,2) | w̄, θ̄, Q(i,0), Q(i,1), Q(i,2))

]
where the probability expression in the objective function is already derived in Section 3.6.3.

4.7.2 Simulations and Experiments

Problem Domain

We focus on learning non-stationary reward functions for driving, using a version of the Driver

environment presented earlier in Section 4.2.4. Each mode of the learned reward dynamics weighs

5 features for driving that attempt to encode safety and traffic rules: one feature for penalizing

closeness to the edges of the road, one for velocity, and three more features of proximity to lane

centers, to other cars and alignment with the road, similar to [171].15 Similar to what we did

in Section 4.6 with multimodal reward functions, we assume each mode corresponds to a reward

function that is linear in these trajectory features.

Each sub-query consists of the driving environment and a pair of trajectories of the ego car whose

preferred behavior we are learning (i.e., |Q(i,j)| = 2 for all iterations i and j ∈ {1, 2}), and another

car in the scenario. Our query database consists of 10,000 randomly generated hierarchical choice

15While traffic rules are not explicitly modeled in our simulation, many of the features can be weighed appropriately
to encode them. For example, the feature for velocity measures the deviation from the maximum allowed speed which
can be easily adapted to the road type.

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 99

queries.

Dependent Measures

In our implementation, we learned ∆θ := θ1 − θ2, instead of θ, as it has fewer parameters.16 The

same approach generalizes to any M — we can simply subtract θM from θm for ∀m ∈ [M − 1] to

reduce the number of parameters to be learned.

We measure the performance of hierarchical preference learning in terms of expected dot product

between learned weights and true weight as in previous sections and [171], separately for each

component of (w,∆θ):

Alignment(w1) = E
[

ŵ1.w
∗
1

∥ŵ1∥2∥w∗
1∥2

]
(4.32)

ŵ1 and w∗
1 are the estimated and true weights, respectively, and the expectation is taken over

the sampled ŵ1 values. We define Alignment similarly for w2 and ∆θ. Hence, it is a measure of

convergence, as its value being close to 1 indicates the learned weights are close to the true weights.

Figure 4.31: Alignment value shows that our algorithm converges well for non-driving data with non-active
query selection when the simulated user is oracle. Here we show an average Alignment over 5 different
ground truth reward dynamics.

Experiments with Random Data

We first conduct experiments with completely random and independent sub-queries without the

driving environment. We assume we can generate queries in an unconstrained way such that any

Φ-vector is possible, i.e. there is no dynamics constraint in the generation of queries. This is

similar to the LDS environment we used in Section 4.2.4. Here, we simulate oracle users: users

16Note we cannot do the same trick for w, because while θ in Equation (3.47) can be simplified to ∆θ, there is no
such simplification on w.

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 100

who are perfectly aware of their true reward dynamics. That is, they always behave (change mode

and respond) with respect to the higher probability out of response and mode transition models. In

Figure 4.31, the average results of 5 different simulated oracle users show convergence of (w1, w2,∆θ)

whose true values were independently drawn from standard normal distribution independently for

each entry.

Experiments with Driving Data

Active versus non-active query selection. We compare the performance of our active query

selection algorithm with a non-active baseline where we uniformly sample the queries from the

discrete database of 10,000 queries. Here our simulated users are always oracle. We test the following

hypothesis:

H18. The reward dynamics learned with our active query selection algorithm converges to the

true parameters faster compared to the non-active baseline. Our results in Figure 4.32 support this

hypothesis by demonstrating that active query selection accelerated the learning of one of the modes

(w2) compared to the non-active baseline.

Figure 4.32: Alignment values show that our algorithm with active query selection (left) can learn reward
dynamics faster than non-active query selection (right) when the simulated user is oracle. Here we show an
average Alignment over 5 different ground truth reward dynamics.

Testing different mode preferences. Next we simulate 5 noisy users, who choose between options

with respect to P (q | w, θ,Q) as we defined in Equation (3.47). Our algorithm actively selects queries

from the same discrete dataset of size 10,000 as in the case of oracle users. We first set the following

hypothesis:

H19. Our algorithm learns the reward dynamics even when the users are noisy.

We also test the performance of our algorithm for different mode likelihoods, i.e. probability of

transitioning to a given mode. We manipulated the ground truth reward dynamics to reflect different

mode likelihoods. For example, one user might be in one mode 80% of the time while another user

has equal chances of being in one of the two modes. Although this might actually affect the priors

P1 and P2 as we explained in Section 3.6.3, we still adopted the derivations based on uniform prior

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 101

to test the robustness of our framework. Therefore, we test the following hypothesis:

H20. Our algorithm learns the reward function parameters w that correspond to both modes, and it

converges faster for wm if the user is more likely to be in mode m.

Figure 4.33: Alignment value shows even when the users are noisy our algorithm can learn the true reward
dynamics (left) and that as the probability being at mode 1 increases, w1 converges faster (right).

Figure 4.33a shows that our algorithm was able to learn w1, w2 and ∆θ even when the users are

noisy, supporting H19. We note that in general we learn ∆θ slowly and we need more queries for

its convergence. The second plot shows that we are able to learn the reward weights wm of a mode

m regardless of its likelihood probability being high or low. The same plot also shows the algorithm

converges faster for the modes that are visited more often. This is intuitive, as the algorithm is able

to gather more information about those modes, even though it does not perfectly know that the user

is in the corresponding mood. Hence, H20 has strong empirical support.

User Study

Hypotheses. We test the following hypotheses with the user study:

H21. Our algorithm learns weights that can represent the driving behavior of the users.

H22. Some people indeed change preferences depending on the driving behaviors of the interacting

agents.

Study Design. To validate our hypotheses, we collected data from 10 real users in a within-subjects

study. We first learn a general reward dynamics (ŵ, θ̂) using 50 hierarchical queries. We then use

the posterior distributions over these parameters to jump-start the process for each subject with

a reasonable prior that better represents legally correct driving. During validation, we ask users

to provide ratings for trajectories locally optimized with respect to the learned reward dynamics.

We compare the expressiveness of the learned reward parameters (ŵ1, ŵ2) against their perturbed

versions (wp1 , w
p
2). We sampled these perturbed versions from Gaussian distributions centered around

(ŵ1, ŵ2) and a standard deviation of 0.5×∥ŵ1∥ and 0.5×∥ŵ2∥. While creating perturbed versions of

ŵ1 and ŵ2, as an attempt to ensure legally correct driving, we constrain the weights for the features

4.7. ACTIVE GENERATION OF HIERARCHICAL QUERIES 102

Figure 4.34: Distribution of ŵ1 and ŵ2 across all users for individual features. (a) User preferences vary
widely for adherence to lane center and distance to road boundaries, but are very similar for efficiency
(speed) and safe driving (collision avoidance). (b) While we did not learn significantly different w1 and w2

for individual users, the average reward with respect to ŵ1 and ŵ2 differs slightly for some of our study
participants.

that correspond to staying within the road and avoiding collision with cars. We also compare with

wr sampled from a Gaussian distribution centered on either ŵ1 or ŵ2 with a standard deviation of

2 × ∥ŵm∥ with the corresponding mode index m. Each rating question consists of two parts. The

first part is similar to Q(i,0) of the learning step, where we show user one trajectory demonstration

of the robot as an attempt to set their initial mode. In the next part, we show users 5 trajectories

continued from the first part, optimal with respect to 5 reward functions parameterized with: ŵ1,

ŵ2, their perturbed versions wp1 and wp2 , and wr. For each of the 5 trajectories, we ask users a

7-point rating scale question: Indicate your level of agreement with the following statement: I would

like to ride this car.

In H21 we claim 1) users will give the highest overall rating to the trajectories that are optimal

with respect to Rŵ1
and/or Rŵ2

most of the time, and 2) if probability of being at mode m is very

high, we expect people to give the highest rating to trajectories that suit to Rŵm . To validate the

first part, we repeat the same demonstration across several rating queries preserving the trajectory of

the other car in the environment alike and changing the trajectory of the ego agent, varying between

different local optima with respect to w1, w2 and the other weights. We randomize demonstration

trajectories across the rating questions. In H22 we hypothesize that subject to different interactions

in the environment, users will sometimes give higher rating to trajectory optimal with respect to

Rŵ1
and sometimes to those optimal with respect to Rŵ2

.

Results. We found that the users have somewhat similar preferences: proximity to cars has high

negative weight, and speed has high positive weight showing that people generally prefer safe and

efficient driving (see Figure 4.34). On the other hand, features that encode staying on the road and

alignment with the road vary more. While the general direction of the feature weights is similar

between ŵ1 and ŵ2 for each user, there is some difference in the magnitudes. We computed the

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 103

Figure 4.35: Most users gave high ratings to the trajectories optimal with respect to Rŵ1 and Rŵ2 and low
ratings to trajectories optimal with respect to their perturbed versions Rw

p
1
and Rw

p
2
and the lowest rating

to the trajectories that were optimal with respect to a reward function that is parameterized randomly Rwr .

percentage difference between average reward with respect to Rŵ1
and Rŵ2

as ŵ1·Φ̄−ŵ2·Φ̄
ŵ1·Φ̄

, where Φ̄

is the average feature values of the trajectories in our query database. This gave us the percentage

difference in the average reward. We found that of all the users the maximum difference is 12% and

the minimum difference is 6%. While we also learned ∆θ, it becomes relatively unimportant here,

as w1 and w2 are very close.

As it can be seen in Figure 4.35, the users gave the highest scores to the trajectories that

are optimal with respec to Rŵ1
and Rŵ2

with statistical significance. This suggests an empirical

evidence for H21. While we also observed that users sometimes gave high ratings to the trajectories

of Rŵ1
and sometimes to those of Rŵ2

, we have not observed a significant dependence on the modes.

This is due to the fact that the learned weights were very close to each other as they represent

the legal driving behavior, which is a very small subset of all the reward space. Further, our

simulation environment may not be realistic enough to elicit emotions like anger, frustration etc.

that cause behavioral changes in different traffic situations [179, 222, 143]. Therefore, our results

are inconclusive about H22.

With this section, we completed extending the learning methods we presented in Chapter 3 with

active querying techniques. In the next section, we describe how these techniques can be executed

in batch settings where multiple questions are actively generated at the same time.

4.8 Batch-mode Active Querying for Time-Efficiency

Two important drawbacks of active query generation are the following: (i) the robot needs to opti-

mize for each and every query, (ii) the querying process cannot be parallelized, i.e., even if multiple

users are available to give comparative feedback, the robot needs to query them sequentially because

each query is actively generated based on the responses to all the previous questions. Therefore,

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 104

even though active querying leads to significant gains in terms of data-efficiency, it might hurt time-

efficiency, especially when optimizing queries is difficult. In some cases, it is desirable to be able to

quickly generate queries and ask them to multiple users in parallel.

We thus propose using methods that generate a batch of comparison queries optimized at the

same time as opposed to generating queries one after the other. These batch methods not only

improve time-efficiency, but also have other computational benefits. For example, they can help

when fitting the learning model is expensive, e.g., as in Gaussian processes (as in Sections 4.3 and

4.4), as the model should be retrained only after all queries in the batch are responded, rather than

after every single query. In addition, these methods are parallelizable, which is a desirable feature

when the robot is learning from multiple humans.

While larger batches amplify these advantages, they can hurt data-efficiency, because new queries

become less optimized with respect to the queries made earlier (and so the learned model so far).

Hence, there is a direct tradeoff between the required number of queries and the time it takes to

generate each query. Besides, it is challenging to decide how an informative batch must be generated.

While a batch of random queries hurts data-efficiency, finding the optimal batch is computationally

intractable because it requires an exhaustive search over all possible human responses to the queries

in the batch.

Ideally, we would like to generate queries actively for the highest data-efficiency while generating

each query time-efficiently. In this section, we propose a new set of algorithms — batch active

comparison-based learning methods — that balance this tradeoff between the number of queries it

requires to learn human preferences and the time it spends on generation of each query.

To this end, we actively generate each batch based on the data collected so far. We focus on

pairwise comparison queries due to their simplicity, but the same techniques can be easily extended

to any query type we discussed in this thesis. In our framework with pairwise comparisons, we select

and query k pairs of trajectories, to be compared by the user or users, at once. Since k queries are

generated at once, our framework is parallelizable for data collection as opposed to standard active

querying methods that require data to come sequentially.

What makes batch active learning more difficult than standard active learning problems is that

we cannot select the queries by simply maximizing their informativeness. Since a batch of queries

is selected all at once, they must be selected without any information about the user responses to

the queries within that batch. The batch active learning methods should then try to maximize

the diversity between the queries in order to avoid selecting very similar queries in a single batch

[218, 61]. Therefore, a good batch active learning method must produce batches that consist of both

dissimilar and informative queries. This is visualized in Figure 4.36.

The problem of actively generating a batch of data is well-studied in other machine learning

problems such as classification [203, 85, 217], where decision boundaries may inform the active

learning algorithms. While this may simplify the problem, it is not applicable in our setting, where

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 105

Figure 4.36: Batches should be both diverse and informative in batch active learning. Here, a hypothetical
batch selection problem is visualized. Each cross represents a query. Similar queries are close to each
other. Orange shows the queries selected in that iteration, and blue shows the queries for which the human
responses have already been collected in the previous iterations. Green color represents informativeness:
darker regions correspond to the queries with high informativeness based on the information collected until
that iteration. (Top) Maximizing only informativeness generates batches that include very similar queries
which, when queried together, carry redundant information. (Middle) Maximizing only diversity does
not take informativeness into account at all, and so is wasteful as it selects some queries that are not
informative. (Bottom) A good batch active learning algorithm should both select informative queries and
avoid redundancy.

we attempt to actively learn a reward function for dynamical systems using pairwise comparison

queries as opposed to data point - label pairs where the labels are directly associated with the

corresponding data points.

While existing batch active learning methods are not readily applicable in our problem, we have

the same challenge of generating both informative and diverse batches. For this, determinantal point

processes (DPP) are a natural fit. DPPs are a mathematical tool that is often used for generating

diverse batches from a set of items [128] and are used to generate batches in other machine learning

applications, such as for improving the convergence of stochastic gradient descent [219, 220]. Here,

we propose using DPPs to generate not only diverse but also informative batches in active preference-

based reward learning.

We summarize our contributions in this section as:

1. Developing a batch active learning algorithm based on determinantal point processes (DPP)

that leads to the highest performance by balancing the tradeoff between the informativeness

and diversity of queries.

2. Designing a set of approximation algorithms for efficient batch active learning to learn about

human preferences from pairwise comparison queries.

3. Experimenting and comparing approximation methods for batch active learning in complex

comparison based learning tasks.

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 106

4. Showcasing our framework in predicting human users’ preferences in simulated autonomous

driving and robotics tasks.

For the rest of the section, we will start with formalizing the problem. We will then present how

standard active methods select queries. After introducing the general batch-mode active learning

idea, we propose our methods for batch selection. First, we propose a method based on determinantal

point processes. Next, we propose more time-efficient alternatives which might be preferable when

batch sizes are large or to avoid hyperparameter tuning. After proposing these different approaches,

we give theoretical guarantees for three of them. Finally, we present our experiments with both

simulated and real users.

4.8.1 Formulation

We consider the setup we presented in Section 3.1, for the special case of pairwise comparisons.

which we later extended with maximum volume removal based active querying in Section 4.1. In

this section, we will again use the maximum volume removal based method, but the batch generation

algorithms we propose are agnostic to the choice of the acquisition function; so for example, mutual

information (see Section 4.2) or max regret (see Section 4.5) can also be used in practice. Similarly,

although we focus on parametric reward functions in this section, the algorithms we propose can also

be used for non-parametric reward functions. THe batch active querying algorithms require only

two things: (i) a score for each query that represents queries’ informativeness, and (ii) a similarity

metric between the queries.

In the setup for this section, we start with a prior belief b0 over the reward function parameters

w. This prior might be initialized with some domain knowledge and/or some expert demonstrations.

Most active querying techniques, as we discussed in previous sections, relies on samples from this

belief; and then in later querying iterations, samples from the updated beliefs bi. However, we do not

know the shape of this distribution. As a result, we used Metropolis-Hastings [69] in the previous

sections to get the samples. In this section, since our goal is to increase the time-efficiency of active

querying, our first change in the algorithm is to use a more efficient sampling technique. For this,

we approximate P (q | Q,w), which we modeled in Equation 3.10 with a log-concave function whose

mode always evaluates to 1:

P (q | Q = (ξ1, ξ2), w) = min(1, exp((−1)I(q=ξ2)(R(ξ1)−R(ξ2)))) , (4.33)

where I denotes the indicator function. This allows us to efficiently use an adaptive Metropolis

algorithm [103] for sampling.

Our goal is to learn the human’s reward function, or equivalently w, in a both data-efficient and

time-efficient way. To this end, we develop batch-active comparison-based reward learning methods,

which actively generate a batch of pairwise comparison queries based on the previous queries and

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 107

the human’s responses to them.

Our insight is that we can in fact balance between the number of queries required for convergence

to Rw and the time required to generate each query. We construct this balance by introducing a

batch active learning approach, where k queries are simultaneously generated at a time based on

the current estimate of w. The batch approach can significantly reduce the total time required

for the satisfactory estimation of w at the expense of increasing the number of queries needed for

convergence to true Rw.

To obtain a batch of queries that are informative, we need to find queries that optimize an

acquisition function, e.g., volume removal as computed by the objective of Equation (4.4). We again

fall back to a discretization method for generating batches of queries: we discretize the space of

all possible pairwise comparison queries by randomly sampling K pairs of feasible trajectories from

Ξ. While increasing K may lead to more accurate optimization results, the computation time also

increases linearly with K.

The batch active learning problem we are trying to solve is then an optimization that attempts

to find the k pairwise comparison queries out of K that will maximize the volume removal in the

worst case in terms of the human’s responses (or the expected volume removal — see the equivalence

in Appendix A.2). However, such a problem is often computationally hard (see [79] and [68] for the

proofs with similar objectives), requiring an exhaustive search which is intractable in practice as the

search space is exponentially large [101].

Algorithm 4 Batch Active Comparison-based Learning

1: Generate query dataset K = (ξi1, ξi2)
K
i=1 where each trajectory comes from Ξ

2: DC ← ∅
3: for iteration i = 1, 2, . . . do
4: Get samples w̄ ∼ b(i−1)k(w)
5: Generate a query batch of size k using w̄ from the query set
6: Get the human response for each query in the batch
7: Update the belief b(i−1)k(w) with the new data to get bik(w)
8: end for
9: return E [w | DC]

In the subsequent sections, we present our batch generation algorithms that attempt to find

approximately optimal batches using various techniques and time-efficient heuristics. Algorithm 4

gives an overview of the overall batch active comparison-based learning approach: line 1 discretizes

the space of queries, line 4 samples a set of w from the belief distribution b(i−1)k(w) = P (w | DC).
Line 5 produces a batch of queries, for which we present several methods in the subsequent sections.

After the human responses are collected for the queries in the batch in line 6, the posterior belief is

updated in line 7 with respect to Equation (3.9).

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 108

4.8.2 DPP-based Batch Active Learning

Determinantal point processes (DPP) are a class of distributions that promote diversity. They are a

natural fit for our problem as they can be tuned to balance the tradeoff between diversity and how

desirable each item is. In our approach, we regard the set of queries as the item set of DPPs. We

first start with presenting the necessary background on DPPs.

Background

A point process is a probability measure on a ground set K over finite subsets of K. In our batch

active comparison-based learning framework, K is a set of queries. We let |K| = K.

