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Preference elicitation plays a central role in interactive recommender systems. Most preference elicitation approaches use either item
queries that ask users to select preferred items from a slate, or attribute queries that ask them to express their preferences for item
characteristics. Unfortunately, users often wish to describe their preferences using soft attributes [4] for which no ground-truth
semantics is given. Leveraging concept activation vectors [21] for soft attribute semantics, we develop novel preference elicitation
methods that can accommodate soft attributes and bring together both item and attribute-based preference elicitation. Our techniques
query users using both items and soft attributes to update the recommender system’s belief about their preferences to improve
recommendation quality. We demonstrate the effectiveness of our methods vis-à-vis competing approaches on both synthetic and
real-world datasets.
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1 INTRODUCTION

Recommender systems (RSs) play a central role in connecting users to products, content and services by predicting user
preferences for candidate items. While practical RSs are often trained using implicit user feedback on recommended items
(e.g., clicks, consumption, ratings), increasingly interactive and conversational systems explicitly elicit user preferences
to more effectively guide recommendations. Approaches to preference elicitation (PE) include both item-based [3, 41]
and attribute-based methods [13, 46], but rarely are these considered in conjunction. Moreover, attribute-based methods
generally rely on hard attributes, those for which a definitive source of ground truth associates attribute values (e.g.,
actors in movies, color of a product) with items. Unfortunately, attributes with which users often wish to describe
their preferences are soft [4]—there is no source of ground truth associating such attribute values to items; instead
this association, or semantics, must be learned. For instance, information about movie attributes like ‘funny,’ ‘thought-
provoking,’ or ‘inspiring’ may only be learnable via sparse, noisy user comments, reviews, or tags. Because of this,
practical attribute-based PE must account for the inherent noise and uncertainty in the semantics of soft attributes.1

In this work, we develop PE methods that can accommodate such soft attributes in item-based and attribute-based PE.
To do so, we leverage the recent method by Göpfert et al. [21], who use concept activation vectors (CAVs) [28] to discover
the semantics of soft attributes w.r.t. a RS’s item representation. We show how to incorporate this semantics into
interactive RSs with active critiquing: given a slate of items, our techniques determine the soft attributes about which
to elicit user feedback (e.g., “do you prefer a funnier or a less funny movie than this slate of movies?”), interpret the
user’s response relative to this semantics, and update RS beliefs about the user’s preferences. Because the semantics are

∗Contact author.
1Soft attribute usage may also be subjective [21], an issue we set aside in this work.
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learned from sparse and noisy data, the RS may have varying degrees of certainty or confidence in the CAV semantics of
different soft attributes. This should, in turn, impact how the RS interprets user responses to attribute-based PE-queries
and updates its beliefs. We extend the CAV semantics to handle such uncertainty and incorporate this into PE-driven
belief updates.

Our key contributions are as follows: (i) we leverage CAV semantics to extend attribute-based PE for interactive
RSs to handle soft attributes (in contrast to Göpfert et al. [21], who model user-initiated critiques); (ii) we propose
two novel query types: queries over attributes, and their combination with well-studied item queries, along with the
human response models to these new query types, which enable us to efficiently update RS beliefs over user preferences
in our PE framework; (iii) we propose several PE (query) selection schemes and optimization methods that balance
information gathering and recommendation quality; and (iv) we extend our techniques to incorporate uncertainty in an
attribute’s CAV semantics. We illustrate the efficacy of our methods on both synthetic data and MovieLens data [22].

2 PROBLEM FORMULATION

In this section, we outline our problem formulation and key assumptions, then briefly discuss related work.
2.1 Preference Prediction. We assume a standard collaborative filtering (CF) setting [25], where users 𝑢 ∈ U rate
items 𝑖 ∈ I with 𝑟𝑢,𝑖 ∈ R ∪ {0}. Here R is the set of possible ratings (e.g., 1–5 stars) and 𝑟𝑢,𝑖 = 0 indicates that user 𝑢
has not rated item 𝑖 . Let the ratings dataset be R = {(𝑢, 𝑖, 𝑟𝑢,𝑖 ) : 𝑟𝑢,𝑖 ≠ 0}.

The RS learns user and item representations from the ratings dataset R using some form of CF. Let X ⊆ R𝑑 be a
user-item embedding space. An item embedding 𝜙𝐼 : I → X maps each item 𝑖 ∈ I into a vector representation 𝜙𝐼 (𝑖) of
its (latent) attributes in X; note that this embedding is typically not interpretable. We assume that user preferences are
captured by a similar mapping 𝜙𝑈 : U → X. However, to capture the preference variations of users due to their latent
state (e.g., mood, activity, location), the RS learns an embedding distribution for each user, i.e., 𝑃𝑈 : U → P(X). As such,
the embedding 𝜙𝑈 (𝑢) = 𝜙𝑢 ∼ 𝑃𝑈 (𝑢) in 𝑢’s session is a sample from her embedding distribution. Since 𝜙𝑢 is unknown
to the RS, we use PE to uncover it.2

To learn user and item embeddings, we use a two-tower model (or dual encoder) in which users and items are passed
through separate but co-trained deep neural networks (DNNs) [49, 50]. The item encoder outputs 𝜙𝐼 (𝑖) for any item
𝑖 ∈ I, while the user encoder outputs a 𝑑-dimensional multivariate Gaussian distribution 𝑃𝑈 (𝑢) = N(𝜙`,𝑈 (𝑢), 𝜙𝜎,𝑈 (𝑢))
for any user 𝑢 ∈ U, where 𝜙`,𝑈 (𝑢) is the mean user embedding vector and 𝜙𝜎,𝑈 (𝑢) is a (lower-triangular) scale matrix.
Suitable methods include probabilistic matrix factorization [40] and certain forms of neural CF [6, 49]. These methods
often assume linear user utility, i.e., (predicted) user-item affinity is 𝑟𝑢,𝑖 = 𝜙⊤𝑢 𝜙𝐼 (𝑖). Hence, we treat 𝜙𝑢 as the parameters
of 𝑢’s utility function (w.r.t. the learned item representation). Our Gaussian user embedding gives the following belief

state over the user’s utility function: 𝑃 (𝑟𝑢,𝑖 | 𝑃𝑈 , 𝜙𝐼 ) = N(𝜙`,𝑈 (𝑢)⊤𝜙𝐼 (𝑖), 𝜙𝐼 (𝑖)⊤𝜙𝜎,𝑈 (𝑢)⊤𝜙𝜎,𝑈 (𝑢)𝜙𝐼 (𝑖)). We train these
encoders by minimizing negative log-likelihood: L = − 1

|R |
∑

(𝑢,𝑖,𝑟𝑢,𝑖 ) ∈R log 𝑃 (𝑟𝑖,𝑢 | 𝑃𝑈 , 𝜙𝐼 ).

2.2 Soft Attributes & Tags. In addition to hard (known or objective) attributes, users often describe items using soft
attributes which have no “ground truth” semantics or association with items. Unlike hard attributes, such as ‘genre,’
‘artist,’ or ‘director,’ these terms are not part of an agreed-upon formal specification of an item. They are neither applied
universally to all items, nor by all users.

Some RSs support user-supplied tags (e.g., MovieLens), which may be specified directly in the RS, or extracted
from user descriptions, reviews, or other sources. A tag can denote a hard or soft attribute. We let T be the set of
2Our techniques can be applied, mutatis mutandis, to the RS’s uncertainty about a user’s stationary preferences and its gradual refinement of beliefs over
time, rather than assuming that preferences actually change (are resampled) with each session.
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tags that users may adopt to describe items. We assume that tags are used in a binary way—users simply choose
to apply a tag or not. However, the actual attributes corresponding to tags can be ordinal or cardinal. Indeed, the
user study in Balog et al. [4] shows that soft attributes often exhibit “relative” degrees. For example, applying the tag
‘violent’ may reflect that a user believes a movie exhibits a degree of violence exceeding her tolerance. Let 𝑡𝑢,𝑖,𝑔 = 1
if user 𝑢 applies tag 𝑔 ∈ T to item 𝑖 , and 𝑡𝑢,𝑖,𝑔 = 0 otherwise. For each 𝑔 ∈ T , let T𝑔 = {(𝑢, 𝑖) : 𝑡𝑢,𝑖,𝑔 = 1} and
T𝑔 = {(𝑢, 𝑖) : 𝑡𝑢,𝑖,𝑔 = 0, ∃𝑔′ ∈ T : 𝑡𝑢,𝑖,𝑔′ = 1, ∃𝑖 ′ ∈ I : 𝑡𝑢,𝑖′,𝑔 = 1}. Pair (𝑢, 𝑖) belongs to T𝑔 , if user 𝑢 applies tag 𝑔 to
item 𝑖 , and belongs to T𝑔 , if 𝑢 applies a tag 𝑔′ ≠ 𝑔 to 𝑖 and tags another item 𝑖 ′ ≠ 𝑖 with 𝑔. Tags are usually strictly
sparser than ratings, so we assume

∑
𝑔 |T𝑔 | ≪ |R|.

2.3 Concept Activation Vectors in RSs. Modern ML models usually learn complex and non-transparent representa-
tions of concepts, an issue addressed by work on interpretable representations [42]. Kim et al. [28] develop an approach
that tries to find a correspondence between internal state of an ML model (e.g., a DNN used for image classification)—in
the form of a concept activation vector (CAV)—and a human-interpretable concept.

Göpfert et al. [21] apply CAVs to identify the semantics of tags w.r.t. the item representation learned by CF models
in RSs. We adopt this approach in our work: for a tag 𝑔 ∈ T , we attempt to find a CAV 𝜙𝑔 ∈ X in the embedding
space, and use it to determine if the CF model has learned a representation of (the attribute corresponding to) 𝑔.3 We
train the CF model and learn CAVs separately, similar to methods that build attribute models on top of embeddings
for cold-start [16, 38], and in contrast to those that jointly train attribute models [31, 48]. This separation is motivated
by the hypothesis that if a tag is useful for understanding user preferences (and thus for PE), the CF model will have
learned a representation of it [21]. After training a two-tower model, we use its item tower 𝜙𝐼 to learn CAVs. For a tag
𝑔 ∈ T , we construct a training set D𝑔 in which positive instances (𝑦 = +1) are items in T𝑔 and negatives (𝑦 = −1) are
those in T𝑔 . We then learn the CAV 𝜙𝑔 for 𝑔 by learning a (regularized) logistic regressor:

L(𝜙𝑔 ; D𝑔 ) =
∑

(𝑖,𝑦) ∈D𝑔

log(1 + 𝑒−𝑦𝜙
⊤
𝑔 𝜙𝐼 (𝑖) ) + _

2
𝜙⊤𝑔 𝜙𝑔 . (1)

The induced CAV 𝜙𝑔 is the normal to the separating hyperplane of this classifier, and offers a directional semantics for
(the attribute corresponding to) tag 𝑔 in the item embedding space. Specifically, its dot product with 𝜙𝐼 (𝑖), or 𝑔-score
𝑐𝑔 (𝑖) = 𝜙⊤𝑔 𝜙𝐼 (𝑖), quantifies the degree to which item 𝑖 satisfies tag 𝑔, (e.g., how violent or funny a movie is). We use
the 𝑔-score to measure the quality (or usefulness) of CAV 𝜙𝑔 , defining 𝑄 (𝜙𝑔 ; D𝑔 ) to be the fraction of the item pairs
{(𝑖1, 𝑖2) | (𝑖1, +1) ∈ D𝑔 , (𝑖2,−1) ∈ D𝑔 } for which 𝑐𝑔 (𝑖1) ≥ 𝑐𝑔 (𝑖2). Given sparsity and noise in the tag data, we may be
more confident in some CAVs than in others. We discuss CAV uncertainty below.

2.4 Preference Elicitation. Traditional CF-based RSs uncover user preferences indirectly, using indirect feedback
(e.g., clicks, ratings, purchases). Interactive RSs, by contrast, actively elicit a user’s preference by asking her questions,
responses to which are used to refine its estimate (or belief ) about her utility function and improve quality of future
recommendations [23]. At suitable points, an interactive RS selects a query 𝑞 from a query space Q that reveals some
aspects of the user’s preferences. For example, in item-based PE, users may be asked to rate a particular item [10, 51], in
which case Q = I, or to choose an item from a slate 𝑆 that she most prefers [45], in which case Q is the set of all subsets
of I of size |𝑆 |. In attribute-based PE [14], a user can express her preferences with more abstract semantic attributes.
We describe several types of elicitation queries in Section 3.

3While a tag 𝑔 is simply a token used by users to label items, its corresponding soft attribute is a property of the items themselves, which can take a
real-value. For conciseness, we sometimes refer to the semantics (or representation or CAV) of a tag 𝑔 as shorthand for the semantics of the attribute
corresponding to 𝑔.
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2.5 Related Work. Our work assumes an underlying CF method, and can be applied to matrix factorization methods
[40] or more recent DNN-based approaches [49, 50]. A number of approaches have been proposed for interpreting tags
or attributes in RSs, often using tag or review data [19, 31, 32]. Some works focused on learning tag semantics w.r.t. a
learned recommendation model, including those that jointly learn both, or that derive tag meanings using a pre-trained
CF model [16, 34, 37]. The model of Göpfert et al. [21], which we employ in this work, is of the latter form.

The literature on PE is substantial. Most related to our work are those which use Bayesian methods for eliciting user
preferences [2, 8]. They maintain a belief state over user preferences and refine it using PE queries. Item-based methods
include, say, active CF methods that ask users to explicitly rate specific items [10, 51], and item-selection methods
that ask users to compare two items or state which item is most preferred within some set [9, 11, 45]. Attribute-based
techniques include, for instance, example-critiquing schemes [14, 46]. Most work in PE deals with hard attributes, while
we focus on soft attributes. One exception is the work of Radlinski et al. [35], who develop a methodology for relating
soft attribute usage in conversational RSs to user preferences.

3 QUERIES AND USER RESPONSES

We first describe two novel query types that we develop as well as the item queries. These queries can be used to elicit
information about a user’s preferences for specific items or their (hard or soft) attributes. For each type, we develop
response models that relate a user’s (stochastic) response to their underlying preferences, using the CAV semantics to
interpret the user’s behaviour w.r.t. attributes. For ease of exposition, we assume that the CAV semantics is known by
both the RS and the user, but derive updates when there is uncertainty in the CAV semantics below.
3.1 Attribute Queries. An attribute query 𝑞 = (𝑆, 𝑔) consists of a slate of items 𝑆 and a tag 𝑔. The RS presents the slate
to the user and asks her if she prefers items, relative to those in 𝑆 , that are more/less—i.e., exhibit a greater degree of—𝑔’s
attribute (e.g., “Would you prefer movies that are more/less thought-provoking than those in 𝑆?”). The user responds to
positively 𝜌 = +1 (i.e., more) or negatively 𝜌 = −1 (i.e., less). Slate 𝑆 can also be viewed as a recommendation set, not
just a query (see Section 5).

Our user response models for attribute queries assume user 𝑢 relates items in 𝑆 to her “most preferred” or tar-
get item given her underlying utility function 𝜙𝑢 .While 𝑢 would like to guide the RS to her most preferred item
argmax𝑖∈I 𝜙⊤𝑢 𝜙𝐼 (𝑖), this would assume an unrealistic level of familiarity with available items I by 𝑢. Instead, we
consider a model where𝑢 targets a hypothetical ideal item, 𝜙∗

𝐼 ,𝑢
∈ argmax𝜙 ∈Γ 𝜙⊤𝑢 𝜙 , w.r.t. some mildly constrained space

Γ ⊂ X unrelated to I.4 In lieu of a detailed familiarity model for 𝑢, we capture some familiarity with I by constraining
her target item as follows: 𝜙∗

𝐼 ,𝑢
∈ argmax𝜙 ∈Γ 𝜙⊤𝑢 𝜙 , s.t. ∥𝜙 ∥2 ≤ max𝑖∈I ∥𝜙𝐼 (𝑖)∥2, whose solution is

𝜙∗𝐼 ,𝑢 = max
𝑖∈I

∥𝜙𝐼 (𝑖)∥2 · 𝜙𝑢/∥𝜙𝑢 ∥2 . (2)

The target item 𝜙∗
𝐼 ,𝑢

may fall outside of I, but this allows the user to direct the RS more meaningfully.
For attribute query 𝑞 = (𝑆, 𝑔), in our mean-slate response model, 𝑢 compares her target item 𝜙∗

𝐼 ,𝑢
with the mean

embedding of items in 𝑆 , 𝜙
𝐼 ,𝑆

= 1
|𝑆 |

∑
𝑖∈𝑆 𝜙𝐼 (𝑖). If the target exhibits more of attribute 𝑔 than the mean slate, i.e., the

target’s 𝑔-score 𝑐𝑔 (𝜙∗𝐼 ,𝑢 ) is greater than 𝑐𝑔 (𝜙𝐼 ,𝑆 ), then 𝑢 responds positively (𝜌 = +1). User response is estimated by the
following probit model [12, 43]:

𝑃 (𝜌 = +1 | 𝑞, 𝜙𝑢 ) = Φ
(
𝑐𝑔

(
𝜙∗𝐼 ,𝑢 − 𝜙

𝐼 ,𝑆

)
/𝜎𝑔

)
, (3)

4For example, a user will not target a movie that is simultaneously maximally funny, though-provoking, and scary.
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where 𝜖𝑔 is a zero-mean Gaussian noise with variance 𝜎2
𝑔 , and Φ(·) is the standard Gaussian CDF.