An L-ensemble defines a DPP through a real, symmetric and positive semidefinite (PSD)K-by-K

kernel matrix L [46]. Then, sampling a subset X = A ⊆ K has the probability

P (X = A) ∝ detLA (4.34)

where LA is an |A|-by-|A| matrix that consists of the rows and columns of L that correspond to the

queries in A. For instance, if A = {i, j}, i.e., A is a set consisting of ith and jth queries in K, then

P (X = A) ∝ LiiLjj − LijLji.

We can consider Lij = Lji as a similarity measure between the queries i and j in the set. The

nonnegativeness of the second term in the above expression shows an example of repulsiveness

property of DPPs. This property makes DPPs the ubiquitous tractable point process to model

negative correlations, and useful for generating diverse batches.

As detLA can be positive for various A with different cardinalities, we do not know |A| in
advance. There is an extension of DPPs referred to as k-DPP where it is guaranteed that |A| = k,

and Equation (4.34) remains valid [127]. In this section, we employ k-DPPs and refer to them as

DPPs for brevity.

Now, we explain what parameters we can have in an L-ensemble DPP. We note that

P (X = A) ∝ detLA = Vol({Li}i∈A) , (4.35)

so the probability is proportional to the square of the associated volume.17 In fact, by using a

generalized version of DPP, we can approximately achieve [11, 148]:

P (X = A) ∝ Volλ({Li}i∈A) , (4.36)

17Volume here refers to the volume of the parallelepiped spanned by the columns of L, whereas the volume removal
in the previous sections referred to the change in the belief distribution between the prior and the unnormalized
posterior.

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 109

for λ ≥ 0. One can note that higher λ enforces more diversity, because the probability of more diverse

sets (larger volumes) will be boosted against the less diverse sets. We visualize this in Figure 4.37.

Figure 4.37: The effect of λ is visualized. The columns of the matrix L have the same magnitude here;
however {1, 3} is a more diverse set than {1, 2}. When λ = 1, {1, 3} is two times more likely to be sampled
from the DPP distribution than {1, 2}. When we increase λ to 2, this ratio increases to 4, since more diverse
sets are boosted against the less diverse sets.

What remains is to construct the kernel matrix L. For this, we first define a matrix S ∈ RK×K

whose entries measure the similarity between the queries. In our problem, every query i has a feature

difference vector ψi = Φ(ξi1)− Φ(ξi2), and close ψ’s (in terms of Euclidean distance) correspond to

similar queries in terms of the information they provide. Therefore, we let

Sij = exp

(
−∥ψi − ψj∥

2
2

2σ2
DPP

)
, (4.37)

where σDPP is a hyperparameter. However, we are not restricted to this choice — we could use

distance metrics other than Euclidean distance. We then define the matrix L as

Lij = u
γ/λ
i Siju

γ/λ
j , (4.38)

which is guaranteed to be PSD by the construction of S. Here, γ is another hyperparameter and

ui ∈ R≥0 is the score of ith query that represents how much we want that query in our batch.

We use these scores to weight the queries based on how much volume they will remove from the

belief distribution, as computed by the objective of Equation (3.9). By increasing γ for fixed λ,

we give more importance to the scores than diversity. This enables us set the tradeoff between

informativeness and diversity.

Relating the Mode of a DPP with High Diversity and Informativeness. With proper

tuning of λ and γ, the batches that are both diverse and informative will have higher probabilities

of being sampled. This motivates us to find the mode of the distribution, i.e., argmaxA P (X = A),

which will guarantee informativeness and diversity. Another advantage of using the mode, instead

of a random sample from the distribution, is the fact that it is significantly faster to approximate,

even compared to the approximate sampling methods [10, 134, 148, 11].

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 110

Approximating the Mode of a DPP

Finding the mode of a DPP exactly is NP-hard [124]. It is hard to even approximate it better than a

factor of 2xk for some x > 0, under a cardinality constraint of size k [76]. Here, we discuss a greedy

optimization algorithm to approximate the mode of a DPP.

In this approach, queries are greedily added to the batch. More formally, to approximate

argmax
A

P (X = A) = argmax
A

Volλ({Li}i∈A),

we greedily add queries to A. Let A(j) denote the set of selected queries at iteration j of batch

generation. We have

A(j+1) = A(j) ∪ {argmax
i′

Volλ({Li}i∈A(j)∪{i′})} ,

which we repeat until we obtain k queries in A. Çivril and Magdon-Ismail [75] showed that the

greedy algorithm always finds a kO(k)-approximation to the mode.

An important advantage of greedily approximating the mode is that the hyperparameter λ be-

comes irrelevant, as it is just an exponent in the objective in every iteration of batch generation,

unless trivially λ = 0. This reduces the burden of hyperparameter tuning.

Overall Algorithm

Having presented the background in DPPs and the method to approximately find the DPP-mode,

which corresponds to our diverse and informative batch, we are now ready to present our overall

DPP-based batch active comparison-based learning algorithm.

As noted earlier, we work with a discretized set of queries. While this set has K queries, it might

be computationally prohibitive to approximate the DPP mode (even greedily) if K is large. In such

cases, we first reduce the query set into a smaller set X by picking the queries which will individually

remove the highest volume. Algorithm 5 presents the pseudocode for this procedure.

Algorithm 5 ReduceDataset(w̄,K, |X |)
Input: w̄1, w̄2, . . . ▷ Sampled w estimates
Input: K := ((ξ1,1, ξ1,2), . . . , (ξK,1, ξK,2)) ▷ Dataset of queries
Input: |X | ▷ Desired size of the reduced query set

1: for j = 1, . . . ,K do
2: ψj ← Φ(ξj,1)− Φ(ξj,2)
3: uj ← minq∈{ξj,1,ξj,2} Ew̄ [1− P (q | w̄)] ▷ Volume removal of query j (see Equation (4.3))
4: end for
5: X ← ψj ’s with |X | highest uj values ▷ Reduction
6: u← uj values corresponding to X
7: return X ,u

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 111

Afterwards, we approximately compute the mode of the DPP distribution over this reduced set

X as our batch. Algorithm 6 presents the DPP-based method. The first for-loop (lines 2 through 7)

constructs the DPP kernel, and the second part (lines 8 through 11) generates the batch by greedily

approximating the mode of the constructed DPP.

Algorithm 6 DPP-based Batch Generation

Require: DPP hyperparameters σDPP and γ, sampled w estimates w̄1, w̄2, . . .
1: X ,u← ReduceDataset(w̄,K, |X |)
2: for i = 1, . . . , |X | do
3: for j = 1, . . . , |X | do
4: Sij ← exp

(
−∥ψi−ψj∥2

2

2σ2
DPP

)
5: Lij ← uγi Siju

γ
j

6: end for
7: end for
8: A← ∅ ▷ Initialize the batch
9: for j = 1, . . . , k do

10: A← A ∪ {argmaxj′ detLA∪{j′}}
11: end for
12: return A

4.8.3 Time-Efficient Batch Active Learning Methods

DPP-based batch active learning method enables us to systematically tune the tradeoff between

diversity and informativeness. This approach leads to the best learning performance as we will

present in our experiments. However, the DPP method has two important drawbacks: (i) it requires

tuning of the hyperparameters σDPP and γ, and (ii) even approximating the mode of the DPP might

take too much time depending on the batch size k and the reduced set size |X |, as we need to compute

the matrix L and determinants of some of its submatrices at every greedy iteration. Although the

former problem may be tolerated as it can be performed offline, the latter may cause problems in

practice. DPP-based method is useful for the cases when parallelization in data collection is desired,

but the time-efficiency is not crucial.

However in many cases, we want our approach to be not only parallelizable but also time-efficient.

For this purpose, we now describe a set of methods that do not rely on DPPs in increasing order of

complexity to provide alternative approximations to the batch active learning problem. Figure 4.38

visualizes each approach for a small set of queries.

Greedy Selection

The simplest method to approximate the optimal batch generation is using a greedy strategy. In the

greedy selection approach, we conveniently assume the k different queries in a batch are independent

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 112

3
1

2

4
5

12
3 6

4

5

7

89

10
11

(a) Greedy Selection. (b) Medoids Selection. (c) Boundary Medoids
Selection.

(d) Successive Elimination.

Figure 4.38: Visualizations of the batch generation process of the proposed time-efficient batch active learning
algorithms. In each visual, a simple 2D space with 16 different ψ values that correspond to the reduced
set X is shown. The goal is to select a batch of k = 5 that will near-optimally maximize the joint volume
removal. The selected queries are shown in orange. (a) Greedy Selection. (b) Medoids Selection. The points
are selected based on the k-medoids clustering algorithm. (c) Boundary Medoids Selection. The clusters
are chosen over the boundary of the convex hull of all samples. (d) Successive Elimination. One point is
selected and another is eliminated based on pairwise comparisons of volume removal.

from each other. Of course this is not a valid assumption, but the independence assumption allows

us to choose the k-many maximizers of the objective of Equation (4.3) among the K discrete queries.

This method is a specific case of the DPP-based approach with λ = 0 or with |X | = k. While

this method can easily be employed; it is suboptimal as similar or redundant queries can be selected

together in the same batch because these similar queries are likely to lead to high volume removal

values. For instance, as shown in Figure 4.38a, the 5 orange queries chosen are all going to be very

close to the center where volume removal values are high.

Medoid Selection

To avoid the redundancy in the batch created by the greedy selection, we need to increase the dis-

similarity between the selected queries. We introduce an approach, Medoid Selection, that leverages

clustering as a similarity measure between the samples. In this approach, with the goal of picking

the most dissimilar queries, we cluster ψ-vectors associated with the elements of the reduced set X
into k clusters, using standard Euclidean distance. We then restrict ourselves to only selecting one

element from each cluster, which prevents us from selecting very similar trajectories.

One can think of using the well-known k-means algorithm [141] for clustering and then selecting

the centroid of each cluster. However, these centroids are not necessarily from the reduced set, so

they can have lower volume removal values. More importantly, they might be infeasible, i.e., there

might not be a pair of trajectories that produce the ψ vectors corresponding to the centroids.

Instead, we use the k-medoids algorithm [122, 24] which again clusters the queries into k sets.

The main difference between k-means and k-medoids is that k-medoids enables us to select medoids

as opposed to the centroids, which are queries in the set X that minimize the average distance to

the other queries in the same cluster. While k-medoids is known to be a slower algorithm than

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 113

k-means [195], efficient approximate algorithms exist [17]. Figure 4.38b shows the medoids selection

approach, where 5 orange queries are selected from the 5 clusters.

Boundary Medoid Selection

We note that picking the medoid of each cluster is not the best option for increasing dissimilarity

—instead, we can further exploit clustering to select queries more effectively. In the Boundary

Medoid Selection method, we propose restricting the selection to be only from the boundary of the

convex hull of the reduced set X . If feasible, this selection criteria can separate out the selected

queries from each other on average. We note that when d, the dimensionality of ψ, is large enough

compared to k, most of the clusters will have queries on the boundary. We thus propose the following

modifications to the medoid selection algorithm. The first step is to only select the queries that are

on the boundary of the convex hull of the reduced set X . We then apply k-medoids with k clusters

over the queries on the boundary and finally only accept the cluster medoids as the selected batch.

As shown in Figure 4.38c, we first find k = 5 clusters over the points on the boundary of the convex

hull of X . We note that the number of queries on the boundary of convex hull of X can be larger

than the number of queries needed in a batch, e.g., there are 7 points on the boundary; however, we

only select the medoids of the 5 clusters created over these boundary queries shown in orange.

Successive Elimination

One of the main objectives of batch generation for active learning as described in the previous

methods is to select k queries that will maximize the average distance among them out of the queries

in the reduced set X . This problem is also referred to as max-sum diversification in literature, which

is known to be NP-hard [94, 47]. However, there exists a set of algorithms that provide approximate

solutions [62].

What makes our batch generation problem special and different from standard max-sum diver-

sification is that we can compute the volume removal for each query. As in the DPP-based method,

volume removal is a metric that models how much we want a query to be in the final batch. Thus, we

propose a novel method that leverages the volume removal values to successively eliminate queries

for the goal of obtaining a satisfactory diversified set. We refer to this algorithm as Successive Elim-

ination. At every iteration of the algorithm, we select two closest queries (in terms of Euclidean

distance of their ψ vectors, but again, other distance metrics between queries could also be used)

in the reduced set X , and remove the one with lower volume removal value. We repeat this proce-

dure until k points are left in the set, resulting in the k queries in our final batch, which efficiently

increases the diversity among queries.

A pseudo-code of this method is given in Algorithm 7. Figure 4.38d shows the successive pairwise

comparisons between two queries based on their corresponding volume removal. In every pairwise

comparison, we eliminate one of the queries, shown with black edge, keeping the query connected

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 114

with the orange edge. The numbers show the order of comparisons made before finding k = 5 queries

shown in orange.

Algorithm 7 Successive Elimination

1: X ,u← ReduceDataset(w̄,K, |X |)
2: A← X ▷ Initialize the batch
3: while |A| > k do
4: (ψi, ψj)← argminψi,ψj∈A∥ψi − ψj∥2
5: if ui < uj then
6: Remove ψi from A
7: else
8: Remove ψj from A
9: end if

10: end while
11: return A

We make the code for our batch active learning methods available at https://bit.ly/381brBK.

4.8.4 Theoretical Guarantees

Theorem 5. Under the following assumptions:

1. The error introduced by the approximation given by Equation (4.33) is ignored,

2. The error introduced by the sampling of w̄’s via adaptive metropolis algorithm is ignored,

DPP-based method, greedy selection and successive elimination algorithms remove at least 1 − ϵ

times as much volume as removed by the best adaptive non-batch strategy after k ln(1ϵ) times as

many queries.

Proof. In the DPP-based method, greedy selection and successive elimination, the volume removal

maximizer query Q∗ out of K possible queries will always remain in the resulting batch of size k,

because: (i) the greedy DPP mode approximation will first add this query to the batch, (ii) greedy

selection algorithm will first add this query to the batch, and (iii) the queries will be removed in

successive elimination only if they have lower volume removal than some other queries in the set.

Sadigh et al. [171] proved, by using the ideas from adaptive submodular function maximization

literature [125], that if we make the single query Q∗ at each iteration, then at least 1 − ϵ times as

much volume as removed by the best adaptive non-batch strategy will be removed after ln(1ϵ) times

as many iterations. The proof is then complete with the pessimistic approach that accepts other

k − 1 queries will not remove any volume at all.

4.8.5 Simulations and Experiments

Experimental Setup. We performed several simulations and experiments to compare the methods

we propose and to demonstrate their performance. In all experiments, we set batch size k = 10,

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 115

Figure 4.39: Simulation view of each environment. (a) FetchReach, (b) Driver, (c) Tosser, (d) LunarLander,
(e) MountainCar, (f) Swimmer.

Table 4.1: Environment Properties

Task Name dim(at) T d
LDS 5 1 5

FetchReach 7 19 4
Driver 2 5 4
Tosser 2 2 4

LunarLander∗ 2 5 6
MountainCar∗ 1 12 3

Swimmer 2 12 3
∗ Continuous versions

reduced query set size |X | = 200, number of w samples |Ω| = 1000, and assumed a linear reward

function: Rw(ξ) = w⊤Φ(ξ).

Alignment Metric. For our simulations, we generate synthetic random w∗ vectors as our true

reward function parameters. We again used the Alignment metric in order to compare non-batch

active, batch active and random query selection methods, where all queries are selected randomly

over all feasible trajectories. As a reminder,

Alignment =
w∗ · ŵ

∥w∗∥2∥ŵ∥2
, (4.39)

where ŵ is E[w | DC], the expectation of the learned belief distribution over w. We remind that

this Alignment metric can be used to test convergence, because its value being close to 1 means the

estimate of w is very close to (aligned with) the true reward parameters vector. In our experiments,

we compare the methods using Alignment and the number of queries made.

Tasks

We perform experiments in different simulation environments that are summarized in Table 4.1 with

a list of the variables associated with every environment, where T is the number of time steps in

each trajectory, also known as the horizon of the task. The optimization of queries in the non-batch

active method (of Section 4.1), is hence over 2× (T dim(a)) with a fixed initial state s0, where the

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 116

factor 2 is because we generate 2 trajectories for each query. Figure 4.39 visualizes each of the

experiment environments with some sample trajectories. Most of these environment were also used

in the previous sections, but we now go over them for the the convenience of the reader.

Linear Dynamical System (LDS). We assess the performance of our methods on a simple simu-

lated linear dynamical system:

s̃t+1 = As̃t +Bat, st = Cs̃t +Dat (4.40)

For a fair comparison between the proposed methods independent of the dynamical system, we want

Φ(ξ) to uniformly cover its range when the control inputs are uniformly distributed over their possible

values. We thus set A, B and C to be zero matrices and D to be identity matrix in this section.

Then a single step simulation of the system results in the observation s0, which can be treated as

Φ(ξ). Therefore, the control inputs are equal to the features over trajectories, and optimizing over

control inputs or features is equivalent. Despite its name, this environment is not meant to be a real

dynamical system – instead it measures how our batch active learning algorithms would perform in

the simplest linear regression via pairwise comparisons problem.

FetchReach. We use the simulator for Fetch mobile manipulator robot [213], visualized in Fig-

ure 4.39a. We use features that correspond to average and final distances to the target object (red

block), average distance to the table (brown block), and average distance to the obstacle (gray

block).

Driver. We use the 2D driving simulator [170], shown in Figure 4.39b. We use features corre-

sponding to distance to the closest lane, speed, heading angle, and distance to the other vehicle in

the scenario. Two sample trajectories are shown in red and green in Figure 4.39b. In addition, the

white line shows the fixed trajectory of the other vehicle on the road.

Tosser. We use MuJoCo’s “Tosser” [191] where a robot tosses a capsule-shaped object. The

features we use are maximum horizontal range, maximum altitude, the sum of angular displacements

at each time step and final distance to closest basket of the object. The two red and green trajectories

in Figure 4.39c correspond to synthesized queries showing different preferences for what basket to

toss the object to.

LunarLander. We use OpenAI Gym’s continuous version of the “LunarLander” environment [50]

where a spacecraft is controlled. We use features corresponding to final heading angle, final distance

to landing pad, total rotation, path length, final vertical speed, and flight duration. Two sample

trajectories are shown in red and green in Figure 4.39d.

MountainCar. We use OpenAI Gym’s “MountainCar” [50] where a simple 1D car model is

controlled on a hill. The features are maximum range in the positive direction, maximum range in

the negative direction, and time to reach the flag (or T if not reached). The environment is shown

in Figure 4.39e.

Swimmer. We use OpenAI Gym’s “Swimmer” [50]. We use features corresponding to horizontal

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 117

displacement, vertical displacement, and total distance traveled. The environment is shown in

Figure 4.39f.

Comparison of Batch-Active Learning Methods

We first quantitatively compare the batch-active methods we proposed with each other. We use the

LDS, FetchReach, Driver and Tosser to demonstrate this comparison. For each of these environ-

ments, we create a dataset of K = 100,000 queries.

Independently for each environment, we randomly generated 200 different reward functions (w∗

vectors), 100 of which are for tuning γ in the DPP-based method and the remaining 100 are for

tests of all methods. The same approach can be employed in practice: One can simulate random

reward functions for tuning and then deploy the system to learn the reward functions from real users.

For both tuning and tests, we simulated noiseless users, who always reveal their true preferences in

order to eliminate the effect of noise in the results. We present the further details and results of

hyperparameter tuning in the Appendix C.4.

Figure 4.40: Batch-active learning methods are compared.

For each simulated reward function during our tests, we ran 10 batch generations with each

method, summing up to 100 pairwise comparison queries. We demonstrate the results in Figure 4.40.

Our results suggest that the DPP-based method significantly outperforms all other methods in all

environments (p < 0.05, Wilcoxon signed-rank test [204]) except for successive elimination in LDS

where both algorithms perform comparably.

Among the time-efficient batch active learning methods we proposed, successive elimination

method significantly outperforms the others (p < 0.05) in all environments except FetchReach where

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 118

Table 4.2: Average Query Generation Times (seconds)

Environment Non-Batch
Batch Active Learning

Active
DPP-Mode

Greedy Medoids
Boundary
Medoids

Successive
Elimination

Driver 79.2 5.5 5.4 5.7 5.3 5.5
Tosser 149.3 5.5 4.1 4.3 3.8 3.9

LunarLander 177.4 5.6 4.1 4.1 4.2 4.1
MountainCar 96.4 7.1 3.8 4.0 4.0 3.8
Swimmer 188.9 10.8 3.8 3.9 4.0 4.1

it performs comparably to boundary medoids, significantly outperforms medoids selection (p < 0.05),

and marginally significantly outperforms greedy selection (p ≈ 0.06). Similarly, boundary medoids

approach significantly outperformed medoids selection and greedy selection in all environments (p <

0.05). Finally, medoids selection and greedy selection performed comparably in all environments,

except Tosser where medoids selection significantly outperformed the greedy approach (p < 0.05).

Overall, these results show us the ranking of batch active learning methods from the best to the

worst are as follows:

1. Active DPP-Mode

2. Successive Elimination

3. Boundary Medoids

4. Medoids

5. Greedy

Comparison to Non-Batch Active Learning

We next investigated the average time it required to generate one query. For this, we took a dataset

of K = 500,000 queries. We recorded the batch generation times, and divided it by k = 10. To show

the advantage of batch-active learning methods, we also ran the same analysis on the non-batch

active learning approach that synthesizes trajectories by optimizing over their action spaces along

the time horizon. We ran this study for Driver, Tosser, LunarLander, MountainCar and Swimmer

environments. The results are shown in Table 4.2. It can be seen that batch active learning methods

lead to a great decrease in query generation times compared to the non-batch method, and the DPP-

based method is slightly slower than the other batch algorithms. This slowness could be even more

significant for larger batches.

As we observed that successive elimination generates highly informative queries in a time-efficient

way without any hyperparameter tuning, we now compare its performance to the non-batch active

learning approaches. Specifically, we assessed its performance against non-batch active learning and

random query selection where queries are selected uniformly at random.

We again conducted our simulation experiments on all environment but FetchReach due to its

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 119

large action space, which makes the non-batch active learning impractical as it optimizes over the

action space along the horizon. For the simulations with LDS, we assume that human’s preferences

are noisy as discussed in Equation (4.33). For all other environments, we again assume an oracle

user who responds to queries with no error to avoid perturbations due to noise in responses.

Figure 4.41: The performance of each algorithm is averaged over 10 different runs on LDS where w∗ is
uniformly randomly generated. Successive elimination performs better than the random querying and worse
than the non-batch active method.

Figure 4.41 shows the number of queries that result in a corresponding Alignment value for each

method in the LDS environment, averaged over 10 runs. The non-batch active version significantly

outperforms successive elimination (p < 0.05), as it performs the optimization for each and every

query. As expected, both active methods significantly outperform random querying (p < 0.05).

We show the results of our experiments on the other five environments in Figures 4.42 and 4.43.

Figure 4.42 shows the convergence to the true reward function parameters w∗ as the number of

queries increases (similar to Figure 4.41). It is interesting to note that non-batch active learning

performs suboptimally in LunarLander and Tosser. We believe this can be due to the non-convex

optimization being solved in non-batch methods leading to suboptimal behavior, or because of the

Figure 4.42: The performance the algorithms is shown. The non-batch active method performs poorly on
LunarLander and Tosser.

4.8. BATCH-MODE ACTIVE QUERYING FOR TIME-EFFICIENCY 120

Figure 4.43: Convergence to w∗ as a function of time is plotted for each environment. Non-batch active
learning method is slow due to the optimization and adaptive metropolis algorithm involved in each iter-
ation, whereas random querying performs poorly due to redundant queries. Successive elimination clearly
outperforms both of them.

known failure cases of the volume removal objective as we discussed in Section 4.1. The proposed

batch active learning methods overcome this issue thanks to query space discretization and the fact

that it does not rely merely on the volume removal values and tries to incorporate diversity among

the queries.

Figure 4.43 evaluates the computation time required for querying. It is clearly visible that

batch active learning makes the process much faster than the non-batch active method and random

querying.

Figure 4.44: The performance of successive elimination algorithm with varying k values was averaged over
10 different runs with LDS where w∗ is uniformly randomly generated and |X | = 20k. (a) The Alignment

values, and (b) average query times.

Therefore, batch active learning is preferable over other methods as it balances the tradeoff

between the number of queries required and the time it takes to compute the queries. This tradeoff

can be seen in Figure 4.44 where we simulated LDS with varying k values. For this simulation, we

set |X | = 20k in accordance with other experiments.

User Preferences

In addition to our simulation results using synthetic w∗ vectors, we perform a user study to learn

humans’ preferences for the Driver and Tosser environments. This experiment is mainly designed

to show the ability of our framework to learn humans’ preferences.

4.9. CHAPTER SUMMARY 121

Setup. We recruited 10 users who responded to 150 queries generated by successive elimination

algorithm for each environment (Driver or Tosser).

Figure 4.45: User preferences on Driver task are grouped into two sets. While the first set shows the
preferences conforming with the natural driving behavior, the second set is comprised of data from two
users one of whom preferred collisions with the other car over leaving the road and the other regarded some
collisions as near-misses and thought they can be acceptable in order to keep speed. It can be seen that the
uncertainty in their learned preferences is higher.

Driver Preferences. Using successive elimination, we are able to learn humans’ driving preferences.

Our results show that the reward functions of users are very close to each other as this task mainly

models natural driving behavior. This is consistent with results shown by Sadigh et al. [171],

where non-batch techniques are used. We noticed a few differences between the driving behavior as

shown in Figure 4.45. This figure shows the distribution of the weights for the four features after 150

queries. Two of the users (plot on the right) seem to have slightly different preferences about collision

avoidance, which may correspond to more aggressive driving behavior. We observed that 70 queries

were enough for converging to safe and sensible driving in the defined scenario. The optimized

driving with different number of queries can be watched on https://youtu.be/MaswyWRep5g.

Tosser Preferences. Similarly, we use successive elimination to learn humans’ preferences on

the Tosser task. Figure 4.46 shows we learn interesting tossing preferences. For demonstration

purposes, we optimize the control inputs with respect to the preferences of two of the users, one of

whom prefers the green basket while the other prefers the red one (see Figure 4.39c). We note that

100 queries were enough to see reasonable convergence in this task. The evolution of the learning

can be watched on https://youtu.be/cQ7vvUg9rU4.

4.9 Chapter Summary

In this chapter, we built on the techniques we presented in Chapter 3: we showed how different

comparative feedback types, which robots can leverage to learn reward functions, can be actively

collected from humans for better data- and time-efficiency. We first started with reviewing an existing

acquisition function from the literature, namely volume removal [171], and showed its drawbacks and

4.9. CHAPTER SUMMARY 122

Figure 4.46: User preferences on Tosser task are grouped into four sets. The first set shows the preferences
of people who aimed at throwing the ball into the green basket (the distant one) but accepted throwing into
the other basket is better than not throwing into any baskets. The second set is comprised of data from
three users who preferred the red basket (the closer one). In the third group, the users preferred the green
basket over the red one, but also accepted throwing far away is better than throwing into the red basket,
because it is an attempt for the green basket. Lastly, the fourth group is similar to the first group; however
the confidence over preferences is much less, because the users were not sure about how to compare the cases
where the ball was dropped between the baskets in one of the trajectories.

failure cases in Section 4.1. We then proposed an alternative objective in Section 4.2 to optimize for

data-efficiency: mutual information, a widely used notion from information theory [77]. We showed it

does not suffer from the same problems as volume removal even though it has the same computational

complexity. We then adopted the same structure as in Chapter 3 to extend each comparative query

and reward function type (parameteric and non-parametric) with active querying techniques, one

by one from Section 4.3 to 4.7. Finally in Section 4.8, we showed how one can actively generate

multiple queries at the same time, i.e., in batches, for parallelizability and better time-efficiency as

it avoids solving an optimization problem for each and every query.

Chapter 5

Final Words

We envision a world where robots and agents powered with artificial intelligence seamlessly interact

with humans and each other, which may include collaborating, competing, teaching and influencing.

We are convinced that they need to be able to learn the objectives or the preferences of other agents

to achieve such interactions. Because the information about an agent’s objective enables a robot

to better predict their behavior, which in turn, enables the robot to condition their interaction on

these predictions. Our preliminary works empirically proved this concept in various settings such as

human-robot collaboration [42], autonomous driving [60], traffic network optimization [132, 35, 41],

or multi-agent learning [199, 25, 225]. Perhaps more importantly, learning humans’ objectives in a

task means learning how to perform the task itself. This has also been the theme of the simulations

and experiments we conducted in this thesis.

Overall, this thesis is an important step towards the goal of reliably learning humans’ objectives

in various tasks. For more and easier accessibility, we released a software library that implements

many of the methods we proposed in this thesis [44]. However, both in that library and in this thesis,

we only focused on learning from comparative feedback (possibly in addition to demonstrations) and

how to elicit human preferences using such feedback. In real world, when people interact with each

other, they often use many more sources of information, such as gaze, gestures, language, facial

expressions, etc. Robots are still not fully capable of using these other forms of feedback. While

such high-level challenges exist and are yet to be solved, we would like to conclude this thesis by

focusing on a discussion of the limitations and future directions of the methods we developed.

5.1 Challenges

Although we proposed several techniques for actively learning from comparative feedback and em-

pirically showed they can be used to learn humans’ preferences in different tasks, those techniques

are limited in various ways. In this section, we would like to focus on these limitations for both

123

5.1. CHALLENGES 124

learning and active querying.

5.1.1 Limitations and Future Work in Learning

In this thesis, we worked with two different assumptions about the reward function that we are

trying to learn: it is either a parametric or a non-parametric reward function. In the former, we

were constrained to work with functions that have a small number of parameters in practice, because

our learning scheme is fully Bayesian. However, many applications in robotics may require more

complex reward functions, such as those modeled with deep neural networks. We are not able to

efficiently (in terms of both data and time) learn such complex functions using the techniques in

this thesis. Even though alternative learning methods that rely on gradient based learning exist,

e.g. [52], they often cannot give reliable uncertainties about the learned reward which limits their

usability and makes active querying difficult.

In the latter, we used Gaussian processes to model non-parametric reward functions. Although

this relaxes some of the assumptions about the functional form of the reward, it brings its own

challenges in practice: how large can the input to the Gaussian process be? Even though this

approach enabled us to learn complex rewards, we were now limited in terms of the dimensionality

of the input (the number of trajectory features), because Gaussian processes are difficult to fit with

large amounts of data and increasing the input dimensionality makes it more data-hungry.

Both of these limitations point out another challenge: where do the trajectory features come

from? Often, we rely on experts to design such features, but these reward models are prune to

errors in feature functions. Although our preliminary works show new features could be discovered

using comparative feedback [120], we still rely on the initial set of hand-designed features. Future

work should investigate supervised and unsupervised techniques for learning features for reward

functions.

Moreover, we adopted and used different models about how humans respond to comparative

feedback queries. All of these models implicitly assume humans are rational decision makers: in

all models, the most likely human response is the true response based on their underlying reward

function. However, humans are bounded rational in various settings and conditions [180, 93, 105].

Our work based on cumulative prospect theory [117, 194] showed humans take consistently subopti-

mal actions when the system involves some risk [131], even when there are only two action choices,

just like the pairwise comparisons setting we have in this thesis. Future work should incorporate

this suboptimality or irrationality of humans into the reward learning from comparative feedback

framework.1

An important limitation of our multimodal reward learning techniques presented in Sections 3.5

and 3.6 is the fact that we assumed we know the number of modes in the reward function. Although

1See the recent work by Chan et al. [63] that attempts to model various reasons of irrationality and incorporate
them for reward inference.

5.1. CHALLENGES 125

this might be the case when learning rewards from multiple humans with different objectives, it is

unrealistic if we are trying to learn a multimodal reward from one person who has non-stationary

preferences. Our techniques could be easily modified to handle such scenarios: similar to clustering

algorithms, one can experiment with varying number of modes and then take the simplest model

that gives reasonable performance. However, this approach will prevent the robots from using active

querying techniques as they rely on a fixed number of modes.

Finally, an interesting research direction is about the interfaces that can be used for collecting

comparative feedback. In Section 3.4, we showed we can use a slider bar to collect scale feedback,

which gives more information than pairwise comparisons. However, extending this to higher number

of trajectories within a query is challenging. For three trajectories, one could think of a 2D plane on

which the user selects a point whose distance to the corners indicate how much the user prefers each

trajectory. Going beyond three trajectories requires more and more complex interfaces, and perhaps

hardware. Even more interestingly, one could leverage the fact that the systems we are trying to

teach via comparative feedback are robots that are embodied. This may open new possibilities such

as giving feedback to the robot about different parts of the space it is operating in or about different

segments of its trajectory (see [78]).

5.1.2 Limitations and Future Work in Active Querying

All of the techniques we proposed for active querying had an implicit assumption: the robot is

in an offline training phase. Thanks to this assumption, we are able to optimize our queries to

humans specifically for data-efficiency. In other words, we do not have to worry about whether the

trajectories we are demonstrating to humans are good or bad: we can show bad trajectories just

for the sake of learning. However, in many cases, it is desirable to ask questions while, at the same

time, trying to perform the task. Such an online setting would require optimizing when to ask a

question during the task, and other acquisition functions for deciding what question to ask.

It is not only that we did not have to worry about the quality of trajectories, but we also

did not formulate any hard safety constraints (even though we formulated some soft constraints in

Section 3.3 by constructing a region of avoidance in the trajectory space). This prevents one from

using learning from comparative feedback techniques in safety critical systems. One possibility is

to first utilize safe exploration techniques, e.g., [30, 185, 37], to construct the space of trajectories,

but this requires a well-defined safety function. Future work should investigate how safety could

also be learned using comparative feedback, similar to the related works on constraint learning from

demonstrations [71].

5.2. CLOSING THOUGHTS 126

5.2 Closing Thoughts

This thesis is only a step that brings ideas from robotics, machine learning, information theory and

control theory to address the reward learning problem in artificial intelligence which we believe to be

an important challenge to achieve seamless human-robot (or more generally human-AI) interaction.

As we discussed in this chapter, there are still many limitations and challenges that need to be

addressed for achieving such interactions. We believe these challenges will require collaborations

between researchers from a wide range of fields, such as machine learning, robotics, computational

psychology, human-robot interaction, behavioral economics, formal methods and control theory.

Appendix A

Proofs

A.1 Proof of Proposition 1

Proof. To prove the statement, we show the feasible set obtained from scale feedback is a subset

of the feasible set from choice feedback. We note δ∗ > 0 for any non-trivial problem instance,

as otherwise every trajectory would be equally optimal for any w∗. For one of the queries that

form DS and DC , say query i, we assume the user prefers ξ
(i)
1 over ξ

(i)
2 without loss of generality,

implying q̄(i) ≥ 0. For this query, pairwise comparison feedback defines a feasible set Λ
(i)
Comparison =

{w | Rw(ξ(i)1) − Rw(ξ(i)2) ≥ 0}. First, we consider q̄(i) = 1. This yields Λ
(i)
Scale = {w | Rw(ξ(i)1) −

Rw(ξ
(i)
2) ≥ ϱδ(w)}. Since both ϱ > 0 and δ(w) ≥ 0, we obtain Λ

(i)
Scale ⊆ Λ

(i)
Comparison. For the case

q̄(i) ∈ [0, 1), we have Λ
(i)
Scale = {w | Rw(ξ(i)1) − Rw(ξ(i)2) = q̄(i)ϱδ(w)}; the right hand side is non-

negative and thus any w satisfying the equality must satisfy Rw(ξ
(i)
1) − Rw(ξ(i)2) ≥ 0. This also

implies Λ
(i)
Scale ⊆ Λ

(i)
Comparison. As Errmax(w∗,DS) maximizes over ΛScale, which is the intersection

of Λ
(i)
Scale’s over queries, while Errmax(w∗,DC) maximizes over ΛComparison, Err

max(w∗,DS) cannot

attain a larger value than Errmax(w∗,DC).

A.2 Volume Removal Equivalence when |Q(i)| = 2

While presenting the volume removal optimization for active learning in Equations (4.2) and (4.3),

we stated we could maximize the worst-case volume removal when |Q(i)| = 2 so that a large amount

of volume will be removed regardless of the human’s response. This objective is in fact equal to the

expected volume removal objective while learning from pairwise comparisons.

127

A.2. VOLUME REMOVAL EQUIVALENCE WHEN |Q(I)| = 2 128

Theorem 6. While learning from pairwise comparisons, the worst-case volume removal maximiza-

tion in Equation (4.3) is equivalent to expected volume removal maximization presented in Equa-

tion (4.2):

max
Q(i)={ξ1,ξ2}

E(i)
q

[∫
w

(
bi−1(w)− P (q(i) | Q(i)w)bi−1(w)

)
dw

]
Proof. We first work on the worst-case optimization objective:

min
q(i)∈Q(i)

∫
w

(
bi−1(w)− P (q(i) | Q(i), w)bi−1(w)

)
dw

= min
q(i)∈Q(i)

(
1−

∫
w

P (q(i) | Q(i), w)bi−1(w)dw

)
= min
q(i)∈Q(i)

(
1− Ew∼bi−1(w)

[
P (q(i) | Q(i), w)

])
= min
q(i)∈Q(i)

(
1− P (q(i) | Q(i), bi−1)

)
= min

{
P (q(i) = Q

(i)
1 | Q(i), bi−1), P (q(i) = Q

(i)
2 | Q(i), bi−1)

}
,

where the last equation is because the queries are pairwise and P (q(i) = Q
(i)
1 | Q(i), bi−1) +P (q(i) =

Q
(i)
2 | Q(i), bi−1) = 1. Hence, we are trying to find queries for which the minimum of those two

terms is maximized. An optimal query is therefore one for which our model predicts P (q(i) = Q
(i)
1 |

Q(i), bi−1) = P (q(i) = Q
(i)
2 | Q(i), bi−1) = 0.5. Intuitively, we are looking for queries where our model

is highly unsure about the human’s response. We know that 0 ≤ P (q(i) = Q
(i)
1 | Q(i), bi−1), P (q(i) =

Q
(i)
2 | Q(i), bi−1) ≤ 1. Hence, we note that this optimization is equivalent to optimizing P (q(i) =

Q
(i)
1 | Q(i), bi−1)P (q(i) = Q

(i)
2 | Q(i), bi−1).

Next, we work on the expected volume removal objective:

Eq(i)|Q(i),bi−1

∫
w

(
bi−1(w)− P (q(i) | Q(i), w)bi−1(w)

)
dw

= Eq(i)|Q(i),bi−1

[
1−

∫
w

P (q(i) | Q(i), w)bi−1(w)dw

]
= Eq(i)|Q(i),bi−1

[
1− Ew∼bi−1(w)

[
P (q(i) | Q(i), w)

]]
= Eq(i)|Q(i),bi−1

[
1− P (q(i) | Q(i), bi−1)

]
= 2P (q(i) = Q

(i)
1 | Q(i), bi−1)P (q(i) = Q

(i)
2 | Q(i), bi−1) ,

and so optimizing this objective is equivalent to optimizing P (q(i) = Q
(i)
1 | Q(i), bi−1)P (q(i) = Q

(i)
2 |

Q(i), bi−1) again.