In our second mean-probability response model, 𝑢 compares the 𝑔-score of her target with that of each item 𝑖 ∈ 𝑆 , and
responds using the weighted average of differences:

𝑃 (𝜌 = +1 | 𝑞, 𝜙𝑢 ) =
1
|𝑆 |

∑
𝑖∈𝑆

_𝑖 · Φ
(
𝑐𝑔

(
𝜙∗𝐼 ,𝑢 − 𝜙𝐼 (𝑖)

)
/𝜎𝑔

)
, (4)

where _𝑖 > 0 is a response weight s.t.
∑
𝑖∈𝑆 _𝑖 = 1. While mean-slate model is intuitive, the flexibility of mean-probability

may better capture nuances in user behavior (see IpA below).
3.2 Item Queries. An item query (or choice query) 𝑞 = 𝑆 presents a slate 𝑆 to 𝑢 and asks her which item is preferred
[5, 45]. User response 𝜌 = 𝑖 is given by a standard multinomial logit model w.r.t. 𝜙𝑢 [5, 12]:

𝑃 (𝜌 = 𝑖 | 𝑞, 𝜙𝑢 ) =
exp(𝜙𝐼 (𝑖)⊤𝜙𝑢/𝑇 )∑
𝑗 ∈𝑆 exp(𝜙𝐼 ( 𝑗)⊤𝜙𝑢/𝑇 )

, (5)

where 𝑇 is a temperature parameter.
3.3 Item-plus-Attribute Queries. Item-plus-Attribute (IpA) queries combine attribute and item queries, and have the
same form 𝑞 = (𝑆, 𝑔) as attribute queries. The user is first asked to select her preferred item 𝑖∗

𝑆
in 𝑆 (per item queries),

then asked to critique 𝑖∗
𝑆
w.r.t. 𝑔 (per attribute queries). The user responds with 𝜌 = (𝑖, +1) or 𝜌 = (𝑖,−1) by comparing

𝜙∗
𝐼 ,𝑢

to 𝑖∗
𝑆
(rather than the slate) via 𝑔-scores, and otherwise responds as in attribute queries:

𝑃 (𝜌1 = 𝑖 | 𝑆, 𝜙𝑢 )×𝑃 (𝜌2 = 𝑦 | 𝑔, 𝜙𝑢 , 𝜌1 = 𝑖)

=
exp(𝜙𝐼 (𝑖)⊤𝜙𝑢/𝑇 )∑
𝑗 exp(𝜙𝐼 ( 𝑗)⊤𝜙𝑢/𝑇 )

×Φ
(
𝑦 · 𝑐𝑔𝜙∗𝐼 ,𝑢−𝜙𝐼 (𝑖)/𝜎𝑔

)
. (6)

3.4 CAV Uncertainty. In contrast to hard attributes, the semantics of soft attributes are typically estimated using
sparse, noisy data (e.g., as in our use of tag data above). As a result, CAVs constructed for different tags may be
characterized by varying degrees of uncertainty. For instance, if CAV 𝜙𝑔 for tag 𝑔 is based on a large amount of tag data
with little disagreement in usage, the RS should be more confident in 𝜙𝑔 than in the CAV 𝜙𝑔′ for a tag 𝑔′ whose data is
sparser or less consistent. Abstractly, we assume that the RS has a CAV belief (distribution) 𝑃𝑔 (𝜙𝑔 | D𝑔 ) reflecting this
uncertainty (where D𝑔 is the tag data used to train 𝜙𝑔 ). We do not require a specific mechanism for generating this
belief, but Bayesian logistic regression (augmenting Eq. 1) [26] or Bayesian learning-to-rank [29] are suitable methods.

The response models for attribute and IpA queries above depend on the CAV/semantics of the attribute/tag in
question. In what follows, we assume that user 𝑢 responds using some true, underlying CAV 𝜙𝑔 .5 To reflect this
additional uncertainty in a user response, the RS interprets it w.r.t. its CAV belief. Specifically, 𝑃 (𝜌 | 𝑞, 𝜙𝑢 ) in Eqs. 3
and 6 requires taking an expectation over possible CAVs 𝜙𝑔 w.r.t. 𝑃𝑔 (𝜙𝑔 |D𝑔 ). These response probabilities are then
used to update RS beliefs about 𝑢’s utility (Section 4) and to choose queries (Section 5) when the CAVs are uncertain.

Specifically, 𝑃 (𝜌 | 𝑞, 𝜙𝑢 ) in Eqs. 3, 4 and 6 requires taking an expectation over possible CAVs 𝜙𝑔 (or equivalently,
scoring functions 𝑐𝑔 ) w.r.t. 𝑃𝑔 (𝜙𝑔 |D𝑔 ). These response probabilities are then used to update beliefs about 𝑢’s utility
(Section 4, by Bayesian methods) and selecting optimal queries (Section 5) when (some or all) the CAVs are uncertain.
See Appendix A for further details.

5Different users may have different interpretations of an attribute. Such subjectivity can be uncovered using CAVs [21], but we do not consider this here.
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4 USER BELIEF STATE MODELING

Bayesian methods generally maintain a belief state or distribution over a user’s utility function [9, 44]. In our setting,
the belief state for user 𝑢 is initially 𝑃𝑈 (𝑢), and is refined as 𝑢 responds to PE queries. Given response 𝜌 to query 𝑞, we
update our belief about 𝑢 in the standard Bayesian fashion:

𝑃𝑈 (𝑢 | 𝜌, 𝑞) := 𝑃 (𝜙𝑢 | 𝜌, 𝑞) ∝ 𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃𝑈 (𝑢).

The prior 𝑃𝑈 (𝑢) is the Gaussian user embedding learned by our two-towermodel (Section 2). LetH (𝐾) = {(𝑞 (𝐾) , 𝜌 (𝐾) )}∪
H (𝐾−1) withH (0) = ∅, be a history of 𝐾 queries and user responses. GivenH (𝐾) , the RS’s posterior for 𝑢 is

𝑃𝑈 (𝑢 |H (𝐾) )=𝑃 (𝜙𝑢 |H (𝐾) ) ∝𝑃𝑈 (𝑢)
𝐾∏
𝑘=1

𝑃 (𝜌 (𝑘) |𝑞 (𝑘) ,𝜙𝑢 ) . (7)

This assumes conditional independence of responses given 𝜙𝑢 . Unlike the prior, generally the posterior is not Gaussian,
and thus, we use the following two methods to tractably approximate it.

4.1 Parameterized Posterior

We can approximate the posterior with some parameterized distribution 𝑃 (𝑢;\ ). To do so, we sample from the true
unnormalized posterior using Metropolis-Hastings [15] or Hamiltonian Monte Carlo (HMC). These samples {𝜙𝑢,𝑖 }𝑛𝑖=1
are then used to estimate parameter \ by maximizing the log-likelihood

𝐿(\ | H (𝐾) ) =
𝑛∑
𝑖=1

log 𝑃 (𝜙𝑢,𝑖 | H (𝐾) ;\ ) (8)

=

𝑛∑
𝑖=1

log 𝑃 (𝜌 (𝐾) |𝑞 (𝐾), 𝜙𝑢,𝑖 ;\ )+log 𝑃 (𝜙𝑢,𝑖 |H (𝐾−1);\ ).

We test two different variants of the sampling and posterior update methods in this scheme. In the first batchmethod, we
generate a large set of samples and use them to update the posterior offline, i.e., for each query no additional sample of
posterior belief is generated before the posterior is updated. In the second iterative method, we generate fewer samples
from our initial posterior, update the posterior with these samples, and then re-generate new samples with this updated
posterior. This process is repeated several times for each query. While the iterative method is more computationally
expensive, our experiments (Section 6, Figure 5) demonstrate its improved data efficiency over the batched counterpart.

4.2 Gaussian Posterior

The posterior can be “assumed” to be Gaussian N(𝜙`,𝑈 (𝑢), 𝜙𝜎,𝑈 (𝑢)) using the Laplace approximation [7, 30, 47]. For
this, we treat the posterior mean 𝜙`,𝑈 (𝑢) as the mode of the true log-posterior, i.e.,

𝜙`,𝑈 (𝑢) ∈ argmax
𝜙 ∈R𝑑

[ 𝐾∑
𝑘=1

log 𝑃
(
𝜌 (𝑘) | 𝑞 (𝑘) , 𝜙

)
(9)

− 1
2
(
𝜙 − 𝜙`,𝑈 (𝑢)

)⊤ (
𝜙𝜎,𝑈 (𝑢)⊤𝜙𝜎,𝑈 (𝑢)

)−1 (
𝜙 − 𝜙`,𝑈 (𝑢)

) ]
.

This optimization may not be convex, but its local optima can be found efficiently because its gradient can be written in
closed-form. 𝜙`,𝑈 (𝑢). In Figure 2 in Section 6, we numerically compare the performance of the Gaussian posterior with
the parameterized (categorical) posterior. The discrete posterior model outperforms its Gaussian counterpart with both
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attribute and IpA response models. We therefore use the parameterized posterior as the default belief state model for all
PE methods described below.

4.3 CAV Uncertainty

When the CAV used by an attribute or IpA query is uncertain, the response probabilities used in our belief state updates
(Eqs. 7, 9 or 8) are computed using expectations over CAV samples w.r.t. its belief distribution 𝑃𝑔 (𝜙𝑔 |D𝑔 ) (see Section
3.4). Similarly, we update the belief about 𝑢 with responses:

𝑃𝑈 (𝑢 | 𝜌, 𝑞) := 𝑃 (𝜙𝑢 | 𝜌, 𝑞) ∝ 𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃𝑈 (𝑢).

Given any query-response pair (𝑞, 𝜌) under the current belief state 𝑃𝑈 (𝑢), the posterior belief is updated by Bayes rule:

𝑃 (𝜌 | 𝑞, 𝜙𝑢 ) =
𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃 (𝜙𝑢 )∫

𝜙𝑢
𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃 (𝜙𝑢 )𝑑𝜙𝑢

. (10)

5 QUERY OPTIMIZATION

In this section, we develop methods to optimize the choice of queries. A key objective is to find queries whose responses
quickly refine the posterior to improve recommendation quality. However, the RS may also want to use queries whose
slates contain “good” recommendations w.r.t. the current posterior, not just “good” information for posterior update,
since the user may select/consume one of these items at any time. We address the trade-off between information
gathering and recommendation quality below.6

5.1 Pure Preference Elicitation

In pure preference elicitation (PPE), we focus on the information a query response provides about user 𝑢’s utility (and
ignore the predicted utility of items in 𝑆). We consider several acquisition functions (AFs) to find the query with the
most useful information w.r.t. reducing uncertainty in the belief state 𝑃𝑈 (𝑢).7

Random Query Selection: This is a natural baseline that samples queries uniformly at random from Q.
Entropy: To make posterior beliefs more informative, one can use conditional Shannon entropy [17]:

𝐻 (𝜌 | 𝑞,H) = −E𝜌 |𝑞,𝑃𝑈 (𝑢 |H) [log 𝑃 (𝜌 |𝑞, 𝑃𝑈 (𝑢 |H))] . (11)

Computing the expected posterior entropy for a given query in closed-form is generally hard, but one can estimate it
by taking an expectation over all sampled posterior user responses. This metric measures the amount of latent user
information that remains after a PE query 𝑞.
Mutual Information:We can measure the information content of 𝑞 using mutual information (MI) between 𝑢’s target
𝜙∗
𝐼 ,𝑢

and her response 𝜌 , given 𝑞 andH :

𝑀𝐼 (𝜙∗𝐼 ,𝑢 ; 𝜌 |𝑞,H) :=𝐻 (𝜌 |𝑞,H)−E𝜙∗
𝐼 ,𝑢

|H
[
𝐻 (𝜌 |𝑞, 𝜙∗𝐼 ,𝑢 )

]
. (12)

We can also express the distribution over target items as 𝑃 (𝜙∗
𝐼 ,𝑢

|H) =
∫
𝑃 (𝜙∗

𝐼 ,𝑢
, 𝜙𝑢 |H)𝑑𝜙𝑢 = E𝜙𝑢∼𝑃𝑈

[
𝑃 (𝜙∗

𝐼 ,𝑢
|𝜙𝑢 )

]
.

Using (2), the second term is equal to E𝜙∗
𝐼 ,𝑢

|H
[
𝐻 (𝜌 |𝑞, 𝜙∗

𝐼 ,𝑢
)
]
= E𝜙𝑢∼𝑃𝑈 (𝑢 |H)

[
𝐻 (𝜌 |𝑞,max𝑖∈I

∥𝜙𝐼 (𝑖) ∥2 ·𝜙𝑢
∥𝜙𝑢 ∥2

)
]
, which is

6For item queries without attributes, the optimal recommendation and query slates are identical under several natural response models, resolving this
tension [45].
7An ideal AF would be a policy that optimizes the sequence of queries [9, 24]. However, such a sequential formulation is generally intractable; thus, we
consider myopic approaches and optimize the AF w.r.t. the immediate query only (as is common in PE [11]).
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estimated by sampling 𝜙𝑢 ∼ 𝑃𝑈 (𝑢 | H). We choose a query that minimizes this measure to make our posterior model
correlated with 𝑢’s target.
Expected Value of Information (EVOI). The EVOI acquisition function [9, 11, 45] measures the improvement in 𝑢’s
expected utility resulting from a response to query 𝑞. The EVOI of 𝑞 (givenH ) is

EVOI (𝑞 | H) = PEU (𝑞 | H) − EU ∗ (𝑃𝑈 (𝑢 | H)
)
, (13)

where
𝐸𝑈 ∗ (𝑃𝑈 (𝑢)) = max

𝑖∈I
E𝜙𝑢∼𝑃𝑈 (𝑢)

[
𝜙⊤𝑢 𝜙𝐼 (𝑖)

]
(14)

and 𝑃𝐸𝑈 (𝑞 | H) is the posterior expected utility of 𝑞,

𝑃𝐸𝑈 (𝑞 | H) =
∑
𝜌

𝑃 (𝜌 | 𝑞,H) · 𝐸𝑈 ∗ (𝑃𝑈 (𝑢 | H ∪ {(𝜌, 𝑞)})
)
. (15)

EVOI extracts information that offers maximum expected improvement in recommendation quality. It can be also
used to decide when to stop elicitation (e.g., once it falls below some tolerance or exceeds the cost of interaction). The
direct computation of PEU can be expensive, so we approximate it by sampling from the prior 𝑃𝑈 (𝑢 | H). With CAV
uncertainty, the response probabilities used in PEU and other AFs are computed using expectation over CAV. The details
are deferred to App. A.
CAV Uncertainty. With CAV uncertainty, response probabilities used in PEU and other AFs are computed using
expectation over CAVs as discussed above. For example, the EVOI of a soft attribute query 𝑞 (givenH ) is:

EVOI (𝑞 | H) = PEU (𝑞 | H) − EU ∗ (𝑃𝑈 (𝑢 | H)
)
. (16)

where 𝐸𝑈 ∗ (𝑃𝑈 (𝑢)) is still the same as Eq (10) but 𝑃𝐸𝑈 (𝑞 | H) is the posterior expected utility of w.r.t. 𝑞,

𝑃𝐸𝑈 (𝑞 | H) =
∑
𝜌

𝑃 (𝜌 | 𝑞,H) · 𝐸𝑈 ∗ (𝑃𝑈 (𝑢 | H ∪ {(𝜌, 𝑞)})
)
. (17)

Other acquisition functions can also be extended analogously but their details will be omitted for the sake of brevity.

5.2 Blended Elicitation & Recommendation

In blended PE and recommendation (BPER), we include the quality of the slate 𝑆 used in query 𝑞 when assessing 𝑞, not
just its information value. BPER blends two objectives, information gathering IG(𝑞 |H) and recommendation quality

RQ(𝑞 |H). IG(𝑞 |H) measures the utility information extracted by 𝑞 and can use any pure PE AF (e.g., Entropy, MI, EVOI).
RQ(𝑞 |H) measures slate quality (i.e., expected utility) of 𝑆 : RQ(𝑞 |H) :=

∑
𝑖∈𝑆 E𝜙𝑢∼𝑃𝑈 (𝑢 |H) [𝜙⊤𝑢 𝜙𝐼 (𝑖)]. To balance the

two, we define the BPER AF as 𝛾 IG(𝑞 |H) + (1 −𝛾)RQ(𝑞 |H), where 𝛾 ∈ [0, 1]. We expect an RS to focus on IG earlier in
an interaction sequence to learn about 𝑢, and gradually shift focus to RQ. While decaying 𝛾 seems natural, experiments
suggest that a well-tuned constant 𝛾 suffices, since IG tends to decrease over time as the posterior converges to 𝑢’s true
embedding, after which the BPER AF would focus more on recommendation.