A.3. PROOF OF THEOREM 2 129

A.3 Proof of Theorem 2

Proof. We need to show if the global optimum is negative, then any longer-horizon optimization will

also give negative reward (difference between information gain and the cost) in expectation. Let

Q
(i)
∗ denote the global optimizer. For any i′ ≥ 0,

I(q(i), . . . , q(i+i
′);w | Q(i), . . . , Q(i+i′))−

i′∑
j=0

c(Q(i+j))

= I(q(i);w | Q(i)) + . . .+

I(q(i+i
′);w | q(i), . . . , q(i+i

′−1), Q(i), . . . , Q(i+i′))−
i′∑
j=0

c(Q(i+j))

≤ I(q(i);w | Q(i)) + . . .+ I(q(i+i
′);w | Q(i+i′))−

i′∑
j=0

c(Q(i+j))

≤ (i′ + 1)
[
I(q(i);w | Q(i)

∗)− c(Q(i)
∗)
]
< 0 (A.1)

where the first inequality is due to the submodularity of the mutual information, and the second

inequality is because Q
(i)
∗ is the global maximizer of the greedy objective. The other direction of

the proof is very clear: If the global optimizer is nonnegative, then querying Q
(i)
∗ will not decrease

the cumulative active learning reward in expectation, so stopping is not optimal.

A.4 Proof of Corollary 1

Proof. Suppose we have such a mixture of M Plackett-Luce models that is not identifiable. Then,

there must exist two distinct sets of parameters (w,α) and (w′, α′) such that for every query Q, the

induced ranking distributions q1 and q2 respectively are identical. But since (w,α) and (w′, α′) are

distinct, there is either (1) two mixing coefficients in (w,α) and (w′, α′) that disagree or (2) two

trajectories ξ1 and ξ2 that have a different difference in rewards across (w,α) and (w′, α′) under

one of the reward functions. Let Q̄ with corresponding ranking distribution q̄ be an arbitrary query

in case (1) and an arbitrary query containing ξ1 and ξ2 in case (2). Note that q̄ is the marginal

distribution of the overall Plackett-Luce distribution, which by construction is a mixture of M

Plackett-Luce models with parameters (w,α) and (w′, α′), restricted to the trajectories in Q̄. But

now there are two distinct sets of parameters representing the distribution over the full ranking of Q

since we know (w,α) and (w′, α′) differ on the restricted set of trajectories Ξ′ = Q (either because

they have differing mixing coefficients or because their induced rewards on Ξ′ are not a within a

constant additive factor of each other since ξ1 and ξ2 are in Ξ′). But we know |Ξ′| = |Q|, so this

finding contradicts the fact that Q̄ must be identifiable by Theorem 4. We conclude every mixture

of M Plackett-Luce models is identifiable subject to the query size bounds in the statement of this

A.5. JUSTIFICATION FOR REMARK 2 130

corollary.

A.5 Justification for Remark 2

Here, we define the optimal adaptive set of queries D∗
R to be the one which, in expectation, minimizes

the uncertainty over model parameters H(w,α | D∗
R). It is a well-known result that for adaptive

submodular functions, greedy optimization yields results that are within a constant factor (1 − 1
e)

of optimality [95]. While our mutual information objective in Eqn. (4.28) is adaptive submodular

in the non-adaptive setting (where all queries Q are selected before observing their results), in

our adaptive setting these guarantees no longer hold (conditional entropy is only submodular with

respect to conditioned variables if those variables are unobserved).

Appendix B

Derivations

B.1 Mutual Information Derivation for Section 4.2

We first present the full derivation of Equation (4.12),

Q
(i)
∗ = argmax

Q(i)={ξ1,...,ξ|Q(i)|}
I(q(i);w | Q(i), bi−1) .

We first write the mutual information as the difference between two entropy terms:

I(q(i);w | Q(i), bi−1) = H(w | Q(i), bi−1)− Eq(i)|Q(i),bi−1

[
H(w | q(i), Q(i), bi−1)

]
. (B.1)

Next, we expand the entropy expressions and use P (q(i) | Q(i), bi−1)P (w | q(i), Q(i), bi−1) = P (w, q(i) |
Q(i), bi−1) to combine the expectations for the second term to get:

H(w | Q(i), bi−1)− Eq(i)|Q(i),bi−1

[
H(w | q(i), Q(i), bi−1)

]
= −Ew|Q(i),bi−1

[
log2 P (w | Q(i), bi−1)

]
+ Ew,q(i)|Q(i),bi−1

[
log2

(
P (w | q(i), Q(i), bi−1)

)]
. (B.2)

Since the first term is independent from q(i), we can write this expression as

Ew,q(i)|Q(i),bi−1

[
log2 P (w | q(i), Q(i), bi−1)− log2 P (w | Q(i), bi−1)

]
= Ew,q(i)|Q(i),bi−1

[
log2 P (q

(i) | Q(i), bi−1, w)− log2 P (q
(i) | Q(i), bi−1)

]
= Ew,q(i)|Q(i),bi−1

[
log2 P (q

(i) | Q(i), w)− log2

(∫
P (q(i) | Q(i), w′)P (w′ | Q(i), bi−1)dw′

)]
,

(B.3)

where the integral is taken over all possible values of w.

131

B.1. MUTUAL INFORMATION DERIVATION FOR SECTION 4.2 132

Having Ω as a set of samples drawn from the prior bi−1,

I(q(i);w | Q(i))
·
= Ew,q(i)|Q(i),bi−1

[
log2 P (q

(i) | Q(i), w)− log2

(
1

|Ω|
∑
w′∈Ω

P (q(i) | Q(i), w′)

)]

= Ew,q(i)|Q(i),bi−1

[
log2

|Ω| · P (q(i) | Q(i), w)∑
w′∈Ω P (q

(i) | Q(i), w′)

]
= Ew|Q(i),bi−1

[
Eq(i)|Q(i),w

[
log2

|Ω| · P (q(i) | Q(i), w)∑
w′∈Ω P (q

(i) | Q(i), w′)

]]
= Ew|Q(i),bi−1

[∑
q(i)∈Q(i)

P (q(i) | Q(i), w) log2
|Ω| · P (q(i) | Q(i), w)∑
w′∈Ω P (q

(i) | Q(i), w′)

]
·
=

1

|Ω|
∑

q(i)∈Q(i)

∑
w̄∈Ω

P (q(i) | Q(i), w̄) log2
|Ω| · P (q(i) | Q(i), w̄)∑
w′∈Ω P (q

(i) | Q(i), w′)
, (see 4.12)

where, in the last step, we use the sampled w’s to compute the expectation over w | Q(i), bi−1, which

is equivalent to w | bi−1. This completes the derivation.

B.1.1 Extension to User-Specific and Unknown ς

We now derive the mutual information optimization when the minimum perceivable difference pa-

rameter ς of the extended human model (for weak pairwise comparison queries) we introduced in

Section 4.2.4 is unknown. One can also attempt to learn the rationality coefficient βC . Therefore, for

generality, we denote all human model parameters that will be learned as a vector κ. Furthermore,

we denote the belief over (w, κ) before iteration i as bi−1
+ . Since our true goal is to learn w, the

optimization now becomes:

Q
(i)
∗ = argmax

Q(i)={ξ1,...,ξ|Q(i)|}
Eκ|Q(i),bi−1

+

[
I(q(i);w | Q(i), bi−1

+)
]

(B.4)

B.1. MUTUAL INFORMATION DERIVATION FOR SECTION 4.2 133

We now work on this objective as follows:

Eκ|Q(i),bi−1
+

[
I(q(i);w | Q(i), bi−1

+)
]

= Eκ|Q(i),bi−1
+

[
H(w | κ,Q(i), bi−1

+)− Eq(i)|κ,Q(i),bi−1
+

[
H(w | q(i), κ,Q(i), bi−1

+)
]]

= Eκ|Q(i),bi−1
+

[
H(w | κ,Q(i), bi−1

+)
]
− Eκ,q(i)|Q(i),bi−1

+

[
H(w | q(i), κ,Q(i), b

(i)
+)
]

= −Eκ,w|Q(i),bi−1
+

[
log2 P (w | κ,Q(i), bi−1

+)
]
+ Eκ,q(i),w|Q(i),bi−1

+

[
log2 P (w | q(i), κ,Q(i), bi−1

+)
]

= Eκ,q(i),w|Q(i),bi−1
+

[
log2 P (w | q(i), κ,Q(i), bi−1

+)− log2 P (w | κ,Q(i), bi−1
+)

]
= Eκ,q(i),w|Q(i),bi−1

+

[
log2 P (qi | w, κ,Q(i), bi−1

+)− log2 P (q
(i) | κ,Q(i), bi−1

+)
]

= Eκ,q(i),w|Q(i),bi−1
+

[
log2 P (q

(i) | w, κ,Q(i), bi−1
+)−log2 P (κ, q(i) | Q(i), bi−1

+)+log2 P (κ | Q(i), bi−1
+)

]
(B.5)

Noting that P (κ | Q(i), bi−1
+) = P (κ | bi−1

+), we drop the last term because it does not involve

the optimization variable Q(i). Also noting P (q(i) | w, κ,Q(i), bi−1
+) = P (q(i) | w, κ,Q(i)), the new

objective is:

Eκ,q(i),w|Q(i),bi−1
+

[
log2 P (q

(i) | w, κ,Q(i))− log2 P (κ, q
(i) | Q(i), bi−1

+)
]

·
=

1

|Ω+|
∑

(w̄,κ̄)∈Ω+

∑
q(i)∈Q(i)

P (q(i) | w̄, κ̄, Q(i))
[
log2 P (q

(i) | w̄, κ̄, Q(i))− log2 P (κ̄, q
(i) | Q(i), bi−1

+)
]

(B.6)

where Ω+ is a set containing samples from bi−1
+ . Since P (κ̄, q(i) | Q(i), bi−1

+) =
∫
P (q(i) | κ̄, w′, Q(i))P (κ̄, w′ |

Q(i), bi−1
+)dw′ where the integration is over all possible values of w, we can write the second logarithm

term as:

log2

 1

|Ω+|
∑

w′∈Ω(κ̄)

P (q(i) | κ̄, w′, Q(i))

 (B.7)

with asymptotic equality, where Ω(κ̄) is the set that contains samples from bi−1
+ with fixed κ̄. Note

that while we can actually compute this objective, it is computationally much heavier than the case

without κ, because we need to sample w for each κ̄ sample.

One property of this objective that will ease the computation is the fact that it is parallelizable.

An alternative approach is to actively learn (w, κ) instead of just w. This will of course cause

some performance loss, because we are only interested in w. However, if we learn them together, the

derivation follows the derivation of Equation (4.12), which we already presented, by simply replacing

B.2. MUTUAL INFORMATION DERIVATION FOR SECTION 4.3 134

w with (w, κ), and the final optimization becomes:

argmax
Q(i)={ξ1,...,ξ|Q(i)|}

1

|Ω+|
∑

q(i)∈Q(i)

∑
(w̄,κ̄)∈Ω+

P (q(i) | Q(i), w̄, κ̄) log2
|Ω+| · P (q(i) | Q(i), w̄, κ̄)∑
(w′,κ′)∈Ω+ P (qi | Qi, w′, κ′)

B.2 Mutual Information Derivation for Section 4.3

Let Σ be the posterior covariance matrix between f(Φ(1)) and f(Φ(2)). And let

Σ−1 =

[
c d

d c′

]
.

Note that the c here is not related to the cost function c we used in Section 4.2. Throughout the

derivation, all integrals are calculated over R, but we drop it to simplify the notation. h denotes the

binary entropy function, and Φ is the cdf of the standard normal distribution. We use f1 and f2 to

denote f(Φ(1)) and f(Φ(2)), respectively. We write the first entropy term in the optimization (4.18)

as:

H(q | Φ(1), Φ(2),Q,q)

= h

(∫ ∫
Φ

(
f1 − f2√

2σC

)
N ([f1, f2] | [µ(1), µ(2)],Σ)df2df1

)
= h

(√
cc′ − d2
2π

∫ ∫
Φ

(
f1 − f2√

2σC

)
e−

1
2 (c(f1−µ

(1))2+c′(f2−µ(2))2+2d(f1−µ(1))(f2−µ(2)))df2df1

)

= h

(√
cc′ − d2
2π

∫ ∫
Φ

(
f1 − f2√

2σC

)
e−

1
2 (c((f1−µ

(1))2+ 2d
c (f1−µ(1))(f2−µ(2)))+c′(f2−µ(2))2)df1df2

)

= h

(√
cc′ − d2
2π

∫ ∫
Φ

(
f1 − f2√

2σC

)
e−

1
2 (c(f1−µ

(1)+ d
c (f2−µ

(2)))2− d2

c (f2−µ(2))2+c′(f2−µ(2))2)df1df2

)

= h

(√
cc′ − d2
2π

∫
e−

1
2 c

′(f2−µ(2))2e
1
2

d2

c (f2−µ(2))2
∫

Φ

(
f1 − f2√

2σC

)
e−

1
2 (c(f1−µ

(1)+ d
c (f2−µ

(2)))2)df1df2

)

= h

√cc′ − d2
2π

∫
e−

1
2

c′c−d2

c (f2−µ(2))2
∫ Φ

(
f1−f2√
2σC

)
e−

1
2 (c(f1−µ

(1)+ d
c (f2−µ

(2)))2)

√
2π√
c

√
2π√
c
df1df2


= h

√cc′ − d2√
2π
√
c

∫
e−

1
2

c′c−d2

c (f2−µ(2))2
∫ Φ

(
f1−f2√
2σC

)
e−

1
2 (c(f1−µ

(1)+ d
c (f2−µ

(2)))2)

√
2π√
c

df1df2

 (B.8)

B.2. MUTUAL INFORMATION DERIVATION FOR SECTION 4.3 135

Using the mathematical identity
∫
x
ϕ(x)N(x|µ, σC2)dx = ϕ(µ√

1+σC
2), we obtain

H(q | Φ(1), Φ(2),Q,q)

= h

√cc′ − d2√
2π
√
c

∫
e−

1
2

c′c−d2

c (f2−µ(2))2Φ

µ(1) − d
c f2 +

d
cµ

(2) − f2
√
2σC

√
1 + 1

2cσC
2

 df2


= h

√cc′ − d2√
2π
√
c

∫
e−

1
2

c′c−d2

c (f2−µ(2))2Φ

µ(1) + d
cµ

(2) − (dc + 1)f2
√
2σC

√
1 + 1

2cσC
2

 df2



= h


√
cc′ − d2√
2π
√
c

∫
e−

1
2

c′c−d2

c (f2−µ(2))2

Φ

−(d
c+1)(f2−

µ(1)+ d
c
µ(2)

d
c
+1

)

√
2σC

√
1+ 1

2cσC
2


√
2πc√

c′c−d2

√
2πc√

c′c− d2
df2

 (B.9)

Using the same identity again,

H(q | Φ(1), Φ(2),Q,q) = h

Φ

 µ(1) − µ(2)

√
2σC

√
1 + 1

2cσC
2

√
1 + c

2σC
2+ 1

c

(1+ d
c)

2

c′c−d2


 (B.10)

One can then expand the expression in the denominator and use the facts that Var(f(Φ(1))) = c′

cc′−d2 ,

Var(f(Φ(2))) = c
cc′−d2 and Cov(f(Φ(1)), f(Φ(2))) = −d

cc′−d2 to obtain

H(q | Φ(1), Φ(2),Q,q) = h

(
Φ

(
µ(1) − µ(2)√

2σC2 + g(Φ(1), Φ(2))

))
. (B.11)

where g(Φ(1), Φ(2)) = Var(f(Φ(1))) + Var(f(Φ(2)))− 2Cov(f(Φ(1)), f(Φ(2)))

We next make the derivation for the second entropy term. To simplify the notation, we let

σC
′2 = πln(2)

2 , σC
′′2 = σC

′2 + 1
c , and σC

2
b =

c(1+ d
c)

2

c′c−d2 . By performing a linearization over the

B.2. MUTUAL INFORMATION DERIVATION FOR SECTION 4.3 136

logarithm of the second entropy term as in [112],

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
≈
√
c′c− d2
2π

∫ ∫
e−

(f1−f2)2

πln(2) e−
1
2 (c(f1−µ

(1))2+c′(f2−µ(2))2+2d(f1−µ(1))(f2−µ(2)))df1df2

=

√
c′c− d2
2π

∫
e−

1
2 c

′(f2−µ(2))2
∫
e
− (f1−f2)2

2σC
′2 e−

1
2 (c(f1−µ

(1))2+2d(f1−µ(1))(f2−µ(2)))df1df2

=

√
c′c− d2
2π

∫
e−

1
2 c

′f2
2

∫
e
− (f1+µ(1)−f2−µ(2))2

2σC
′2 e−

1
2 cf1

2−df1f2df1df2

=

√
c′c− d2
2π

∫
e−

1
2 c

′f2
2

∫
e
− (f1+µ(1)−f2−µ(2))2

2σC
′2 e−

1
2 c(f1+

d
c f2)

2+ 1
2

d2

c f2
2

df1df2

=

√
c′c− d2
2π

∫
e−

1
2

c′c−d2

c f2
2

∫
e
− (f1−f2+µ(1)−µ(2))2

2σC
′2 e−

1
2 c(f1+

d
c f2)

2

df1df2 (B.12)

By the change of variables for the inner integral with u = f1 +
d
c f2,

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
=

√
c′c− d2
2π

∫
e−

c′c−d2

2c f2
2

∫
u

e
−

(u− d
c
f2+µ(1)−f2−µ(2))2

2σC
′2 e−

1
2 cu

2

dudf2

=

√
c′c− d2
2π

∫
e−

c′c−d2

2c f2
2

∫
u

e
−

((1+ d
c
)f2−u−µ(1)+µ(2))2

2σC
′2 e−

1
2 cu

2

dudf2

(B.13)

By another change of variables for the outer integral with v = f2
1+d/c ,

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
=

1

1 + d
c

√
c′c− d2
2π

∫
v

e
− c′c−d2

2c
v2

(1+ d
c
)2

∫
u

e
− (v−u+µ(2)−µ(1))2

2σC
′2 e−

1
2 cu

2

dudv .

(B.14)

By identifying the inner integral as a convolution of two Gaussians, we get

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
=

1

1 + d
c

√
c′c− d2
2π

2πσC
′ 1√
c

∫
v

e
− 1

2
c′c−d2

c
v2

(1+ d
c
)2

1
√
2π
√
σC ′2 + 1

c

e
− 1

2
(v−(µ(1)−µ(2)))2

σC
′2+ 1

c dv

=
1

1 + d
c

√
c′c− d2σC ′ 1√

c

1
√
2π
√
σC ′2 + 1

c

∫
v

e
− 1

2
v2

σC
2
b e

− 1
2

(v−(µ(1)−µ(2)))2

σC
′′2 dv . (B.15)

B.3. MUTUAL INFORMATION DERIVATION FOR SECTION 4.6 137

By repeating the same convolution trick for the second integral,

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
=

1

1 + d
c

√
c′c− d2σC ′ 1√

c

1
√
2π
√
σC ′2 + 1

c

2πσCbσC
′′ 1√

2π
√
σC2

b + σC ′′2
e
− 1

2
(µ(1)−µ(2))2

σC
2
b
+σC

′′2

=
1

1 + d
c

√
c′c− d2σC ′ 1√

c

1√
σC ′2 + 1

c

σCbσC
′′ 1√

σC2
b + σC ′′2

e
− 1

2
(µ(1)−µ(2))2

σC
2
b
+σC

′′2
. (B.16)

Again, we express this in terms of covariance and variance expressions:

Ef∼P (f |Q,q)

[
H(q | Φ(1), Φ(2), f)

]
=

√
π ln(2)σC2 exp

(
− (µ(1)−µ(2))2

π ln(2)σC
2+2g(Φ(1),Φ(2))

)
√
π ln(2)σC2 + 2g(Φ(1), Φ(2))

. (B.17)

This completes the derivation.