5.3 Query Optimizers

Query selection requires optimizing the chosen AF over query space Q. The size of Q depends linearly on the number
of tags |T | and combinatorially on the number of items |I |, where usually |T | << |I |. Optimal tags can be found by
searching over T , while slate optimization is demanding when I is large, hence requires approximation. We consider
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two approaches to slate-attribute selection: optimizing slate 𝑆 (or an item inside 𝑆) and then tag 𝑔; and optimizing both
jointly.
Thompson Sampling. Slate 𝑆 is constructed using sequential TS [20]: 𝑆0 = ∅ and 𝑆 𝑗 = 𝑆 𝑗−1 ∪ argmax𝑖∈I\𝑆 𝑗−1

𝜙⊤𝑢 𝜙𝐼 (𝑖),
where 𝜙𝑢 ∼ 𝑃𝑈 (𝑢 | H) and 𝑗 ∈ {1, . . . , |𝑆 |}. Given 𝑆 , 𝑔 is randomly selected.
Sequential Greedy. Each item in the slate is selected greedily over the item set (excluding items that have already
been added). The first item in 𝑆 is the “best” item; at each subsequent step, we alternate between updating 𝑔 and the
next item in 𝑆 using the AF until 𝑆 is complete.
Random Search. We randomly generate a certain number of slates-attribute pairs, then apply the AF to select the
query with the highest score. With CAV uncertainty, we compute score of each query by averaging over sampled CAVs.
Continuous Relaxation. Inspired by gradient-based PE in [44], we relax the combinatorial query selection problem
into a continuous one and solve it using first- or second-order methods. Given this continuous representation of 𝑞, we
project it back onto the true query space. To recover 𝑆 and 𝑔, we project using Euclidean distance. The main challenge
in continuous optimization lies in the discontinuous nature of our AFs, which require maximizing over the discrete
item set. We circumvent this with a normalization assumption (see Appendix A.3). With CAV uncertainty, since tag 𝑔 is
a random variable, we have to represent 𝑃𝑔 by a multivariate normal distribution and apply the re-parameterization
trick (see Appendix A.2). We project 𝑃𝑔 using KL-divergence.

6 EMPIRICAL RESULTS

We conduct experiments to test the effectiveness of our PE methods, combining various query types, belief update
methods, query selection schemes, and slate optimization methods. We evaluate our algorithms in three domains: (i) a
simple synthetic environment; (ii) a complex simulated environment similar to that used by Göpfert et al. [21]; and (iii)
one derived from the MovieLens 20M dataset [22]. The simulated domains provide us with ground-truth user utility
and attribute semantics to allow precise evaluation. We describe the environments, our evaluation metrics, then a set of
experimental studies in each of the three domains.
Synthetic Environment. We set |I | = 1000, |T | = 10, with item embeddings 𝜙𝐼 (·) and CAV vectors 𝜙𝑔 sampled from
a 𝑑-dimensional (𝑑 = 5) Gaussian N(0, I). Each user is represented by a Gaussian distribution 𝑃𝑈 with a random mean
vector and covariance matrix. User response noise is 𝜎𝑔 = 0.1 for all 𝑔 ∈ T .
RecSim NG Environment. Following Göpfert et al. [21], we use the RecSim NG [33] environment to construct a user
model to generate ratings and tags, and then use the resulting dataset for learning CAVs and for PE. With |U| = 25,000
users and |I | = 10,000 items, we represent each user and item in a 𝑑-dimensional embedding space (𝑑 = 25)—each
item dimension reflects a latent “attribute” and each user dimension a utility for that item attribute. User ratings for
items are generated by a staged sampling process which approximates the user/item-embedding dot product (plus noise
and rating discretization). The number of ratings given by users follows a power law distribution to ensure ratings
sparsity. Five of the 25 latent attributes are taggable (|T | = 5). Users can only tag rated items and are more likely to
tag higher-rated items. For any tag 𝑔, a fixed threshold 𝜏𝑔 gives the probability of 𝑢 tagging the item; we set 𝜏𝑔 = 0.5
for soft attributes. We train CAVs for each tag with logistic regression using the item-tag data. Average CAV quality
(accuracy) is 0.909 on the test set, and Spearman correlation between predicted and ground-truth tags is 0.570. Noise is
𝜎𝑔 = 0.25 for all 𝑔 ∈ T . The temperature 𝑇 in the item response model is 0.5.
MovieLens 20M. We also evaluate our methods on the more realistic MovieLens 20M dataset [22]. There are 465K
tag-instances in which 138𝐾 users applied tags to 27𝐾 movies. Tags mainly represent movie genres (e.g., action, drama)
or more subjective descriptions (e.g., quirky, funny). Following the methodology of [21], we split ratings and tag data
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Fig. 1. IG, RQ (𝛾 ) tradeoff, BPER scheme (Synthetic).

into train and test sets such that any user-item pair is present exactly in one of these sets. We generate 𝑑-dimensional
(𝑑 = 50) user and item embeddings using alternating least-squares (ALS) and train CAVs on this latent space. Due to
item-tag sparsity, we train CAVs only for the 164 most-frequently used tags (w.r.t. unique users, items). Average CAV
test quality is 0.727. User response noise is again 𝜎𝑔 = 0.25 and the temperature in the item response model is 𝑇 = 0.5.
Metrics.We use three metrics to evaluate the performance of our PE methods. (i) Cosine is the cosine similarity (or
alignment [39]) between the mean user posterior embedding and true user embedding. After 𝑘 queries, it is given by

Cosine =
𝜙⊤
𝑢 E𝜙∼𝑃𝑈 (·|H(𝑘 ) ) [𝜙 ]

∥𝜙𝑢 ∥2 · ∥E𝜙∼𝑃𝑈 (·|H(𝑘 ) ) [𝜙 ] ∥2
. (ii) NDCG is the normalized discounted cumulative gain [27] between the true top

|𝑆 | items and the top |𝑆 | items estimated using the posterior. (iii) Query NDCG is a variant of NDCG where the slate
𝑆 (𝑘) that is presented to the user in the 𝑘’th query replaces the a posteriori optimum. We use this measure primarily
with the BPER scheme to study the trade off between IG and RQ.
ImplementationDetails.We implement our PE algorithms using Tensorflow [1] which offers automatic differentiation
for both Laplace approximation and continuous relaxation.We use Tensorflow Probability [18] for HMC in parameterized
posterior updates and for probability/likelihood computation.
Experiment 1: IG-RQ Tradeoffwith Synthetic Data.We use the synthetic environment to assess the IG-RQ tradeoff
and its effect on PE performance. We initialize the RS with the prior user embedding distribution, after which it queries
a simulated user 10 times with a slate of size 5 (and tag if needed). We test each PE method with 10 users, 5 runs each
(different random seeds). We report the mean and standard deviation of our metrics over these 50 runs. Figure 1 shows
the trade off between IG and RQ in the BPER scheme. Using IpA queries, EVOI as our AF, and random-search slate
optimization, we run PE with 𝛾 ranging from 1 (pure elicitation) to 0 (pure recommendation). While tuning 𝛾 offers
only a modest improvement in elicitation quality (see cosine and NDCG), PE with smaller 𝛾 generally places higher
quality items on the slate during elicitation, with quality improving with the number of queries (see Query NDCG). The
nonlinear trade-off between IG and RQ induces a “sweet spot” at around 𝛾 = 0.5, and therefore we use this 𝛾 for all
subsequent experiments.
Experiment 2: Posterior Update Methods with RecSim NG. In this experiment we compare the performance
of the Gaussian posterior, updated via the closed-form Laplace approximation, with the parameterized (categorical)
posterior, updated using HMC as specified in Section 4.2. Figure 2 presents the performance of different posterior update
methods in attribute-based PE, tested in the Recsim NG environment. We compare the accuracy of belief states via
cosine similarity between the current posterior embedding and the underlying ground-truth one. Clearly, parameterized
posterior models outperform the Gaussian counterpart in both attribute and IpA response models.
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Fig. 2. Cosine similarity on RecSim NG with Gaussian (left) and parameterized (right) posterior.

Experiment 3: Ablation Studies with RecSim NG. Using the RecSim NG environment, we set the RS prior over
user embeddings to be Gaussian (Section 2). The RS queries each user 20 times using slates of size 5 (for each query
type). We test each PE method with 16 random users over 5 runs. We run several ablation studies to assess how different
user query responses, query/slate optimizers, and AFs affect information gathering (IG) and recommendation quality
(RQ). We focus on the cosine and NDCG metrics (as Query NDCG mainly measures the IG-RQ trade-off). To focus on
the CAV/query-type interaction, our first four studies assume no CAV uncertainty. Figure 3 compares the different
query types and AFs, while fixing the query optimization method to be random search over 100 queries. Among the
query types, PE with IpA performs the best, followed by item then attribute queries. This is unsurprising since IpA
elicits the most information. While attribute queries provide the simplest user feedback, PE with attribute queries is
quite effective initially, achieving similar performance to item and IpA-based PE; though with only 5 taggable attributes,
performance quickly saturates with more queries. EVOI is the most effective AF, outperforming MI and Entropy, and
generating higher quality recommendations at each stage of the interaction (number of queries). This reflects the fact
that EVOI-maximizing queries elicit user utility information directly aimed at improving recommendation quality.

In Figure 4, we assess the impact of various query optimizers on PE and recommendation quality. We use IpA queries,
the EVOI AF, and BPER with 𝛾 = 0.5. We consider five query optimizers: (i) random search; (ii) continuous relaxation
with first-order optimization; (iii) continuous relaxation with second-order optimization; (iv) sequential greedy (myopic
w.r.t. BPER AF); and (v) Thompson sampling (TS). We also use a baseline in which both the slate and tag are selected
uniformly at random. Random requires the least computation, followed by sequential greedy, TS, and then the joint
optimizers on slates and tags. The additional computation cost of random search and continuous relaxation offers
significant gains in IG and RQ, with a 10–15% NDCG improvement over TS and sequential greedy (though TS and
sequential greedy perform well early in the PE process). While joint-optimization-based methods still outperform
random, random fares better than the greedy methods, TS, and sequential greedy, which is surprising given its simplicity.
We conjecture this is because the RecSim NG environment is quite simple, and the inherent item diversity on random
slates itself helps reduce belief state entropy.

In Figure 5, we compare the batch and iterative posterior update methods (Section 4.1.1). In both RecSim NG and
MovieLens datasets, the iterative method outperforms batch across multiple optimization methods. Intuitively, while
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Fig. 3. Comparing query types and AFs (RecSim NG).

Fig. 4. Comparing query optimizers (RecSim NG).
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Fig. 5. Batch vs. iterative posterior update. Left: RecSim NG. Right: Movielens
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information from both the prior 𝑃𝑈 (𝑢) and the query 𝑞 contribute to the posterior update, only the responses to 𝑞
provide new information. When the prior is far from the true user utility, especially at the start of training, the posterior
update is dominated by information from 𝑞; thus, by updating the posterior iteratively, new information collected
from each query response (in HMC generation of new posterior samples) compounds. As a result, the iterative method
generally has much better sample efficiency. Since user queries are expensive, we adopt the iterative method in all
subsequent experiments.

We next study the effect of using our CAV-based semantics on the performance of the PE algorithms. Our PE
framework does not require using CAVs for soft attributes—it can work with any semantics discovery method that
generates some form of 𝑔-score to quantify the degree to which an item 𝑖 satisfies a tag 𝑔. We compare PITF (pairwise
interaction tensor factorization) [38] as an alternative semantics. PITF is a tensor factorization method, originally
developed for personalized tag prediction, which outputs a predicted tag 𝑦𝑢,𝑖,𝑔 for each user 𝑢 ∈ U, item 𝑖 ∈ I, and tag
𝑔 ∈ T . To learn the PITF semantics, 𝜙𝑔 , for a tag 𝑔, we fit a linear regressor to the dataset {(𝜙𝐼 (𝑖), 𝑦𝑢,𝑖,𝑔 )}𝑢,𝑖 , where 𝑢
and 𝑖 are sampled fromU and I.8 In Figure 6, we compare the performance of PE algorithms that use the CAV and
PITF representations with attribute and IpA queries, random search, and the EVOI AF. In all regimes, PE with CAVs
performs better than with PITF, with a more significant advantage in cosine similarity (which reflects better ability
to estimate the user’s utility). This corroborates the main motivation for using CAVs, which is the ability to better
represent semantic attributes that are especially predictive of users’ preferences.

Finally, we consider the impact of CAV uncertainty on our PE algorithms. In contrast to the experiments above,
we model the noise in CAV discovery by injecting various degrees of uncertainty into the CAV model 𝑃𝑔 (𝜙𝑔 |D𝑔 ) for
each tag 𝑔, where the more certain tags have lower (co-)variance in their CAV models. We assume 𝑃𝑔 is a multivariate
normal distribution with mean `𝑔 and covariance matrix Σ𝑔 . To explicitly model the fact that CAVs will various degrees
of uncertainty, the mean of 𝑃𝑔 is the (deterministic) CAV learned via logistic regression, while the co-variance matrix
is 𝜎2

𝑔I, where the standard deviation 𝜎𝑔 is randomly chosen from a set of |T | values, ranging from 0.01 to 1 evenly
spread on a log10 scale. For queries using attribute 𝑔, a “true” CAV vector 𝜙𝑔 is sampled from 𝑃𝑔 to power the user’s
responses (Eqs. 3, 4 and 6).

We test whether modeling the CAV uncertainty in belief update and query optimization improves IG and RQ. Figure 7
shows PE results of an experiment using IpA queries and three joint optimizers (random search, continuous relaxation
with first- or second-order optimization). We see that modeling CAV uncertainty offers significant gain in IG and RQ,
with a 10-15% NDCG improvement over PE methods that update their beliefs by treating the mean CAV as “certain”.
Ignoring uncertainty (and CAV learning error) can generate over-confident error-prone belief updates.
Experiment 4: MovieLens 20M. To evaluate PE with MovieLens 20M data, similar to the critiquing setup in [21],
we create “ground-truth” users, each of whom has rated at least 50 movies. Given the large number of ratings, their
corresponding embeddings are relatively stable and accurate, so we treat them as the ground truth utility for these users,
which is used to generate query responses in our experiments. We sample 16 such test users for PE. The RS belief state
for each user is initialized with a cold-start prior whose mean is the average embedding over all users. We use slates of 5
movies, set 𝛾 to 0.5, and use EVOI AF and parameterized posteriors.

We first evaluate the impact of CAV uncertainty. Similar to the RecSim NG experiment above, for each attribute
𝑔 we assume the RS has a known multivariate-normal distribution 𝑃𝑔 with mean `𝑔 and covariance 𝜎2

𝑔I that are
generated as above to capture CAV uncertainty. We test how modeling the CAV uncertainty in belief update and query

8We use https://github.com/yamaguchiyuto/pitf/ to train the PITF model.
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Fig. 6. CAV vs. PITF attribute semantics (RecSim NG).
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Fig. 7. PE with CAV uncertainty modeling (RecSim NG).

optimization impacts IG and RQ. Figure 8 shows PE results using IpA queries and three joint optimizers. Again, we
see that modeling CAV uncertainty in PE improves both IG and RQ, with an up to 10–20% improvement in NDCG
compared to PE using “deterministic” CAVs. This demonstrates the need to model noise in the estimation of the CAV
semantics for soft attributes in PE, particularly in real-world domains as reflected in MovieLens.

We next validate the performance of different query optimizers in the MovieLens setting. Figure 9 compares different
optimizers w.r.t. IG and RQ. While the RS can learn about user preferences and improve its recommendations with most
PE methods, the joint optimizers provide better recommendations (slates with greater NDCG across any number of
queries) by extracting more useful information (greater cosine). As in RecSim NG, PE with random queries performs
relatively well, likely due to two factors: (i) With an inaccurate prior model (e.g., during the early phases of PE), a
random query of diverse items may effectively reduce belief-state entropy; (ii) With a combinatorial space of decision
variables (slates), none of the optimization strategies converge to local optima (w.r.t. BPER) that are much better than the
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Fig. 8. PE with CAV uncertainty modeling (MovieLens).

Fig. 9. Comparing query optimizers (MovieLens).
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random query. This suggests that smartly switching between random and jointly optimized queries may be “practically
optimal” in terms of computational complexity and PE, but detailed studies are left for future work.

Finally, we explore different query types with both random search and gradient approximation. Figure 10 shows
that PE with IpA queries is much more effective than PE with simpler queries, an observation consistent with that
seen in the RecSim NG setting. With the additional information collected at each PE step, IpA queries offer a 10–20%
NDCG gain over item queries. PE with attribute queries performs worst w.r.t. both IG and RQ because, without allowing
users to express nuanced preferences through item selection, it may fail to capture preferences regarding important but
untaggable latent attributes.

7 CONCLUSIONS AND FUTUREWORK

We have proposed a framework for preference elicitation in interactive recommenders that allows users to navigate
item space or critique recommendations using soft attributes. Our techniques exploit concept-activation vectors (CAVs)
to uncover the semantics of soft attributes w.r.t. the RS’s item representation, and to support Bayesian updates of the
RS’s beliefs about a user’s underlying preferences. We considered uncertainty in the semantics of soft attributes and
develop scalable, continuous relaxation methods for query optimization. We studied a variety of query types, both item
and attribute-based, and response models, developed belief update and query optimization methods (i.e., acquisition
functions) for each, and demonstrated the efficacy of these methods on both simulated and MovieLens 20M data. Our
work has fundamental implications for designing the next-generation of recommenders (e.g., dialogue-based RSs), since
our methods allows RSs to interact and learn about users more naturally with soft attributes.