B.3 Mutual Information Derivation for Section 4.6

We present the derivation of the formula for computing the maximum mutual information query Q∗.

Assume at a fixed round i we have made past ranking query observations DR = {Q(i′), q(i
′)}i−1

i′=1,

and possibly other types of feedback to have the belief distribution bi−1. The desired query is then

Q∗ = argmax
Q

I(q;w,α | Q, bi−1), (B.18)

where I(·; ·) denotes mutual information and q is the response to the query Q. Equivalently, denoting

conditional entropy with H(· | ·), we note

I(q;w,α | Q, bi−1) = H(w,α | bi−1)− Eq′∼q|Q,bi−1

[
H(w,α | Q, q = q′, bi−1)

]
,

which allows us to write the optimization in Equation (B.18) equivalently as

Q∗ = argmin
Q

Eq′∼q|Q,bi−1

[
H(w,α | Q, q = q′, bi−1)

]
.

We further simplify this minimization objective by denoting the joint distribution over q and

(w,α) conditioned on Q and bi−1 as P (q, w, α | Q, bi−1) and expanding the entropy term:

B.3. MUTUAL INFORMATION DERIVATION FOR SECTION 4.6 138

Q∗ = argmin
Q

Eq′,w′,α′∼q,w,α|Q,bi−1 log
P (q = q′ | Q, bi−1)

P (q = q′ | Q,w = w′, α = α′]

= argmin
Q

Eq′,w′,α′∼q,w,α|Q,bi−1 log
Ew′′,α′′∼w,α|bi−1P (q = q′ | Q,w = w′′, α = α′′]

P (q = q′ | Q,w = w′, α = α′]
. (see 4.28)

Appendix C

Implementation Details

C.1 Metropolis-Hastings for Section 4.6

Figure C.1: Multi-chain Metropolis-Hastings sampling (left) gives more representative samples from the
distribution compared to the single-chain variant (right).

To sample from P (w,α | bi−1) using Equation (3.38), we use the Metropolis-Hastings algorithm

[69], running NMH chains simultaneously for HMH iterations. To avoid autocorrelation between

samples, unlike in conventional Metropolis-Hastings we only use the last state in each chain as a

sample. In contrast, for conventional Metropolis-Hastings, multiple samples would be drawn from a

single chain at set intervals after a short burn-in period. As we see in Fig. C.1, for our multimodal

Plackett-Luce posteriors, performing multi-chain Metropolis-Hastings yields posterior samples that

are far more evenly distributed across different posterior modes. Thus, to achieve well-distributed

posterior samples, we set our effective burn-in period to be HMH − 1, taking only the last sample

from each chain.

For two states in the chain w,α and w′, α′, our proposal distribution is then

PMH(w
′, α′ | w,α) =

M∏
m=1

ϕMH(wm − w′
m),

139

C.2. SIMULATED ANNEALING FOR SECTION 4.6 140

where ϕMH is the pdf of the zero-mean Gaussian with the covariance matrix σ2
MHI.

The posterior distribution in Figure C.1 is that of a 2-mode Plackett-Luce mixture with fixed

uniform mixing coefficients and 1-D weights conditioned on the observations 50 ≻ −50 and −50 ≻ 50.

The single-chain algorithm ran for 2000 steps with a burn-in period of 200 steps after which every

18th sample was selected, while the multi-chain algorithm used 100 chains for 20 iterations each,

taking only the last sample from each chain.

C.2 Simulated Annealing for Section 4.6

For our simulated annealing, we run NSA chains in parallel for HSA iterations each, returning the

best query Q found across each run. We define the transition proposal distribution PSA(Q
′ | Q) to

be a positive constant if Q′ and Q differ by one trajectory and 0 otherwise. We run with a starting

temperature of T 0
SA, cooling by a factor of γSA with each subsequent iteration past the first.

C.3 Hyperparameters for Section 4.6

We use the hyperparameters in Table C.1 for the simulated annealing and Metropolis-Hastings

algorithms, whose details are provided in Appendix C.1 and Appendix C.2, respectively.

Table C.1: Hyperparameters

Constant Value

NMH 100

HMH 200

σMH 0.15

NSA 10

HSA 30

T 0
SA 10

γSA 0.9

C.4 Hyperparameter Tuning for DPPs in Section 4.8.5

We introduced the hyperparameters λ, σDPP and γ for the DPP-based method. However, using

the mode of the DPP distribution as the batch eliminates λ, as it does not affect the results unless

trivially λ = 0. Hence, we need to tune σDPP and γ only.

As γ is enough in our proposed algorithm to adjust the trade-off between diversity and high

volume removal, we use the following heuristic for setting σDPP to avoid extra computational burden.

C.4. HYPERPARAMETER TUNING FOR DPPS IN SECTION 4.8.5 141

We simply set σDPP to be the expected distance between two nearest points (in terms of Euclidean

distance) when k points are selected uniformly at random in the space [0, 1]d where d is the number

of features, i.e., d = dim(Φ(ξ)).

For a human user and a given dynamical system, we cannot try different hyperparameter values,

because we need to query the human many times to get the responses under different hyperpa-

rameters. Therefore, to perform tuning for and γ, we simulate 100 synthetic true reward weights

separately for each environment.

Figure C.2: Tuning results for the DPP-based method for various γ under each environment.

We tuned γ separately for our experiment environments LDS, FetchReach, Tosser and Driver

where each γ has been experimented with 100 different synthetic true reward functions.

Figure C.2 shows how the Alignment value changes with different number of queries for varying

γ. We highlighted the selected γ parameters in the plots.

As it can be seen from the results, the effect of γ on performance was slight for the environments

we experimented on. It is therefore difficult to select the “best” γ. We qualitatively selected γ = 1

for LDS and Tosser, γ = 4 for FetchReach, and γ = 0 for Driver based on their slight advantage

in learning rate with respect to the number of queries. While it is possible that other environments

have heavier dependencies on γ, our results empirically suggest that the method is robust to the

choice of γ, which can ease the use of our DPP-based batch generation algorithm.

Appendix D

Experiment Details

D.1 Environment Features for Sections 4.1.2 and 4.2.4

D.1.1 FetchReach

We present the full set of features below. In Section 4.1.2, we used the first three of these features

whereas Section 4.2.4 uses all features to make it a more difficult problem.

• The average of e−c1d1 over the trajectory where d1 is the distance between the end effector

and the goal object, and c1 = 1.

• The average of e−c2d2 over the trajectory where d2 is the vertical distance between the end

effector and the table, and c2 = 1.

• The average of e−c3d3 over the trajectory where d3 is the distance between the end effector

and the obstacle, and c3 = 1.

• The average of the end effector speed over the trajectory.

D.1.2 Driver

• The average of e−c4d
2
4 over the trajectory, where d4 is the shortest distance between the ego

car and a lane center, and c4 = 30.

• The average of (v1 − 1)2 over the trajectory, where v1 is the speed of the ego car.

• The average of cos(θ1) over the trajectory, where θ1 is the angle between the directions of ego

car and the road.

• The average of e−c5d
2
5−c6d

2
6 over the trajectory, where d5 and d6 are the horizontal and vertical

distances between the ego car and the other car, respectively; and c5 = 7, c6 = 3.

142

D.2. ENVIRONMENT FEATURES FOR SECTION 4.5.2 143

Table D.1: Features of the ExtendedDriver Environment

Description Definition

Φ1 Lane keeping: mean distance to closest lane center mean[exp(−30·min{d8,d9,d10})]
0.15343634

Φ2 Keep speed: mean difference to speed 1 mean[(1−v)2]
0.42202643

Φ3 Driving straight: mean heading θ mean[θ]
0.06112367

Φ4 Collision avoidance 1: mean distance to other car mean[exp(−7·∆x2)+3·∆y2]
0.15258019

Φ5 Collision avoidance 2: min distance to other car min[exp(−7·∆x2)+3·∆y2]
0.10977646

Φ6 Smoothness: mean jerk mean[∆v̇]
0.00317041

Φ7 Distance travelled: progress along the road y(T)−y(0)
1.01818467

Φ8 Final lane L: robot end in the left lane int(∥x(T)− c8∥ < 0.08)
Φ9 Final lane M: robot end in the center lane int(∥x(T)− c9∥ < 0.08)
Φ10 Final lane R: robot end in the right lane int(∥x(T)− c10∥|| < 0.08)

D.1.3 Tosser

• The maximum distance the object moved forward from the tosser robot.

• The maximum altitude of the object.

• Number of flips (real number) the object does.

• e−c7d7 where d7 is the final horizontal distance between the object and the center of the closest

basket, and c7 = 3.

D.2 Environment Features for Section 4.5.2

Here, we describe the features of the simulation and user study environments we used. These

environments are: ExtendedDriver, which we used for the simulations in Section 4.5.2, original

Driver, which was used in Section 4.2.4, and we present the results in Appendix E.2, and finally

Fetch robot experiment with drink serving (FetchDrink), which we used for the user studies in

Section 4.5.2.

D.2.1 ExtendedDriver

In Table D.1 we detail the features of the ExtendedDriver scenarios. Notation specific to Table D.1:

d8, d9, d10 are the squared distances of the robot car to the center of the left, middle and right lane;

v is the speed profile of the robot trajectory; v̇ the acceleration profile; θ is the heading of the car,

x(t) and y(t) are the car’s x and y position at a given time t ∈ [0, T] (x is orthogonal to the road,

y is along the road); ∆x and ∆y are the ordinal distance between the robot car and the other car;

and c8, c9, c10 are the x-coordinates of the lane centers.

D.3. CHOICE OF σS IN THE USER STUDIES FOR SECTION 4.5.2 144

D.2.2 Original Driver

See Appendix D.1.2.

D.2.3 FetchDrink

In the user studies presented in Section 4.5.2 and the simulations presented in Appendix E.2, we

used the following eight features for the FetchDrink robot experiment:

• Speed of the end-effector ∈ {0, 0.33, 0.67, 1}
• Maximum height of the end-effector ∈ {0, 0.33, 0.67, 1}
• Selected drink being the orange juice ∈ {0, 1}
• Selected drink being the water ∈ {0, 1}
• Selected drink being the milk ∈ {0, 1}
• Orientation of the pan ∈ {0, 1}
• Moving the drink behind or over the pan ∈ {0, 1}
• Robot hitting the pan while moving the drink ∈ {0, 1}

D.3 Choice of σS in the User Studies for Section 4.5.2

In Section 4.5.2, we stated we took σS = 0.35 in the user studies based on pilot trials with different

users. We now describe the procedure that yielded this selection of σS .

Before all the actual experiments, we recruited 3 participants (3 male, ages 27–40) for a pilot

study. In this study, the participants followed the same procedure as in our actual experiments, but

responded to only 30 randomly generated queries. These 30 queries were formed by three sets: 10

scale queries, 10 weak comparison queries and another 10 scale queries. We randomized the order

of these three sets to avoid any bias.

After we collected these data, we repeated the following procedure for σS = 0.05, 0.10, . . . , 1.00.

We learned a single posterior for each user by using 10 scale and 10 weak comparison query responses

under σS noise, i.e., the posteriors included both scale and soft choice feedback. We then checked

the test set loglikelihood (with the remaining 10 queries) under the learned posterior and the same

σS .

The σS value that yielded the highest test set loglikelihood, σS = 0.35, was then used for all of

the actual experiments with real users.

D.4. BASELINES FOR SECTION 4.6.3 145

D.4 Baselines for Section 4.6.3

D.4.1 Random

We benchmark against a random agent, wherein at each step the query selected by the agent is a

collection of |Q| random items without replacement. We also use the random querying method for

comparing the multimodal reward learning with the approaches that assume a unimodal reward (as

in Section 4.2), as it does not introduce any bias in the query selection.

D.4.2 Volume Removal

Volume removal seeks to maximize the difference between the prior distribution over model param-

eters and the unnormalized posterior. Volume removal notably fails to be optimal in domains where

there are similar trajectories as we showed in Section 4.1. In these settings, querying sets of tra-

jectories with similar features removes a large amount of volume from the unnormalized posterior

(since the robot is highly uncertain about their relative quality), yet yields little information about

the model parameters (since the human also has high uncertainty). Mutual information based ap-

proaches are better able to generate trajectories to query for which the robot has high uncertainty

while the human has enough certainty to yield useful information for the robot.

D.5 Trajectory Generation in Section 4.6.3

D.5.1 LunarLander Trajectories

We designed 8 trajectory features based on: absolute heading angle accumulated over trajectory,

final distance to the landing pad, total amount of rotation, path length, task completion (or failure)

time, final vertical velocity, whether the lander landed on the landing pad without its body touching

the ground, and original environment reward from OpenAI Gym [50]. Using these features, we

randomly generated 10 distinct reward functions based on the linear reward model and trained a

DQN policy [151] for each reward. Finally, we generated 100 trajectories by following each of these

10 policies in the environment to obtain 1000 trajectories in total. We used these trajectories as our

dataset for the ranking queries. Figure D.1 presents an example trajectory with extracted, scaled

and centered features.

D.5. TRAJECTORY GENERATION IN SECTION 4.6.3 146

Feature Value

Mean angle 2.27683634

Total angle −0.20375356
Distance to goal 5.41860642

Total rotation 0.25948072

Path length 3.71660086

Final vertical velocity −0.57097337
Crash time 1.11112885

Score −0.15500268

Figure D.1: Sample LunarLander trajectory (left) with extracted features (right).

D.5.2 FetchBanana Trajectories

To design our 351 trajectories, we varied the target shelf (3 variations), the movement speed (3),

the grasp point on the banana (3) and where in the shelf it is placed (13). We then designed 12

trajectory features based on these varied parameters and appended another binary feature which

indicates whether any object dropped from the shelves on that trajectory.

Specifically, for a trajectory ξ, let

ytarget,i =

1 i is the target shelf

0 otherwise
,

ygrasp, yheight, ywidth, yspeed specify the grasp position and speed, and ysuccess specifies whether

the robot did not drop any objects from the shelves. Our featurization is then

Φ(ξ) =
(
ytarget,1, ytarget,2, ytarget,3, yspeed, yspeed(1− yspeed), ygrasp, ygrasp(1− ygrasp), yheight,

yheight(1− yheight), ywidth, ywidth(1− ywidth), 1− (ygrasp − ywidth)
2, ysuccess

)
.

Figure D.2 presents a sample FetchBanana trajectory with its featurization.

D.6. METRICS IN SECTION 4.6.3 147

Feature Value

ytarget,1 1

ytarget,2 0

ytarget,3 0

yspeed 0.5

yspeed(1− yspeed) 0.25

ygrasp 1

ygrasp(1− ygrasp) 0

yheight 0.75

yheight(1− yheight) 0.1875

ywidth 0.25

ywidth(1− ywidth) 0.1875

1− (ygrasp − ywidth)
2 0.4375

ysuccess 1

Figure D.2: Sample FetchBanana trajectory (left) with extracted features (right).

D.6 Metrics in Section 4.6.3

D.6.1 MSE

Our metric is

MSE =

M∑
m=1

|w∗
m − ŵm|22 (D.1)

where the learned reward weights of the experts are matched with the true weights using the Hungar-

ian algorithm. When the learning model assumes a unimodal reward function, as in our simulations

for Figure 4.27, we compute the MSE metric as
∑M
m=1|w∗

m − ŵ|22.

D.6.2 Log-Likelihood

Formally, we define the Log-Likelihood metric as

Log-Likelihood = EQ∼Q
[
Eq′∼q|Q logP (q = q′ | Q, bi−1)

]
(D.2)

for Q the uniform distribution across all possible queries and P (q | Q) the distribution over the

human’s response to query Q (as in Equation (3.37)). We can compute the inner term

P (q | Q, bi−1) = Ew′,α′∼w,α|bi−1 [P (q | Q,w = w′, α = α′)]

D.7. EXPERIMENTAL SETUP IN SECTION 4.6.3 148

Figure D.3: The user interface for the online studies with the real Fetch robot (FetchBanana environment).
The user selected the 2nd trajectory as their top choice and the 6th trajectory as the second top.

using Metropolis-Hastings as in Section 4.6.2 to sample from the posterior P (w,α | b(i−1)) and

computing the inner term with Equation (3.37).

D.6.3 Learned Policy Reward

Similar to the MSE metric, we match the rewards learned via DQN [151] with the true rewards using

the Hungarian algorithm.

D.7 Experimental Setup in Section 4.6.3

D.7.1 Shelf Descriptions for FetchBanana Environment

A picture of each shelf accompanied the following descriptions.

• The top shelf has some space, but you usually put cooked meals there.

• The middle shelf is for fruits, but it is already full. The robot may accidentally drop other

fruits.

• The bottom shelf has a lot of space, but you have been using it for toys.

D.7.2 User Interface

For both environments, subjects were told they need to rank the six trajectories in each query by

clicking on the trajectories starting from the most preferred to the least. The web interface (see

Figure D.3) equipped them with “Undo” and “Sync” buttons. “Undo” allowed the subjects to undo

a selection they make within a query. “Sync” enabled them to restart all videos in the query.

Appendix E

Additional Results

E.1 Additional Simulation Results for Section 4.2.4

E.1.1 Results with User-Specific and Unknown ς

Mutual Information (Weak Queries & Unknown)Mutual Information (Weak Queries & Known)

LDS Driver Tosser FetchReach
Mutual Information (Strict Queries)

Al
ig

nm
en

t

Figure E.1: The simulation results with mutual information formulation for unknown ς. Plots are mean±s.e.

Using the approximate, but computationally faster optimization we introduced in Appendix B.1.1,

we performed additional analysis where we compare the performances of strict pairwise compari-

son queries, weak pairwise comparison queries with known ς and weak pairwise comparison queries

without assuming any ς (all with the mutual information formulation). As in the previous simu-

lations, we simulated 100 users with different random reward functions. Each user is simulated to

have a true ς, uniformly randomly taken from [0, 2]. During the sampling of Ω+, we did not assume

any prior knowledge about ς, except the natural condition that ς ≥ 0. The comparison results are

in Figure E.1. While knowing ς increases the performance as expected, weak pairwise comparison

queries are still better than strict queries even when ς is unknown. This supports the advantage of

employing weak pairwise comparison queries.

149

E.1. ADDITIONAL SIMULATION RESULTS FOR SECTION 4.2.4 150

E.1.2 Results without Query Space Discretization

LDS Driver Tosser
Mutual Information (Weak Queries) Mutual Information (Strict Queries) Volume Removal (Weak Queries) Volume Removal (Strict Queries)

Al
ig

nm
en

t

Figure E.2: Alignment values are plotted (mean±s.e.) for the experiments without query space discretization,
i.e., with continuous trajectory optimization for active query generation.

We repeated the experiment that supportsH5, and whose results are shown in Figure 4.6, without

query space discretization. By optimizing over the continuous action space of the environments, we

tested mutual information and volume removal formulations with both strict and weak pairwise

comparison queries in LDS, Driver and Tosser tasks. We excluded FetchReach again in order to

avoid prohibitive trajectory optimization due to large action space. Figure E.2 shows the results. As

it is expected, mutual information formulation outperforms the volume removal with both pairwise

comparison query types. And, weak pairwise comparison queries lead to faster learning compared

to strict pairwise comparison queries.

E.1.3 Effect of Information from “About Equal” Responses

We have seen that weak pairwise comparison queries consistently decrease wrong answers and im-

prove the performance. However, this improvement is not necessarily merely due to the decrease

in wrong answers. It can also be credited to the information we acquire thanks to “About Equal”

responses.

LDS Driver Tosser FetchReach

Mutual Information (Weak Queries with Info from “About Equal”)
Mutual Information (Weak Queries without Info from “About Equal”)

Volume Removal (Weak Queries with Info from “About Equal”)
Volume Removal (Weak Queries without Info from “About Equal”)

Al
ig

nm
en

t

Figure E.3: The results (mean±s.e.) of the simulations with weak pairwise comparison queries where we use
the information from “About Equal” responses (blue and red lines) and where we do not use (purple and
orange lines).

E.2. ADDITIONAL SIMULATION RESULTS FOR SECTION 4.5.2 151

To investigate the effect of this information, we perform two additional experiments with 100

different simulated human reward functions with weak pairwise comparison queries: First, we use

the information by the “About Equal” responses; and second, we ignore such responses and remove

the query from the query set to prevent repetition. Figure E.3 shows the results. It can be seen

that for both volume removal and mutual information formulations, the information from “About

Equal” option improves the learning performance in Driver, Tosser and FetchReach tasks, whereas

its effect is very small in LDS.

E.1.4 Optimal Stopping under Query-Independent Costs

LDS Driver Tosser Fetch
Mutual Information (Weak Queries) Mutual Information (Strict Queries)

Figure E.4: Simulation results for optimal stopping under query-independent costs. Line plots show cu-
mulative active learning rewards (cumulative difference between the information gain values and the query
costs), averaged over 100 test runs and scaled for better appearance. Histograms show when optimal stop-
ping condition is satisfied.

To investigate optimal stopping performance under query-independent costs, we defined the cost

function as c(Q) = ϖ, which just balances the trade-off between the number of questions and

learning performance. Similar to the query-dependent costs case we described in Section 4.2.4, we

first simulate 100 random users and tune ϖ accordingly in the same way. We then use this tuned

ϖ for our tests with 100 different random users. Figure E.4 shows the results. Optimal stopping

rule enables terminating the process with near-optimal cumulative active learning rewards in all

environments, which again supports H9.

E.2 Additional Simulation Results for Section 4.5.2

We present additional simulation results to compare the proposed scale feedback with weak pairwise

comparisons. For the ExtendedDriver environment from Section 4.5.2, we additionally show data

with higher noise, and show results with the log-likelihood measure used in the user study. Further,

we show the same analysis for the original Driver experiment, and for the simulated version of the

FetchDrink experiment from the user study.

E.2. ADDITIONAL SIMULATION RESULTS FOR SECTION 4.5.2 152

For all the simulation results in this Appendix, we simulated 40 different w∗, each with four

different ϱ∗ ∈ {.25, .5, .75, 1}, making 160 runs in total.

E.2.1 ExtendedDriver

High Noise. In Section 4.5.2 we showed results for user noise σS = 0.1 in Figure 4.23. In addition,

we repeat the same experiment but with σS = 0.3; shown in Figure E.5. Overall, we observe a

poorer performance for all approaches compared to σS = 0.1 – higher noise in the user feedback

makes learning more difficult. Nevertheless, scale feedback still leads to an improvement on both

measures, Alignment and Relative Reward.

Figure E.5: Alignment (left) and Relative Reward (right) for ExtendedDriver with σS = 0.3.

Log-Likelihood. Figure E.6 shows the Log-Likelihood for the ExtendedDriver simulations. When

the noise is small, scale feedback significantly outperforms weak pairwise comparisons under all three

active querying methods. Further, mutual information based method performs best overall, followed

by random. It might be surprising that max regret achieves a lower log-likelihood than random.

Max regret greedily tries to find solutions that are close to optimal. Thus, this approach does not

gather information about comparably good or bad trajectories (with respect to collected reward).

Since the set of test queries is generated randomly, it might contain numerous queries about which

the max regret approach is still uncertain since it only focused on finding close to optimal solutions.

Mutual information based method, on the other hand, minimizes the uncertainty about weights,

regardless of how different the resulting trajectories are. Similarly, random querying is completely

unbiased and thus does not focus on a subset of queries as the max regret approach does.

In Figure E.6 (b) we show the log-likelihood for high noise. Here all three active querying methods

perform nearly identical, and the difference between scale feedback and weak pairwise comparisons

is very small. This is because, when the noise is high, i.e., when the Gaussian over the feedback

value has high variance, the log-likelihood measure does not heavily penalize bad predictions, which

causes all methods to acquire high log-likelihood values.

E.2. ADDITIONAL SIMULATION RESULTS FOR SECTION 4.5.2 153

(a) σS = 0.1 (b) σS = 0.3

Figure E.6: Log-Likelihood for the ExtendedDriver simulations.

E.2.2 Original Driver

Alignment and Relative Reward. Next, we show results for the original Driver experiment.

Figure E.7 shows the Alignment and Relative Reward for low noise (σS = 0.1), FigureE.8 shows

the same measures for high noise (σS = 0.3). While scale feedback still improves Alignment and

Relative Reward for all querying methods, the gap to weak pairwise comparison feedback is smaller

than for the ExtendedDriver. However, we observe that all querying methods achieve a substantially

stronger performance than in the ExtendedDriver model with 10 features, indicating that the original

Driver environment poses a less difficult learning problem with only 4 features. We notice that

the result for weak pairwise comparisons via mutual information optimization achieves a higher

Alignment after 20 iterations than reported in Section 4.2. There are two reasons for this: First,

we use a Gaussian noise instead of the Boltzmann model (also known as MNL or the softmax

model). Second, by emulating weak pairwise comparisons using a slider with step size 1, we change

the model for when users give a neutral (“About Equal”) feedback. Nonetheless, the stronger

performance compared to Section 4.2 suggests that these differences do not negatively impact the

performance of weak comparison queries with mutual information maximization, and thus that the

shown comparisons of scale feedback and weak pairwise comparisons are fair.

Log-Likelihood. We also report the results in the Log-Likelihood measure in Figure E.9. The

results are very similar to the results of the ExtendedDriver environment, except the Log-Likelihood

values increase faster. This is again because the reward is easier to learn in the original Driver

environment with the fewer number of features.

E.2.3 FetchDrink

We now show simulation results for the experimental setup from the user study, using the Fetch

robot: FetchDrink. Figure E.10 shows the Alignment and Relative Reward for low noise (σS =

0.1), Figure E.11 shows the same measures for high noise (σS = 0.3), and Figure E.12 shows the

Log-Likelihood. In terms of the comparisons between different feedback types and different active

E.3. RESULTS WITH TEST SET WITH MIXTURE DATA FOR SECTION 4.5.2 154

Figure E.7: Alignment and Relative Reward for the original Driver with σS = 0.1.

Figure E.8: Alignment and Relative Reward for the original Driver with σS = 0.3.

(a) σS = 0.1 (b) σS = 0.3

Figure E.9: Log-Likelihood for the original Driver.

querying methods, the results have the same trend as the ExtendedDriver and the original Driver

environments.

E.3 Results with Test Set with Mixture Data for Section 4.5.2

In both of our user studies, we used a test set that consists of randomly generated scale questions.

Given the fact that the subjective user ratings did not point out a significant difference between

learning from scale feedback and pairwise comparison queries, one might argue that the superiority

of learning from scale feedback in terms of the Log-Likelihood metric is simply because the test set

also consists of scale feedback. Mathematically, this should not happen, because a good posterior

E.3. RESULTS WITH TEST SET WITH MIXTURE DATA FOR SECTION 4.5.2 155

Figure E.10: Fetch robot with drink serving experiment (FetchDrink) with σS = 0.1.

Figure E.11: Fetch robot with drink serving experiment (FetchDrink) with σS = 0.3.

(a) σS = 0.1 (b) σS = 0.3

Figure E.12: Log-Likelihood for the Fetch robot with drink serving experiment (FetchDrink).

should be able to correctly predict any form of user feedback. However, humans have cognitive

biases, which makes it possible that the posterior learned with the scale questions captures the bias

caused by the scale questions, whereas the posterior learned with the weak pairwise comparisons

cannot do this.

To show this is not the case, we present an additional analysis on the same human data as in

our first user study. For this analysis, we take the reward posteriors that have been learned with

the first 7 queries (of “Scale - Mutual Information”, “Scale - Random”, and “Pairwise - Random”).

Next, we alter the test set as follows. We take (i) the first 3 scale queries from the original test

set, and (ii) the last 3 weak pairwise comparison queries from the original training set of randomly

generated weak pairwise comparison queries (and this is why we only take the first 7 posteriors – we

E.3. RESULTS WITH TEST SET WITH MIXTURE DATA FOR SECTION 4.5.2 156

do not mix the training and test data). Finally, we perform the Log-Likelihood analysis on this

modified test set.

Figure E.13: Additional analysis results are shown (mean±s.e. over 18 subjects).

Results are shown in Figure E.13. It can be seen that even with a test set that consists of mixture

data, the results have the same trend as in the original study results. While having smaller test set

(6 instead of the 10 in the original study) causes larger standard errors, “Scale - Information” and

“Scale - Random” both outperform “Pairwise - Random” with statistical significance (p < 0.05 in

both comparisons). On the other hand, the comparison between “Scale - Information” and “Scale -

Random” gives p = 0.098.

This analysis shows the fact that scale feedback outperforms weak pairwise comparisons in terms

of Log-Likelihood is not because of the data in the test set. Even with a test set that consists of

both scale and weak pairwise comparison data, we see the benefits of learning from scale queries.

However, this analysis does not answer the question why user ratings did not have a significant

difference between the two feedback types. While the answer to this question requires more analysis

and possibly more data collection, we speculate the following reason: the mean user ratings are al-

ways around 4, and even higher than 4 when queries are actively generated with mutual information.

This means the users are happy with the optimized trajectories, so we can say that 10 queries are

enough in this task to find the optimal trajectory. However, while user ratings measure how close

the optimal trajectory with respect to the robot’s posterior is to the optimal trajectory the user has

in mind; Log-Likelihood measures the predictive performance of the posterior. Therefore, having

a high user rating does not necessarily mean the robot can accurately compare two suboptimal tra-

jectories. On the other hand, a high Log-Likelihood value indicates good predictive performance,

which is crucial in many robotics applications, such as behavior modeling. Hence, we claim: (i)

learning from scale feedback improves the predictive performance over learning from weak pairwise

comparisons, and (ii) a more complex task might be needed to show scale feedback leads to more

efficient learning than weak pairwise comparisons, which is also suggested by our simulation studies.

E.4. NUMERICAL RESULTS FOR SECTION 4.5.2 157

E.4 Numerical Results for Section 4.5.2

Here, we present Table E.1 where we report the numerical results of the simulations in Section 4.5.2

at iterations 0, 5, 10, 20; and Table E.2 where we report the final numerical results of the user studies.

Consistent with the section, the numbers are presented as mean ± standard deviation (simulations)

and standard error (user study).

Table E.1: Numerical results of the simulations at selected iterations i

Mean±Standard Deviation

Plot i = 0 i = 5 i = 10 i = 20

Fig. 4.23 Scale - Information (Alignment) −.01± .33 .62± .19 .81± .16 .9± .08
Fig. 4.23 Pairwise - Information (Alignment) −.02± .31 .52± .18 .67± .16 .79± .15
Fig. 4.23 Scale - MaxRegret (Alignment) .01± .31 .57± .19 .71± .16 .75± .16
Fig. 4.23 Pairwise - MaxRegret (Alignment) −.03± .3 .47± .23 .59± .17 .67± .18
Fig. 4.23 Scale - Random (Alignment) .01± .33 .52± .2 .67± .17 .77± .17
Fig. 4.23 Pairwise - Random (Alignment) .02± .32 .4± .21 .52± .2 .63± .21
Fig. 4.23 Scale - Information (Rel. Reward) .51± .32 .92± .12 .98± .04 1.0± .01
Fig. 4.23 Pairwise - Information (Rel. Reward) .5± .3 .89± .12 .95± .07 .98± .04
Fig. 4.23 Scale - MaxRegret (Rel. Reward) .52± .31 .96± .07 .99± .02 1.0± .01
Fig. 4.23 Pairwise - MaxRegret (Rel. Reward) .51± .3 .91± .12 .95± .06 .96± .06
Fig. 4.23 Scale - Random (Rel. Reward) .52± .32 .89± .14 .96± .07 .99± .03
Fig. 4.23 Pairwise - Random (Rel. Reward) .52± .32 .85± .15 .89± .12 .93± .12

E.5 Synthetic Experiment for Section 4.6.3

E.5.1 Testing M > 2

Figure E.14: Different querying methods are compared on a synthetic environment (mean±se over 250 runs).

For our first experiment with synthetic data, we demonstrate effectiveness of our approach for

learning mixtures of more than two Plackett-Luce models. In particular, we evaluate our approaches

using 250 sets of five randomly simulated reward weights (M = 5, |Q| = 6), and trajectory features

E.5. SYNTHETIC EXPERIMENT FOR SECTION 4.6.3 158

Table E.2: Final numerical results of the user study

Plot Mean±Standard Error

Fig. 4.24(a) Scale - Information −29.7± 1.2
Fig. 4.24(a) Scale - Random −36.2± 2.2
Fig. 4.24(a) Pairwise - Random −51.2± 3.5
Fig. 4.24(b) Scale - Information 4.2± 0.2
Fig. 4.24(b) Scale - Random 3.6± 0.3
Fig. 4.24(b) Pairwise - Random 3.9± 0.2
Fig. 4.24(c) Scale (Easiness) 3.8± 0.2
Fig. 4.24(c) Pairwise (Easiness) 4.5± 0.2
Fig. 4.24(c) Scale (Expressiveness) 3.8± 0.3
Fig. 4.24(c) Pairwise (Expressiveness) 4.1± 0.2
Fig. 4.25(a) Scale - Information −28.8± 1.3
Fig. 4.25(a) Pairwise - Information −46.0± 3.1
Fig. 4.25(b) Scale - Information 4.5± 0.2
Fig. 4.25(b) Pairwise - Information 4.2± 0.3
Fig. 4.25(c) Scale (Easiness) 3.6± 0.3
Fig. 4.25(c) Pairwise (Easiness) 4.6± 0.2
Fig. 4.25(c) Scale (Expressiveness) 4.3± 0.2
Fig. 4.25(c) Pairwise (Expressiveness) 4.3± 0.2

defined by Φ(ξ1:10) ∼ N (0, I), Φ(ξ11:110) ∼ N (0, 0.1I), and Φ(ξ111:1110) ∼ N (0, 0.01I) where I is

the 3× 3 identity matrix and ξi:i′ refers to the ith through i′
th

trajectory in the trajectory dataset

for generating queries. This environment models complex multimodal structure in the trajectory

feature space, which is common to many robotic settings.

Figure E.15: Different values of M for the mutual information maximization approach are compared
(mean±se over 100 runs).

Figure E.14 shows the results of our experiments. We see our approach, Mixture - MI dramatically

outperforms the other approaches in both the MSE and Log-Likelihood metrics.

E.6. ADDITIONAL UNIMODAL BASELINE FOR SECTION 4.6.3 159

E.5.2 Testing Robustness to M Parameter

We also test the robustness of our Mixture - MI approach to misspecified M values. We repeat

the previous experiment, testing the Mixture - MI approach varying the misspecified value of M

between M = 1 (Unimodal) and M = 3, 5, 7 (see Figure E.15). We use the Log-Likelihood metric

since MSE is not well-defined for methods with M ̸= 5 because they learn a mixture of a different

number of reward functions from the true synthetic mixture.

We see the best performance occurs for M = 5 and M = 7, with only M = 1 performing

significantly worse. We conclude that in this experiment our Mixture - MI approach is relatively

robust to the value of M , as long as a sufficiently large value > 1 is selected.

E.6 Additional Unimodal Baseline for Section 4.6.3

We test an additional baseline on the random queries made during user studies to show the supe-

riority of our learning approach. The additional baseline represents selecting the unimodal reward

with fixed norm that maximizes the reward of the top trajectory of each expert-ranked query. We

compare this baseline against a learning method that computes the bimodal MLE of the reward

function. Formally, for query responses DR =
{
Q(i′), q(i

′)
}i
i′=1

with ξ(i
′) the top trajectory in the

ranking q(i
′) = (ξ(i

′), . . .), we define this baseline to learn the parameters (w,α) where α = 1 and

w̃ =

i∑
i′=1

Φ(ξ(i
′))

w =
w̃

∥w̃∥2
.

Note that we do not vary the querying method in this experiment. Rather, we compare two

methods of learning reward weights from the 15 random human queries that were performed by

the Mixture - Random algorithm on the FetchBanana and LunarLander during our user studies,

and then evaluate these methods on the 10 random evaluation queries presented to the humans at

the end of the experiment. We compare the two methods in terms of the Log-Likelihood metric.

The results are presented in Table E.3, with our method denoted as “Mixture MLE” and the new

baseline described above denoted as “Baseline”.

Table E.3: Additional User Study Reward Learning Baseline

LunarLander Fetch Robot

Log-Likelihood

p-value

Baseline Mixture MLE

−8.23± 0.31 −5.91± 0.18

6.2 · 10−7

Baseline Mixture MLE

−5.21± 0.22 −4.70± 0.35

0.11

E.6. ADDITIONAL UNIMODAL BASELINE FOR SECTION 4.6.3 160

We see the Mixture MLE method outperforms the Baseline method on both environments, with

statistical significance (p < 0.05) in LunarLander when conducting paired t-tests.

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.

In Proceedings of the twenty-first international conference on Machine learning, page 1. ACM,

2004.

[2] Pieter Abbeel and Andrew Y Ng. Exploration and apprenticeship learning in reinforcement

learning. In Proceedings of the 22nd international conference on Machine learning, pages 1–8.

ACM, 2005.

[3] Ayush Agrawal, Omar Harib, Ayonga Hereid, Sylvain Finet, Matthieu Masselin, Laurent Praly,

Aaron D Ames, Koushil Sreenath, and Jessy W Grizzle. First steps towards translating HZD

control of bipedal robots to decentralized control of exoskeletons. IEEE Access, 5:9919–9934,

2017.

[4] Nir Ailon. An active learning algorithm for ranking from pairwise preferences with an almost

optimal query complexity. Journal of Machine Learning Research, 13(Jan):137–164, 2012.

[5] Baris Akgun, Maya Cakmak, Karl Jiang, and Andrea L Thomaz. Keyframe-based learning

from demonstration. International Journal of Social Robotics, 4(4):343–355, 2012.

[6] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning. In Joint

European Conference on Machine Learning and Knowledge Discovery in Databases, pages 12–

27. Springer, 2011.

[7] Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active preference learning-based

reinforcement learning. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 116–131. Springer, 2012.

[8] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch, and Pieter

Abbeel. Continuous adaptation via meta-learning in nonstationary and competitive environ-

ments. In International Conference on Learning Representations, 2018.

[9] Aaron D Ames. Human-inspired control of bipedal walking robots. IEEE Transactions on

Automatic Control, 59(5):1115–1130, 2014.

161

BIBLIOGRAPHY 162

[10] Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo markov chain algorithms

for sampling strongly rayleigh distributions and determinantal point processes. In Conference

on Learning Theory, pages 103–115, 2016.

[11] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polyno-

mials ii: high-dimensional walks and an fpras for counting bases of a matroid. In Proceedings

of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1–12, 2019.