There are a number of avenues for future research. With insufficient tag data, CAV noise may render PE ineffective,
requiring active learning methods for attribute semantics—integrating these into the PE process should prove valuable.
Subjectivity, where users may use terms in different ways [21, 36], means methods to elicit a user’s “personalized”
semantics for an attribute should further enhance PE. Multi-modal user belief model, reflecting more diverse preferences,
are of interest. While our current PE methods optimize for myopic information gathering and recommendation, multi-
step lookahead PE methods that use reinforcement learning remain an important challenge. Finally, experiments with
real users are needed to further evaluate our methods with more diverse user preferences, attribute semantics, and
responses.
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A ELICITATIONWITH CAV UNCERTAINTY

A.1 User Belief State Update and AFs

To incorporate the CAV uncertainty, we consider a soft attribute query 𝑞 = (𝑆, 𝑃𝑔 ), where RS has a CAV belief 𝑃𝑔 (𝜙𝑔 |D𝑔 )
reflecting this uncertainty with training data D𝑔 . We assume the true CAV 𝜙𝑔 is sampled from 𝑃𝑔 . In this work, we
do not update the CAV belief with user responses to CAV semantic elicitation. However, the RS has to compute the
response probabilities for updating user belief state according to its CAV belief.

For a (soft) attribute query 𝑞 = (𝑆, 𝑃𝑔 ), by referring to the user response model 𝑃 (𝜌 |𝑞, 𝜙𝑢 ) we define

𝑃 (𝜌 | 𝑞, 𝜙𝑢 ) = E𝜙𝑔∼𝑃𝑔𝑃 (𝜌 | (𝑆, 𝜙𝑔 ), 𝜙𝑢 )

=

∫
𝜙𝑔

𝑃𝑔 (𝜙𝑔 |𝐷𝑔 )𝑃 (𝜌 | (𝑆, 𝜙𝑔 ), 𝜙𝑢 )𝑑𝜙𝑔 (18)

as the probability of observing response 𝜌 under a CAV belief 𝑃𝑔 . We then update our belief about 𝑢 with responses:

𝑃𝑈 (𝑢 | 𝜌, 𝑞) := 𝑃 (𝜙𝑢 | 𝜌, 𝑞) ∝ 𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃𝑈 (𝑢) .

Given any query-response pair (𝑞, 𝜌) under the current belief state 𝑃𝑈 (𝑢), the posterior belief is updated by Bayes rule:

𝑃 (𝜌 | 𝑞, 𝜙𝑢 ) =
𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃 (𝜙𝑢 )∫

𝜙𝑢
𝑃 (𝜌 | 𝑞, 𝜙𝑢 )𝑃 (𝜙𝑢 )𝑑𝜙𝑢

. (19)

We also need to consider the CAV uncertainty in computing acquisition functions. For example, the EVOI of 𝑞 (given
H ) is:

EVOI (𝑞 | H) = PEU (𝑞 | H) − EU ∗ (𝑃𝑈 (𝑢 | H)
)
. (20)

where 𝐸𝑈 ∗ (𝑃𝑈 (𝑢)) is still the same as Eq (14) but 𝑃𝐸𝑈 (𝑞 | H) is the posterior expected utility of w.r.t. 𝑞,

𝑃𝐸𝑈 (𝑞 | H) =
∑
𝜌

𝑃 (𝜌 | 𝑞,H) · 𝐸𝑈 ∗ (𝑃𝑈 (𝑢 | H ∪ {(𝜌, 𝑞)})
)
. (21)

Other acquisition functions can also be extended analogously but their details will be omitted for the sake of brevity.

A.2 Continuous Relaxation for AFs

Recall that the acquisition function can be expressed as

𝐹 (𝑞) = 𝛾 IG(𝑞 | H) + (1 − 𝛾)RQ(𝑞 | H), (22)

where
RQ(𝑞 | H) :=

∑
𝑖∈𝑆
E𝜙𝑢∼𝑃𝑈 (𝑢 |H) [𝜙⊤𝑢 𝜙𝐼 (𝑖)] (23)

measures the recommendation quality and IG is the information gathering metric (i.e., Entropy, MI or EVOI). In the
following we take EVOI as an example and show howwe obtain an differentiable objective function. The same derivation
applies to Entropy and MI. For IG=EVOI, computing 𝑞∗ = arg max𝑞 𝐹 (𝑞) is equivalent to finding

𝑞∗ = arg max
𝑞

{
𝛾𝑃𝐸𝑈 (𝑞 |H) + (1 − 𝛾)𝑅𝑄 (𝑞 |H)

}
. (24)
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PEU requires computing the expected belief w.r.t. possible responses 𝜌 , 𝑃𝑈 (𝑢 | H ∪ {(𝜌, 𝑞)}). This computation can
be expensive, so we approximate PEU by sampling from the prior 𝑃𝑈 (𝑢 | H):

𝑃𝐸𝑈 ′(𝑞 | H) :=
∑
𝜌

max
𝑖∈I
E𝜙𝑢∼𝑃𝑈 (𝑢 |H)

[
𝜙⊤𝑢 𝜙𝐼 (𝑖) · 𝑃 (𝜌 | 𝑞, 𝜙𝑢 )

]
. (25)

With CAV uncertainty, the response probabilities used in PEU and other AFs are computed using expectation over CAV.
The PEU function in Eq (25) can be further approximated by drawing𝑚 samples {𝜙𝑢,𝑗 }𝑚𝑗=1 from the posterior 𝑃𝑈 (𝑢 |H):

𝑃𝐸𝑈 (𝑞 | H) ≈ 1
𝑚

∑
𝜌

max
𝑖∈I

[ 𝑚∑
𝑗=1

𝜙⊤𝑢,𝑗𝜙𝐼 (𝑖)𝑃 (𝜌 | 𝑞, 𝜙𝑢,𝑗 )
]
. (26)

And similarly, the 𝑅𝑄 function can be approximated by

𝑅𝑄 (𝑞 | H) ≈ 1
𝑚

∑
𝑖∈𝑆

[ 𝑚∑
𝑗=1

𝜙⊤𝑢,𝑗𝜙𝐼 (𝑖)
]
. (27)

In the following we use the concatenation of attribute vector 𝑔 and item embeddings in 𝑆 to represent 𝑞, immediately
𝑅𝑄 (𝑞 | H) is differentiable w.r.t. 𝑞. However, computing 𝑃𝐸𝑈 (𝑞 | H) requires enumerating over I and thus is not
differentiable. To derive a differentiable objective function 𝐹 (𝑞), we assume I is rich enough such that for each query-

response pair (𝑞, 𝜌) we can find 𝑖∗(𝑞,𝜌) =
∑𝑚

𝑗=1 𝜙𝑢,𝑗𝑃 (𝜌 |𝑞,𝜙𝑢,𝑗 )
∥∑𝑚

𝑗=1 𝜙𝑢,𝑗𝑃 (𝜌 |𝑞,𝜙𝑢,𝑗 ) ∥
max𝑖∈I ∥𝜙𝐼 (𝑖)∥ to maximize the RHS of Eq (26). Then

Eq (26) can be further approximated by

𝑃𝐸𝑈 (𝑞 | H) ≈ max𝑖∈I ∥𝜙𝐼 (𝑖)∥
𝑚

∑
𝜌

 𝑚∑
𝑗=1

𝜙𝑢,𝑗𝑃 (𝜌 | 𝑞, 𝜙𝑢,𝑗 )


2
, (28)

which is differentiable w.r.t. 𝑞 because the response model 𝑃 (·|𝑞, ·) is differentiable w.r.t. 𝑞.
Now we extend the continuous relaxation framework to account for queries with an uncertain CAV vector as its

attribute. We may apply the re-parameterization trick to derive a continuous acquisition function. Suppose the CAV
vector 𝜙𝑔 in the attribute query 𝑞 = (𝑆, 𝑃𝑔 ) follows a Multivariate normal N(`𝑔 , Σ𝑔 ). Then we can sample 𝑛 queries
{𝑞𝑖 |𝑞𝑖 = ({𝜙𝐼 (𝑖)}𝑖∈𝑆 , 𝜙𝑔,𝑖 )}𝑛𝑖=1 by calculating 𝜙𝑔,𝑖 = `𝑔 + 𝐿𝑔𝜖𝑖 , where Σ𝑔 = 𝐿⊤𝑔 𝐿𝑔 is the Cholesky decomposition of the
covariance matrix, and 𝜖𝑖 ∼ N(0,I𝑑 ) are i.i.d. standard normal random vectors. Based on Eq (26), we can now introduce
the uncertainty of CAVs in the following approximation of PEU

𝑃𝐸𝑈 (𝑞 | H) ≈ max𝑖∈I ∥𝜙𝐼 (𝑖)∥
𝑚𝑛

𝑛∑
𝑖=1

∑
𝜌

 𝑚∑
𝑗=1

𝜙𝑢,𝑗𝑃 (𝜌 | 𝑞𝑖 , 𝜙𝑢,𝑗 )


2
,

where

𝑃 (𝜌 = +1 | 𝑞𝑖 , 𝜙𝑢 ) = 𝑃 (𝜌 = +1 | 𝑆, `𝑔 , Σ𝑔 , 𝜖𝑖 , 𝜙𝑢 )

= Φ
( (`𝑔 + 𝐿𝑔𝜖𝑖 )⊤ (𝜙∗𝐼 ,𝑢 − 𝜙𝐼 ,𝑆 )