[12] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-

der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight

experience replay. Advances in neural information processing systems, 30, 2017.

[13] Cédric Archambeau and François Caron. Plackett-luce regression: a new bayesian model

for polychotomous data. In Proceedings of the Twenty-Eighth Conference on Uncertainty in

Artificial Intelligence, pages 84–92, 2012.

[14] Brenna Argall, Brett Browning, and Manuela Veloso. Learning by demonstration with critique

from a human teacher. In 2007 2nd ACM/IEEE International Conference on Human-Robot

Interaction (HRI), pages 57–64. IEEE, 2007.

[15] Brian S Armour, Elizabeth A Courtney-Long, Michael H Fox, Heidi Fredine, and Anthony

Cahill. Prevalence and causes of paralysis—united states, 2013. American journal of public

health, 106(10):1855–1857, 2016.

[16] Monica Babes, Vukosi N Marivate, Kaushik Subramanian, and Michael L Littman. Appren-

ticeship learning about multiple intentions. In ICML, 2011.

[17] Vivek Bagaria, Govinda Kamath, Vasilis Ntranos, Martin Zhang, and David Tse. Medoids in

almost-linear time via multi-armed bandits. In International Conference on Artificial Intelli-

gence and Statistics, pages 500–509. PMLR, 2018.

[18] Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. Intention-aware online

pomdp planning for autonomous driving in a crowd. In International Conference on Robotics

and Automation (ICRA), pages 454–460. IEEE, 2015.

[19] Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning robot

objectives from physical human interaction. Proceedings of Machine Learning Research, 78:

217–226, 2017.

[20] Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. Learning from

physical human corrections, one feature at a time. In Proceedings of the 2018 ACM/IEEE

International Conference on Human-Robot Interaction, pages 141–149. ACM, 2018.

BIBLIOGRAPHY 163

[21] Chandrayee Basu, Qian Yang, David Hungerman, Mukesh Sinahal, and Anca D Draqan. Do

you want your autonomous car to drive like you? In 2017 12th ACM/IEEE International

Conference on Human-Robot Interaction (HRI, pages 417–425. IEEE, 2017.

[22] Chandrayee Basu, Mukesh Singhal, and Anca D Dragan. Learning from richer human guid-

ance: Augmenting comparison-based learning with feature queries. In Proceedings of the 2018

ACM/IEEE International Conference on Human-Robot Interaction, pages 132–140. ACM,

2018.

[23] Chandrayee Basu, Erdem Bıyık, Zhixun He, Mukesh Singhal, and Dorsa Sadigh. Active

learning of reward dynamics from hierarchical queries. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), November 2019. doi:

10.1109/IROS40897.2019.8968522.

[24] Christian Bauckhage. Numpy/scipy recipes for data science: k-medoids clustering. research-

gate.net, Feb, 2015.

[25] Mark Beliaev, Woodrow Z. Wang, Daniel A. Lazar, Erdem Bıyık, Dorsa Sadigh, and Ramtin

Pedarsani. Emergent correlated equilibrium through synchronized exploration. In RSS 2020

Workshop on Emergent Behaviors in Human-Robot Systems, July 2020.

[26] Mark Beliaev, Erdem Bıyık, Daniel A. Lazar, Woodrow Z. Wang, Dorsa Sadigh, and Ramtin

Pedarsani. Incentivizing routing choices for safe and efficient transportation in the face of the

covid-19 pandemic. In 12th ACM/IEEE International Conference on Cyber-Physical Systems

(ICCPS), May 2021. doi: 10.1145/3450267.3450546.

[27] Moshe Ben-Akiva and Steven R Lerman. Discrete choice analysis: theory and application to

travel demand. Transportation Studies, 2018.

[28] Moshe E Ben-Akiva, Steven R Lerman, and Steven R Lerman. Discrete choice analysis: theory

and application to travel demand, volume 9. MIT press, 1985.

[29] Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-

based online learning with dueling bandits: A survey. Journal of Machine Learning Research,

22(7):1–108, 2021.

[30] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe controller optimization

for quadrotors with Gaussian processes. In IEEE International Conference on Robotics and

Automation (ICRA), 2016.

[31] Holger Berndt, Jorg Emmert, and Klaus Dietmayer. Continuous driver intention recognition

with hidden markov models. In 11th International IEEE Conference on Intelligent Trans-

portation Systems, pages 1189–1194. IEEE, 2008.

BIBLIOGRAPHY 164

[32] Dimitris Bertsimas, John Tsitsiklis, et al. Simulated annealing. Statistical science, 8(1):10–15,

1993.

[33] Erdem Bıyık. Learning from humans for adaptive interaction. In The 17th Annual Human-

Robot Interaction Pioneers Workshop (HRI Pioneers), March 2022.

[34] Erdem Bıyık and Dorsa Sadigh. Batch active preference-based learning of reward functions.

In 2nd Conference on Robot Learning (CoRL), volume 87 of Proceedings of Machine Learning

Research, pages 519–528. PMLR, October 2018.

[35] Erdem Bıyık, Daniel A Lazar, Ramtin Pedarsani, and Dorsa Sadigh. Altruistic autonomy:

Beating congestion on shared roads. In Workshop on Algorithmic Foundations of Robotics

(WAFR), December 2018. doi: 10.1007/978-3-030-44051-0\ 51.

[36] Erdem Bıyık, Daniel A. Lazar, Dorsa Sadigh, and Ramtin Pedarsani. The green choice:

Learning and influencing human decisions on shared roads. In Proceedings of the 58th IEEE

Conference on Decision and Control (CDC), December 2019. doi: 10.1109/CDC40024.2019.

9030169.

[37] Erdem Bıyık, Jonathan Margoliash, S Ryan Alimo, and Dorsa Sadigh. Efficient and safe

exploration in deterministic markov decision processes with unknown transition models. In

Proceedings of American Control Conference (ACC), July 2019. doi: 10.23919/ACC.2019.

8815276.

[38] Erdem Bıyık, Malayandi Palan, Nicholas C. Landolfi, Dylan P. Losey, and Dorsa Sadigh.

Asking easy questions: A user-friendly approach to active reward learning. In 3rd Conference

on Robot Learning (CoRL), October 2019.

[39] Erdem Bıyık, Kenneth Wang, Nima Anari, and Dorsa Sadigh. Batch active learning using

determinantal point processes. arXiv preprint arXiv:1906.07975, June 2019.

[40] Erdem Bıyık, Nicolas Huynh, Mykel J. Kochenderfer, and Dorsa Sadigh. Active preference-

based gaussian process regression for reward learning. In Proceedings of Robotics: Science and

Systems (RSS), July 2020. doi: 10.15607/rss.2020.xvi.041.

[41] Erdem Bıyık, Daniel A. Lazar, Ramtin Pedarsani, and Dorsa Sadigh. Incentivizing efficient

equilibria in traffic networks with mixed autonomy. IEEE Transactions on Control of Network

Systems, 8(4):1717–1729, 2021. doi: 10.1109/TCNS.2021.3084045.

[42] Erdem Bıyık, Anusha Lalitha, Rajarshi Saha, Andrea Goldsmith, and Dorsa Sadigh. Partner-

aware algorithms in decentralized cooperative bandit teams. In Proceedings of the 36th AAAI

Conference on Artificial Intelligence, February 2022.

BIBLIOGRAPHY 165

[43] Erdem Bıyık, Dylan P. Losey, Malayandi Palan, Nick Landolfi, Gleb Shevchuk, and Dorsa

Sadigh. Learning reward functions from diverse sources of human feedback: Optimally in-

tegrating demonstrations and preferences. The International Journal of Robotics Research

(IJRR), 41(1):45–67, January 2022. doi: 10.1177/02783649211041652.

[44] Erdem Bıyık, Aditi Talati, and Dorsa Sadigh. Aprel: A library for active preference-based

reward learning algorithms. In ACM/IEEE International Conference on Human-Robot Inter-

action (HRI), March 2022.

[45] Andreea Bobu, Andrea Bajcsy, Jaime F Fisac, and Anca D Dragan. Learning under misspec-

ified objective spaces. In Conference on Robot Learning, pages 796–805, 2018.

[46] Alexei Borodin and Eric M Rains. Eynard–mehta theorem, schur process, and their pfaffian

analogs. Journal of statistical physics, 121(3-4):291–317, 2005.

[47] Allan Borodin, Hyun Chul Lee, and Yuli Ye. Max-sum diversification, monotone submodular

functions and dynamic updates. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI

symposium on Principles of Database Systems, pages 155–166. ACM, 2012.

[48] Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. SIGGRAPH Sketches,

10:1278780–1278807, 2007.

[49] Erik Brockbank, Haloliang Wang, Justin Yang, Suvir Mirchandani, Erdem Bıyık, Dorsa

Sadigh, and Judith E. Fan. How do people incorporate advice from artificial agents when mak-

ing physical judgments? In 44th Annual Meeting of the Cognitive Science Society (CogSci),

July 2022.

[50] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[51] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond

suboptimal demonstrations via inverse reinforcement learning from observations. In Interna-

tional Conference on Machine Learning, pages 783–792, 2019.

[52] Daniel S Brown and Scott Niekum. Deep bayesian reward learning from preferences. In

Workshop on Safety and Robustness in Decision Making at the 33rd Conference on Neural

Information Processing Systems (NeurIPS) 2019, 2019.

[53] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learn-

ing via automatically-ranked demonstrations. In Conference on Robot Learning, pages 330–359.

PMLR, 2020.

BIBLIOGRAPHY 166

[54] Róbert Busa-Fekete and Eyke Hüllermeier. A survey of preference-based online learning with

bandit algorithms. In International Conference on Algorithmic Learning Theory, pages 18–39.

Springer, 2014.

[55] Róbert Busa-Fekete, Eyke Hüllermeier, and Balázs Szörényi. Preference-based rank elicita-

tion using statistical models: The case of mallows. In International Conference on Machine

Learning, pages 1071–1079. PMLR, 2014.

[56] Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott

Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, et al. Scaling

data-driven robotics with reward sketching and batch reinforcement learning. In Proceedings

of Robotics: Science and Systems (RSS), 2020.

[57] Maya Cakmak, Siddhartha S Srinivasa, Min Kyung Lee, Jodi Forlizzi, and Sara Kiesler. Hu-

man preferences for robot-human hand-over configurations. In 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1986–1993. IEEE, 2011.

[58] Zhangjie Cao and Dorsa Sadigh. Learning from imperfect demonstrations from agents with

varying dynamics. IEEE Robotics and Automation Letters (RA-L), July 2021. doi: 10.1109/

LRA.2021.3068912.

[59] Zhangjie Cao, Erdem Bıyık, Woodrow Z. Wang, Allan Raventos, Adrien Gaidon, Guy Rosman,

and Dorsa Sadigh. Reinforcement learning based control of imitative policies for near-accident

driving. In Proceedings of Robotics: Science and Systems (RSS), July 2020. doi: 10.15607/

rss.2020.xvi.039.

[60] Zhangjie Cao, Erdem Bıyık, Guy Rosman, and Dorsa Sadigh. Leveraging smooth attention

prior for multi-agent trajectory prediction. In International Conference on Robotics and Au-

tomation (ICRA), May 2022.

[61] Thiago NC Cardoso, Rodrigo M Silva, Sérgio Canuto, Mirella M Moro, and Marcos A

Gonçalves. Ranked batch-mode active learning. Information Sciences, 379:313–337, 2017.

[62] Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Local search for max-sum diver-

sification. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 130–142. Society for Industrial and Applied Mathematics, 2017.

[63] Lawrence Chan, Andrew Critch, and Anca Dragan. Human irrationality: both bad and good

for reward inference. arXiv preprint arXiv:2111.06956, 2021.

[64] Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration

via self-supervised reward regression. In Proceedings of the 4th Conference on Robot Learning

(CoRL), 2020.

BIBLIOGRAPHY 167

[65] Lin Chen, Hamed Hassani, and Amin Karbasi. Near-optimal active learning of halfspaces

via query synthesis in the noisy setting. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 31, 2017.

[66] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking ag-

gregation in a crowdsourced setting. In Proceedings of the sixth ACM international conference

on Web search and data mining, pages 193–202, 2013.

[67] Xi Chen, Yuanzhi Li, and Jieming Mao. A nearly instance optimal algorithm for top-k ranking

under the multinomial logit model. In Proceedings of the Twenty-Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 2504–2522. SIAM, 2018.

[68] Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive

submodular optimization. ICML (1), 28:160–168, 2013.

[69] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm.

The american statistician, 49(4):327–335, 1995.

[70] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Learning a mixture of two multinomial

logits. In International Conference on Machine Learning, pages 961–969. PMLR, 2018.

[71] Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstra-

tions. In International Workshop on the Algorithmic Foundations of Robotics, pages 228–245.

Springer, 2018.

[72] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.

Deep reinforcement learning from human preferences. In Advances in Neural Information

Processing Systems, pages 4299–4307, 2017.

[73] Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In Interna-

tional Conference on Machine Learning (ICML), pages 137–144, 2005.

[74] Wei Chu, Zoubin Ghahramani, and Christopher KI Williams. Gaussian processes for ordinal

regression. Journal of machine learning research, 6(7):1019–1041, 2005.

[75] Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume sub-matrix of a matrix

and related problems. Theoretical Computer Science, 410(47):4801, 2009.

[76] Ali Civril and Malik Magdon-Ismail. Exponential inapproximability of selecting a maximum

volume sub-matrix. Algorithmica, 65(1):159–176, 2013.

[77] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,

2012.

BIBLIOGRAPHY 168

[78] Yuchen Cui and Scott Niekum. Active reward learning from critiques. In 2018 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 6907–6914. IEEE, 2018.

[79] Nguyen Viet Cuong, Wee Sun Lee, Nan Ye, Kian Ming A Chai, and Hai Leong Chieu. Active

learning for probabilistic hypotheses using the maximum gibbs error criterion. In Advances in

Neural Information Processing Systems, pages 1457–1465, 2013.

[80] Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward

learning with a novel acquisition function. Autonomous Robots, 39(3):389–405, 2015.

[81] Nathaniel D Daw, John P O’doherty, Peter Dayan, Ben Seymour, and Raymond J Dolan.

Cortical substrates for exploratory decisions in humans. Nature, 441(7095):876, 2006.

[82] Pierpaolo De Blasi, Lancelot F James, John W Lau, et al. Bayesian nonparametric estimation

and consistency of mixed multinomial logit choice models. Bernoulli, 16(3):679–704, 2010.

[83] Weishan Dong, Jian Li, Renjie Yao, Changsheng Li, Ting Yuan, and Lanjun Wang. Charac-

terizing driving styles with deep learning. arXiv preprint arXiv:1607.03611, 2016.

[84] Anca D Dragan and Siddhartha S Srinivasa. Formalizing assistive teleoperation. MIT Press,

July, 2012.

[85] Ehsan Elhamifar, Guillermo Sapiro, and S Shankar Sastry. Dissimilarity-based sparse subset

selection. IEEE transactions on pattern analysis and machine intelligence, 38(11):2182–2197,

2016.

[86] Cong Fei, Bin Wang, Yuzheng Zhuang, Zongzhang Zhang, Jianye Hao, Hongbo Zhang, Xuewu

Ji, and Wulong Liu. Triple-gail: A multi-modal imitation learning framework with genera-

tive adversarial nets. In Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI-20, pages 2929–2935, July 2020.

[87] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal

control via policy optimization. In International conference on machine learning, pages 49–58.

PMLR, 2016.

[88] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual

imitation learning via meta-learning. In Conference on robot learning, pages 357–368. PMLR,

2017.

[89] Jaime F. Fisac, Eli Bronstein, Elis Stefansson, Dorsa Sadigh, S. Shankar Sastry, and Anca D.

Dragan. Hierarchical game-theoretic planning for autonomous vehicles. In International Con-

ference on Robotics and Automation (ICRA), May 2019.

BIBLIOGRAPHY 169

[90] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error

in actor-critic methods. In International conference on machine learning, pages 1587–1596.

PMLR, 2018.

[91] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning and ranking by pairwise com-

parison. In Preference learning, pages 65–82. Springer, 2010.

[92] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-

based reinforcement learning: a formal framework and a policy iteration algorithm. Machine

learning, 89(1-2):123–156, 2012.

[93] Gerd Gigerenzer and Reinhard Selten. Bounded rationality: The adaptive toolbox. MIT press,

2002.

[94] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification. In

Proceedings of the 18th international conference on World wide web, pages 381–390. ACM,

2009.

[95] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in

active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:

427–486, 2011.

[96] Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-optimal bayesian active learning

with noisy observations. In Advances in Neural Information Processing Systems, pages 766–

774, 2010.

[97] Javier González, Zhenwen Dai, Andreas Damianou, and Neil D Lawrence. Preferential bayesian

optimization. In International Conference on Machine Learning (ICML), pages 1282–1291,

2017.

[98] Nakul Gopalan, Nina Moorman, Manisha Natarajan, and Matthew Gombolay. Negative re-

sult for learning from demonstration: Challenges for end-users teaching robots with task and

motion planning abstractions. In Proceedings of Robotics: Science and Systems (RSS), June

2022.

[99] Daniel H Grollman and Aude Billard. Donut as i do: Learning from failed demonstrations. In

International Conference on Robotics and Automation (ICRA), 2011.

[100] Shengbo Guo and Scott Sanner. Real-time multiattribute bayesian preference elicitation with

pairwise comparison queries. In Proceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, pages 289–296, 2010.

[101] Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Advances

in neural information processing systems, pages 593–600, 2008.

BIBLIOGRAPHY 170

[102] Thomas Gurriet, Sylvain Finet, Guilhem Boeris, Alexis Duburcq, Ayonga Hereid, Omar Harib,

Matthieu Masselin, Jessy Grizzle, and Aaron D Ames. Towards restoring locomotion for

paraplegics: Realizing dynamically stable walking on exoskeletons. In International Conference

on Robotics and Automation, pages 2804–2811. IEEE, 2018.

[103] Heikki Haario, Eero Saksman, Johanna Tamminen, et al. An adaptive metropolis algorithm.

Bernoulli, 7(2):223–242, 2001.

[104] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor. In International

conference on machine learning, pages 1861–1870. PMLR, 2018.

[105] Joseph Y Halpern, Rafael Pass, and Lior Seeman. Decision theory with resource-bounded

agents. Topics in cognitive science, 6(2):245–257, 2014.

[106] Omar Harib, Ayonga Hereid, Ayush Agrawal, Thomas Gurriet, Sylvain Finet, Guilhem Boeris,

Alexis Duburcq, M Eva Mungai, Mattieu Masselin, Aaron D Ames, et al. Feedback control

of an exoskeleton for paraplegics: Toward robustly stable, hands-free dynamic walking. IEEE

Control Systems Magazine, 38(6):61–87, 2018.

[107] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph Lim. Multi-

modal imitation learning from unstructured demonstrations using generative adversarial nets.

In 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), pages

1236–1246, 2018.

[108] Ayonga Hereid, Christian M Hubicki, Eric A Cousineau, and Aaron D Ames. Dynamic hu-

manoid locomotion: A scalable formulation for HZD gait optimization. IEEE Transactions on

Robotics, 34(2):370–387, 2018.

[109] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in

Neural Information Processing Systems (NeurIPS), pages 4565–4573, 2016.

[110] Rachel Holladay, Shervin Javdani, Anca Dragan, and Siddhartha Srinivasa. Active comparison

based learning incorporating user uncertainty and noise. In RSS Workshop on Model Learning

for Human-Robot Communication, 2016.

[111] EA Holmes, MB Bonsall, SA Hales, H Mitchell, F Renner, SE Blackwell, P Watson, GM Good-

win, and M Di Simplicio. Applications of time-series analysis to mood fluctuations in bipolar

disorder to promote treatment innovation: a case series. Translational Psychiatry, 6(1):e720,

2016.

[112] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning

for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

BIBLIOGRAPHY 171

[113] Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Jose M Hernández-Lobato. Collabora-

tive gaussian processes for preference learning. In Advances in Neural Information Processing

Systems (NeurIPS), pages 2096–2104, 2012.

[114] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Re-

ward learning from human preferences and demonstrations in atari. In Advances in neural

information processing systems, pages 8011–8023, 2018.

[115] Shervin Javdani, Siddhartha S Srinivasa, and J Andrew Bagnell. Shared autonomy via hind-

sight optimization. Robotics science and systems: online proceedings, 2015, 2015.

[116] Bjørn Sand Jensen and Jens Brehm Nielsen. Pairwise judgements and absolute ratings with

gaussian process priors. DTU, IMM, Tech. Rep., Nov, 2011.

[117] Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk.

In Handbook of the fundamentals of financial decision making: Part I, pages 99–127. World

Scientific, 2013.

[118] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional Bayesian

optimisation and bandits via additive models. In International conference on machine learning,

pages 295–304, 2015.

[119] Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with

gaussian processes for object categorization. In International Conference on Computer Vision

(ICCV), pages 1–8. IEEE, 2007.

[120] Sydney Katz, Amir Maleki, Erdem Bıyık, and Mykel J. Kochenderfer. Preference-based learn-

ing of reward function features. arXiv preprint arXiv:2103.02727, March 2021.

[121] Sydney M Katz, Anne-Claire Le Bihan, and Mykel J Kochenderfer. Learning an urban air

mobility encounter model from expert preferences. In 2019 IEEE/AIAA 38th Digital Avionics

Systems Conference (DASC), September 2019.

[122] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. North-Holland,

1987.

[123] Rebecca P Khurshid and Katherine J Kuchenbecker. Data-driven motion mappings improve

transparency in teleoperation. Presence: Teleoperators and Virtual Environments, 24(2):132–

154, 2015.

[124] Chun-Wa Ko, Jon Lee, and Maurice Queyranne. An exact algorithm for maximum entropy

sampling. Operations Research, 43(4):684–691, 1995.

BIBLIOGRAPHY 172

[125] Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability, 3:

71–104, 2014.

[126] KS Krishnan. Incorporating thresholds of indifference in probabilistic choice models. Manage-

ment science, 23(11):1224–1233, 1977.

[127] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In Proceedings

of the 28th International Conference on Machine Learning (ICML-11), pages 1193–1200, 2011.

[128] Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Now

Publishers Inc., Hanover, MA, USA, 2012. ISBN 1601986289.

[129] Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel Fisher, and Denis Charles. Structured

labeling for facilitating concept evolution in machine learning. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 3075–3084. ACM, 2014.

[130] Dana Kulic and Elizabeth A Croft. Affective state estimation for human–robot interaction.

IEEE Transactions on Robotics, 23(5):991–1000, 2007.

[131] Minae Kwon, Erdem Bıyık, Aditi Talati, Karan Bhasin, Dylan P. Losey, and Dorsa Sadigh.

When humans aren’t optimal: Robots that collaborate with risk-aware humans. In ACM/IEEE

International Conference on Human-Robot Interaction (HRI), March 2020. doi: 10.1145/

3319502.3374832.

[132] Daniel A. Lazar, Erdem Bıyık, Dorsa Sadigh, and Ramtin Pedarsani. Learning how to dynam-

ically route autonomous vehicles on shared roads. Transportation Research Part C: Emerging

Technologies, 130:103258, September 2021. ISSN 0968-090X. doi: 10.1016/j.trc.2021.103258.

[133] John R Lepird, Michael P Owen, and Mykel J Kochenderfer. Bayesian preference elicitation

for multiobjective engineering design optimization. Journal of Aerospace Information Systems,

12(10):634–645, 2015.

[134] Chengtao Li, Suvrit Sra, and Stefanie Jegelka. Fast mixing markov chains for strongly rayleigh

measures, dpps, and constrained sampling. In Advances in Neural Information Processing

Systems, pages 4188–4196, 2016.

[135] Kejun Li, Maegan Tucker, Erdem Bıyık, Ellen Novoseller, Joel W. Burdick, Yanan Sui, Dorsa

Sadigh, Yisong Yue, and Aaron D. Ames. Roial: Region of interest active learning for charac-

terizing exoskeleton gait preference landscapes. In International Conference on Robotics and

Automation (ICRA), May 2021. doi: 10.1109/icra48506.2021.9560840.

[136] Mengxi Li, Alper Canberk, Dylan P Losey, and Dorsa Sadigh. Learning human objectives from

sequences of physical corrections. In International Conference on Robotics and Automation

(ICRA). IEEE, 2021.

BIBLIOGRAPHY 173

[137] Stacy Liberatore. Self-driving race car crashes straight into a wall from the

starting line during the world’s first autonomous race series. Daily Mail,

2020. URL https://www.dailymail.co.uk/sciencetech/article-8899021/

Self-driving-race-car-crashes-straight-wall-starting-line-Roborace.html.

[138] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval

Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.

In International Conference on Learning Representations, 2016.

[139] Allen Liu and Ankur Moitra. Efficiently learning mixtures of mallows models. In 2018 IEEE

59th Annual Symposium on Foundations of Computer Science (FOCS), pages 627–638, 2018.

[140] Siyuan Liu, Miguel Araujo, Emma Brunskill, Rosaldo Rossetti, Joao Barros, and Ramayya

Krishnan. Understanding sequential decisions via inverse reinforcement learning. In 2013

IEEE 14th International Conference on Mobile Data Management, volume 1, pages 177–186.

IEEE, 2013.

[141] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,

28(2):129–137, 1982.

[142] Dylan P Losey and Marcia K O’Malley. Including uncertainty when learning from human

corrections. In Proceedings of the 2nd Conference on Robot Learning (CoRL), pages 123–132.

PMLR, 2018.

[143] Alicia Lotz, Klas Ihme, Audrey Charnoz, Pantelis Maroudis, Ivan Dmitriev, and Andreas

Wendemuth. Recognizing behavioral factors while driving: A real-world multimodal corpus to

monitor the driver’s affective state. In Proceedings of the Eleventh International Conference

on Language Resources and Evaluation (LREC-2018), 2018.

[144] Tyler Lu and Craig Boutilier. Learning mallows models with pairwise preferences. In Proceed-

ings of the 28th International Conference on International Conference on Machine Learning,

pages 145–152, 2011.

[145] Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with

pairwise-preference data. Journal of Machine Learning Research, 15(117):3963–4009, 2014.

[146] Christopher G Lucas, Thomas L Griffiths, Fei Xu, and Christine Fawcett. A rational model

of preference learning and choice prediction by children. In Advances in neural information

processing systems, pages 985–992, 2009.

[147] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation, 2012.

[148] Zelda E Mariet, Suvrit Sra, and Stefanie Jegelka. Exponentiated strongly rayleigh distribu-

tions. In Advances in Neural Information Processing Systems, pages 4464–4474, 2018.

BIBLIOGRAPHY 174

[149] Albert Maydeu-Olivares. Thurstonian modeling of ranking data via mean and covariance

structure analysis. Psychometrika, 64(3):325–340, 1999.

[150] Lucas Maystre and Matthias Grossglauser. Fast and accurate inference of plackett-luce models.

In Proceedings of the 28th International Conference on Neural Information Processing Systems-

Volume 1, pages 172–180, 2015.

[151] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

[152] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-

ment learning. In International conference on machine learning, pages 1928–1937. PMLR,

2016.

[153] Jeremy Morton and Mykel J Kochenderfer. Simultaneous policy learning and latent state infer-

ence for imitating driver behavior. In 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), pages 1–6, 2017.

[154] Vivek Myers, Erdem Bıyık, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards

from rankings. In 5th Conference on Robot Learning (CoRL), November 2021.

[155] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,

volume 1, page 2, 2000.

[156] Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary gaussian process

classification. Journal of Machine Learning Research, 9(Oct):2035–2078, 2008.

[157] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient model learn-

ing from joint-action demonstrations for human-robot collaborative tasks. In 2015 10th

ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 189–196.

IEEE, 2015.

[158] Stefanos Nikolaidis, David Hsu, and Siddhartha Srinivasa. Human-robot mutual adaptation in

collaborative tasks: Models and experiments. The International Journal of Robotics Research,

36(5-7):618–634, 2017.

[159] Malayandi Palan, Gleb Shevchuk, Nicholas C. Landolfi, and Dorsa Sadigh. Learning reward

functions by integrating human demonstrations and preferences. In Proceedings of Robotics:

Science and Systems (RSS), June 2019.

[160] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in

neural information processing systems, 1, 1988.

BIBLIOGRAPHY 175

[161] Li Qian, Jinyang Gao, and HV Jagadish. Learning user preferences by adaptive pairwise

comparison. Proceedings of the VLDB Endowment, 8(11):1322–1333, 2015.

[162] Ahmed H Qureshi, Jacob J Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, and

Michael C Yip. Composing task-agnostic policies with deep reinforcement learning. In In-

ternational Conference on Learning Representations, 2019.

[163] Mattia Racca, Ville Kyrki, and Maya Cakmak. Interactive tuning of robot program parameters

via expected divergence maximization. In Proceedings of the 2020 ACM/IEEE International

Conference on Human-Robot Interaction, pages 629–638, 2020.

[164] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI,

volume 7, pages 2586–2591, 2007.

[165] Giorgia Ramponi, Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, and Marcello

Restelli. Truly batch model-free inverse reinforcement learning about multiple intentions. In

International Conference on Artificial Intelligence and Statistics, pages 2359–2369. PMLR,

2020.

[166] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learn-

ing. MIT Press, 2005.

[167] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In

Proceedings of the 23rd international conference on Machine learning, pages 729–736, 2006.

[168] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, De-

badeepta Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive uav

control in cluttered natural environments. In IEEE International Conference on Robotics and

Automation (ICRA), pages 1765–1772, 2013.

[169] Dorsa Sadigh, S Shankar Sastry, Sanjit A Seshia, and Anca Dragan. Information gathering

actions over human internal state. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 66–73. IEEE, 2016.

[170] Dorsa Sadigh, Shankar Sastry, Sanjit A Seshia, and Anca D Dragan. Planning for autonomous

cars that leverage effects on human actions. In Robotics: Science and Systems, volume 2. Ann

Arbor, MI, USA, 2016.

[171] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. Active preference-

based learning of reward functions. In Proceedings of Robotics: Science and Systems (RSS),

July 2017.

BIBLIOGRAPHY 176

[172] Dorsa Sadigh, Nick Landolfi, Shankar S Sastry, Sanjit A Seshia, and Anca D Dragan. Planning

for cars that coordinate with people: leveraging effects on human actions for planning and

active information gathering over human internal state. Autonomous Robots, 42(7):1405–1426,

2018.

[173] Dorsa Sadigh, S Shankar Sastry, and Sanjit A Seshia. Verifying robustness of human-aware

autonomous cars. IFAC-PapersOnLine, 51(34):131–138, 2019.

[174] Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts, Bastian Bischoff, Heiner Markert, and Marc

Toussaint. Safe exploration for active learning with Gaussian processes. In Joint European

conference on machine learning and knowledge discovery in databases, pages 133–149. Springer,

2015.

[175] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In International conference on machine learning, pages 1889–1897.

PMLR, 2015.

[176] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[177] Volkan Sezer, Tirthankar Bandyopadhyay, Daniela Rus, Emilio Frazzoli, and David Hsu. To-

wards autonomous navigation of unsignalized intersections under uncertainty of human driver

intent. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3578–3585. IEEE, 2015.

[178] Ankit Shah, Samir Wadhwania, and Julie Shah. Interactive robot training for non-markov

tasks. arXiv preprint arXiv:2003.02232, 2020.

[179] David Shinar. Aggressive driving: the contribution of the drivers and the situation. Trans-

portation Research Part F: traffic psychology and behaviour, 1(2):137–160, 1998.

[180] Herbert A Simon. Bounded rationality. In Utility and probability, pages 15–18. Springer, 1990.

[181] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent generative adver-

sarial imitation learning. In Advances in Neural Information Processing Systems (NeurIPS),

pages 7461–7472, 2018.

[182] Bradly C Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning. In

International Conference on Learning Representations, 2017.

[183] Elis Stefansson, Jaime Fisac, Dorsa Sadigh, Shankar Sastry, and Karl H. Johansson. Human-

robot interaction for truck platooning using hierarchical dynamic games. In European Control

Conference (ECC), June 2019.

BIBLIOGRAPHY 177

[184] Hiroaki Sugiyama, Toyomi Meguro, and Yasuhiro Minami. Preference-learning based inverse

reinforcement learning for dialog control. In Thirteenth Annual Conference of the International

Speech Communication Association, 2012.

[185] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. Safe exploration for optimization

with gaussian processes. In International Conference on Machine Learning (ICML), pages

997–1005, 2015.

[186] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Multi-dueling bandits with

dependent arms. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,

2017.

[187] Yanan Sui, Joel Burdick, Yisong Yue, et al. Stagewise safe Bayesian optimization with Gaus-

sian processes. In International Conference on Machine Learning, pages 4781–4789. PMLR,

2018.

[188] John D. Sutter. Amazon seller lists book at $23,698,655.93 – plus shipping. CNN, 2011. URL

http://www.cnn.com/2011/TECH/web/04/25/amazon.price.algorithm/index.html.

[189] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[190] Nitish Thatte, Helei Duan, and Hartmut Geyer. A method for online optimization of lower limb

assistive devices with high dimensional parameter spaces. In IEEE International Conference

on Robotics and Automation (ICRA), 2018.

[191] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based

control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

5026–5033. IEEE, 2012.

[192] Maegan Tucker, Myra Cheng, Ellen Novoseller, Yisong Yue, Joel Burdick, and Aaron D Ames.

Human preference-based learning for high-dimensional optimization of exoskeleton walking

gaits. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2020.

[193] Maegan Tucker, Ellen Novoseller, Claudia Kann, Yanan Sui, Yisong Yue, Joel Burdick, and

Aaron D Ames. Preference-based learning for exoskeleton gait optimization. In 2020 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2020.

[194] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representa-

tion of uncertainty. Journal of Risk and uncertainty, 5(4):297–323, 1992.

BIBLIOGRAPHY 178

[195] T Velmurugan and T Santhanam. Computational complexity between k-means and k-medoids

clustering algorithms for normal and uniform distributions of data points. Journal of computer

science, 6(3):363, 2010.

[196] Paolo Viappiani and Craig Boutilier. Optimal bayesian recommendation sets and myopically

optimal choice query sets. In Advances in neural information processing systems, pages 2352–

2360, 2010.

[197] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on human–robot

collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics,

55:248–266, 2018.

[198] Valeria Vitelli, Øystein Sørensen, Marta Crispino, Arnoldo Frigessi Di Rattalma, and Elja

Arjas. Probabilistic preference learning with the mallows rank model. Journal of Machine

Learning Research, 18(158):1–49, 2018.

[199] Woodrow Z. Wang, Mark Beliaev, Erdem Bıyık, Daniel A. Lazar, Ramtin Pedarsani, and Dorsa

Sadigh. Emergent prosociality in multi-agent games through gifting. In 30th International

Joint Conference on Artificial Intelligence (IJCAI), August 2021. doi: 10.24963/ijcai.2021/61.

[200] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas, et al. Bayesian

optimization in high dimensions via random embeddings. In IJCAI, pages 1778–1784, 2013.

[201] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,

and Nando de Freitas. Sample efficient actor-critic with experience replay. In International

Conference on Learning Representations, 2017.

[202] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer

Publishing Company, Incorporated, 2010. ISBN 1441923225, 9781441923226.

[203] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active

learning. In International Conference on Machine Learning, pages 1954–1963, 2015.

[204] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin, 1(6):80–83,

1945.

[205] Nils Wilde, Dana Kulić, and Stephen L Smith. Bayesian active learning for collaborative

task specification using equivalence regions. IEEE Robotics and Automation Letters, 4(2):

1691–1698, 2019.

[206] Nils Wilde, Alexandru Blidaru, Stephen L Smith, and Dana Kulić. Improving user specifica-

tions for robot behavior through active preference learning: Framework and evaluation. IJRR,

39(6):651–667, 2020.

BIBLIOGRAPHY 179

[207] Nils Wilde, Dana Kulić, and Stephen L. Smith. Active preference learning using maximum

regret. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 10952–10959, 2020.

[208] Nils Wilde, Erdem Bıyık, Dorsa Sadigh, and Stephen L. Smith. Learning reward functions

from scale feedback. In 5th Conference on Robot Learning (CoRL), November 2021.

[209] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learn-

ing, volume 2. MIT press, 2006.

[210] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from

trajectory preference queries. In Advances in neural information processing systems, pages

1133–1141, 2012.

[211] Robert C Wilson and Anne GE Collins. Ten simple rules for the computational modeling of

behavioral data. Elife, 8:e49547, 2019.

[212] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of

preference-based reinforcement learning methods. Journal of Machine Learning Research, 18

(136):1–46, 2017.

[213] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich. Fetch and

freight: Standard platforms for service robot applications. InWorkshop on Autonomous Mobile

Service Robots, 2016.

[214] Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi

Sugiyama. Imitation learning from imperfect demonstration. In Proceedings of the 36th In-

ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning

Research, pages 6818–6827. PMLR, June 2019.

[215] Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-

region method for deep reinforcement learning using kronecker-factored approximation. Ad-

vances in neural information processing systems, 30, 2017.

[216] Z. Xu, K. Kersting, and T. Joachims. Fast active exploration for link-based preference learning

using Gaussian processes. In European Conference on Machine Learning, pages 499–514, 2010.

[217] Yazhou Yang and Marco Loog. Single shot active learning using pseudo annotators. Pattern

Recognition, 89:22–31, 2019.

[218] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Hauptmann. Multi-class

active learning by uncertainty sampling with diversity maximization. International Journal of

Computer Vision, 113(2):113–127, 2015.

BIBLIOGRAPHY 180

[219] Cheng Zhang, Hedvig Kjellström, and Stephan Mandt. Determinantal point processes for

mini-batch diversification. In 33rd Conference on Uncertainty in Artificial Intelligence (UAI).

AUAI Press Corvallis, 2017.

[220] Cheng Zhang, Cengiz Öztireli, Stephan Mandt, and Giampiero Salvi. Active mini-batch sam-

pling using repulsive point processes. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 5741–5748, 2019.

[221] Jason Y Zhang and Anca D Dragan. Learning from extrapolated corrections. In International

Conference on Robotics and Automation (ICRA), pages 7034–7040, 2019.

[222] Tingru Zhang, Alan HS Chan, and Wei Zhang. Dimensions of driving anger and their rela-

tionships with aberrant driving. Accident Analysis & Prevention, 81:124–133, 2015.

[223] Zhibing Zhao, Peter Piech, and Lirong Xia. Learning mixtures of plackett-luce models. In

International Conference on Machine Learning, pages 2906–2914. PMLR, 2016.

[224] Alice X Zheng, Irina Rish, and Alina Beygelzimer. Efficient test selection in active diagnosis

via entropy approximation. In Proceedings of the Twenty-First Conference on Uncertainty in

Artificial Intelligence, pages 675–682. AUAI Press, 2005.

[225] Zheqing Zhu, Erdem Bıyık, and Dorsa Sadigh. Multi-agent safe planning with gaussian pro-

cesses. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), October 2020. doi: 10.1109/IROS45743.2020.9341169.

[226] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy

inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