𝜎𝑔

)
, (29)

Eq. (29) is differentiable w.r.t. 𝑞 = ({𝜙𝐼 (𝑖)}𝑖∈𝑆 , `𝑔 , 𝐿𝑔 ) and we can thus obtain its gradient. Suppose (𝜙𝑖 𝑖∈𝑆 , ˆ̀𝑔 , �̂�𝑔 ) is a
solution of the corresponding continuous optimization problem. The projection is done by picking the attribute with
the smallest KL-divergence to N( ˆ̀𝑔 , �̂�⊤𝑔 �̂�𝑔 ) and the slate of items with the minimum Euclidean distance to 𝜙𝑖 𝑖∈𝑆 .
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A.3 Gradient-basedQuery Optimization

Once we approximate the acquisition function in a continuous form 𝐹 (𝑞), standard gradient-based method can be
applied to find the optimal query 𝑞∗ = arg max𝑞 𝐹 (𝑞). In our empirical study we use both first and second-order
optimization. First we generate an initial query 𝑞0 from random search with 20 trials and then apply either the following
updates for a fixed number of steps:

(1) First-order optimization:
𝑞𝑡 = 𝑞𝑡−1 + [∇𝐹 (𝑞𝑡−1), 1 ≤ 𝑡 ≤ 𝑇,

(2) Second-order optimization:

𝑞𝑡 = 𝑞𝑡−1 + [_𝐼 + ∇2𝐹 (𝑞𝑡−1)]−1∇𝐹 (𝑞𝑡−1), 1 ≤ 𝑡 ≤ 𝑇,

where [ is the learning rate, _ is a regularization constant used to guarantee the non-singularity of the Hessian matrix
∇2𝐹 . In our experiments we take 𝑇 = 2, [ = 1𝑒 − 3, _ = 1𝑒 − 4.

B GRADIENT OF LOG-POSTERIOR

We are interested in the gradient of the following expression with respect to 𝜙𝑢 (the embedding sample for the user):

−1
2
(𝜙𝑢 − 𝜙`,𝑈 (𝑢))⊤

(
𝜙𝜎,𝑈 (𝑢)⊤𝜙𝜎,𝑈 (𝑢)

)−1 (𝜙𝑢 − 𝜙`,𝑈 (𝑢))+

𝐾∑
𝑘=1

log 𝑃 (𝜌 (𝑘) | 𝑞 (𝑘) , 𝜙𝑢 ) (30)

For the first term that comes from the prior, the gradient is equal to−
(
𝜙𝜎,𝑈 (𝑢)⊤𝜙𝜎,𝑈 (𝑢)

)
(𝜙𝑢−𝜙`,𝑈 (𝑢)). The components

of the second term (each log likelihood) depends on the type of query.

B.1 AttributeQueries

Mean Slate Model. Here, we have

log 𝑃 (𝜌 (𝑘) | 𝑞 (𝑘) , 𝜙𝑢 ) = logΦ ©«𝜌 (𝑘)
𝜙⊤
𝑔 (𝑘 ) (𝜙∗𝐼 ,𝑢 − 𝜙𝐼 ,𝑆 (𝑘 ) )

𝜎𝑔 (𝑘 )

ª®¬ , (31)

where 𝜌 (𝑘) is either −1 or 1. We can write the gradient of this expression with respect to 𝜙𝑢 as follows by using the
relation between 𝜙𝑢 and 𝜙∗

𝐼 ,𝑢
:

𝜑

(
𝜌 (𝑘)

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙
𝐼 ,𝑆 (𝑘 ) )

𝜎
𝑔 (𝑘 )

)
Φ

(
𝜌 (𝑘)

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙
𝐼 ,𝑆 (𝑘 ) )

𝜎
𝑔 (𝑘 )

) 𝜌 (𝑘)𝑧
𝜎𝑔 (𝑘 )

©«
𝜙𝑔 (𝑘 )

∥𝜙𝑢 ∥2
−
𝜙⊤
𝑔 (𝑘 ) (𝜙∗𝐼 ,𝑢−𝜙𝐼 ,𝑆 (𝑘 ) )𝜙𝑢

∥𝜙𝑢 ∥3
2

ª®¬ , (32)

where 𝜑 is the standard normal pdf, and 𝑧 = max𝑖∈I ∥𝜙𝐼 (𝑖)∥2.

Mean Probability Model. We start with

log 𝑃 (𝜌 (𝑘) |𝑞 (𝑘) , 𝜙𝑢 )= log
1

|𝑆 (𝑘) |

∑
𝑖∈𝑆 (𝑘 )

Φ
©«𝜌 (𝑘)

𝜙⊤
𝑔 (𝑘 ) (𝜙∗𝐼 ,𝑢−𝜙𝐼 (𝑖))

𝜎𝑔 (𝑘 )

ª®¬ , (33)
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where 𝜌 (𝑘) is either −1 or 1. Again by using the relation between 𝜙𝑢 and 𝜙∗
𝐼 ,𝑢

, we can write the gradient of this
expression with respect to 𝜙𝑢 as follows:∑

𝑖∈𝑆 (𝑘 )
𝜑

(
𝜌 (𝑘)

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙𝐼 (𝑖))
𝜎
𝑔 (𝑘 )

)
𝜌 (𝑘 )𝑧
𝜎
𝑔 (𝑘 )

(
𝜙
𝑔 (𝑘 )

∥𝜙𝑢 ∥2
−
𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙𝐼 (𝑖))𝜙𝑢
∥𝜙𝑢 ∥3

2

)
∑
𝑖∈𝑆 (𝑘 ) Φ

(
𝜌 (𝑘)

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙𝐼 (𝑖))
𝜎
𝑔 (𝑘 )

) . (34)

B.2 ItemQueries

We ignore the temperature 𝑇 for simplicity. Here, we have

log 𝑃 (𝜌 (𝑘) | 𝑞 (𝑘) , 𝜙𝑢 ) = log
exp(𝜙⊤𝑢 𝜙𝐼 (𝜌 (𝑘) ))∑
𝑖∈𝑆 (𝑘 ) exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))

= 𝜙⊤𝑢 𝜙𝐼 (𝜌 (𝑘) ) − log
∑
𝑖∈𝑆 (𝑘 )

exp(𝜙⊤𝑢 𝜙𝐼 (𝑖)) , (35)

where 𝜌 (𝑘) is an item from 𝑆 (𝑘) . We can write the gradient of this expression with respect to 𝜙𝑢 as follows:

𝜙𝐼 (𝜌 (𝑘) ) −
∑
𝑖∈𝑆 (𝑘 ) exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))𝜙𝐼 (𝑖)∑
𝑖∈𝑆 (𝑘 ) exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))

. (36)

B.3 Item-Plus-AttributeQueries

We again start with the response model:

log 𝑃 (𝜌 (𝑘) | 𝑞 (𝑘) , 𝜙𝑢 )

= log
exp(𝜙⊤𝑢 𝜙𝐼 (𝜌

(𝑘)
1 ))∑

𝑖∈𝑆 (𝑘 )
exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))

+logΦ
©«𝜌

(𝑘)
2

𝜙⊤
𝑔 (𝑘 ) (𝜙∗𝐼 ,𝑢−𝜙𝐼 (𝜌

(𝑘)
1 ))

𝜎𝑔 (𝑘 )

ª®®¬ , (37)

where 𝜌 (𝑘)1 ∈ 𝑆 (𝑘) and 𝜌 (𝑘)2 ∈ {−1, +1}. We can write the gradient of this expression with respect to 𝜙𝑢 simply as a sum
of the two gradients we derived before:

𝜙𝐼 (𝜌 (𝑘)1 )−

∑
𝑖∈𝑆 (𝑘 )

exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))𝜙𝐼 (𝑖)∑
𝑖∈𝑆 (𝑘 )

exp(𝜙⊤𝑢 𝜙𝐼 (𝑖))
+
𝜑

(
𝜌
(𝑘)
2

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙𝐼 (𝜌 (𝑘 )
1 ))

𝜎
𝑔 (𝑘 )

)
Φ

(
𝜌
(𝑘)
2

𝜙⊤
𝑔 (𝑘 )

(𝜙∗
𝐼 ,𝑢

−𝜙𝐼 (𝜌 (𝑘 )
1 ))

𝜎
𝑔 (𝑘 )

)×
𝜌
(𝑘)
2 𝑧

𝜎𝑔 (𝑘 )

©«
𝜙𝑔 (𝑘 )

∥𝜙𝑢 ∥2
−
𝜙⊤
𝑔 (𝑘 ) (𝜙∗𝐼 ,𝑢−𝜙𝐼 (𝜌

(𝑘)
2 ))𝜙𝑢

∥𝜙𝑢 ∥3
2

ª®®¬ . (38)
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