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Abstract
Designing reward functions is a difficult task in AI and robotics. The complex task of directly specifying all the desirable
behaviors a robot needs to optimize often proves challenging for humans. A popular solution is to learn reward functions
using expert demonstrations. This approach, however, is fraught with many challenges. Some methods require heavily
structured models, e.g. reward functions that are linear in some predefined set of features, while others adopt less
structured reward functions that may necessitate tremendous amounts of data. Moreover, it is difficult for humans to
provide demonstrations on robots with high degrees of freedom, or even quantifying reward values for given trajectories.
To address these challenges, we present a preference-based learning approach, where human feedback is in the form
of comparisons between trajectories. We do not assume highly constrained structures on the reward function. Instead,
we employ a Gaussian process to model the reward function and propose a mathematical formulation to actively fit
the model using only human preferences. Our approach enables us to tackle both inflexibility and data-inefficiency
problems within a preference-based learning framework. We further analyze our algorithm in comparison to several
baselines on reward optimization, where the goal is to find the optimal robot trajectory in a data-efficient way instead
of learning the reward function for every possible trajectory. Our results in three different simulation experiments and a
user study show our approach can efficiently learn expressive reward functions for robotic tasks, and outperform the
baselines in both reward learning and reward optimization.
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Introduction
Planning for robots that can act in a diverse set of
environments based on human preferences can be quite
challenging. It is usually impractical for human designers to
directly program the desired behaviors across an exhaustive
range of possible scenarios. Therefore, roboticists often
integrate machine learning into their design process to
deduce human preferences. One approach is to learn a robot
policy directly from expert demonstrations (Ho and Ermon
2016; Ross et al. 2013; Song et al. 2018; Stadie et al. 2017).
However, in many settings, we are interested in learning a
reward function that represents how a robot should act or
interact within the world (Biyik 2022).

Reward functions serve as powerful tools for prescribing
desirable robot behaviors, e.g. how to act safely, or what
styles or goals the robot needs to follow. Unfortunately,
specifying reward functions is not easy for human
designers (Clark and Amodei 2016; Ng et al. 1999;
Christiano et al. 2017). Our goal in this work is to develop a
data-efficient method capable of learning expressive reward
functions and optimizing them directly.

Previous works have demonstrated that employing a series
of pairwise comparisons between trajectories is an effective
way to learn reward functions (Cakmak et al. 2011; Ibarz
et al. 2018; Brown and Niekum 2019; Tucker et al. 2020b;
Sadigh et al. 2017; Akrour et al. 2012; Lepird et al. 2015;
Lee et al. 2021; Biyik 2022). For example, as shown in

Figure 1, the robot can demonstrate the blue and green
trajectories, ξA and ξB , and query the human designer for
their comparison between the two. Preference-based reward
learning then utilizes a series of pairwise comparisons to
accurately estimate a reward function.

However, preference-based learning techniques are typi-
cally not data-efficient, because each pairwise comparison
provides at most 1 bit of information: whether ξA is pre-
ferred over ξB or vice versa. Therefore, active learning is
frequently incorporated into this framework to identify the
most informative or diverse sequence of pairwise comparison
queries for efficiently converging to the underlying reward
function (Sadigh et al. 2017; Biyik and Sadigh 2018; Biyik
et al. 2019c,b; Basu et al. 2019; Palan et al. 2019; Katz et al.
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Human Teacher

Figure 1. The user is trying to teach the robot how to play a
variant of mini-golf, where the reward differs among eight
targets. In preference-based learning, instead of trying to
design a reward function by hand or controlling the robot to
provide demonstrations, the user simply compares two
demonstrated trajectories on the robot. Here, ξA and ξB
demonstrate two trajectories that correspond to hitting the ball
towards the blue or green targets.

2019; Biyik et al. 2019a; Racca et al. 2019; Wilde et al. 2019;
Akrour et al. 2012; Wilde et al. 2020, 2021).

Unfortunately, most of the existing active reward learning
methods are reliant on a strong assumption about the
structure of the reward function: the reward function is a
linear combination of a set of hand-coded features. While
this assumption is typically needed for active learning to
scale, it is highly restrictive as linear reward functions
often lack the required expressiveness to encode human
preferences. For example, a linear reward function would
necessitate several features for the human teacher to be
able to specify every reward configuration of targets in the
task demonstrated in Figure 1, i.e., how targets compare to
each other. The features to this task could be, for example,
distances to each and every target. On the other hand, if the
reward model was nonlinear, one could capture all possible
configurations with only two features: speed for how far the
ball will be thrown, and angle, representing the direction
to shoot. While neural networks or kernel functions can
offer this flexibility (Lee et al. 2021; Christiano et al. 2017;
Katz et al. 2021), these techniques significantly increase the
number of parameters required, which prohibits (or renders
useless the advantage of) active learning algorithms.

Our key insight is to model the reward function
using a Gaussian process (GP) (Rasmussen and
Williams 2005). GPs are non-parametric models
that can capture nonlinearities, enabling us to

actively and efficiently learn highly expressive
reward functions.

In this work, we introduce a mathematical framework
for actively fitting a GP using only pairwise comparisons
between two trajectories, which we call preference data.
Leveraging GPs, as opposed to linear models with manually
designed features, enhances the expressiveness of reward
functions by incorporating nontrivial nonlinearities. Besides,
our active query generation method allows us to scale the
advantages of active learning.

Building upon this framework, which we previously
introduced in our conference paper (Biyik et al. 2020), we
also consider the common use case of reward learning where
the ultimate goal is to identify the best trajectory for the
robot in a fixed environment (Wilde et al. 2020). In such
settings, it is sufficient to find the trajectory that maximizes
the reward function instead of learning the function for all
possible trajectories. We call this setting reward optimization
(as opposed to reward learning). We propose and empirically
analyze a variant of our reward learning algorithm for reward
optimization.

We make three main contributions in this work*:

• We introduce a data-efficient mathematical framework
for actively regressing a GP with preference data,
enabling the learning of expressive reward functions
from humans.

• We demonstrate the efficacy of our framework
through three different simulated environments and
user studies on a manipulator robot playing a variant
of mini-golf based on different human preferences.
Our results show our approach can be used for reward
learning in complex settings and is more data-efficient
than other baselines.

• We propose a variant of our reward learning algorithm
for reward optimization, and empirically compare it
against several baselines in simulation. Our results
show this variant gets closest to identifying the
best trajectory with very limited data, while the
original algorithm is significantly slower in terms of
computation time and may perform better only after
many queries.

Related Work
In this section, we start with reviewing the prior work
focused on learning reward functions from demonstrations,
or other sources of data, as well as the existing works for
preference-based reward optimization. Finally, we discuss
related works in Gaussian process regression and how they
relate to and differ from our work.

Learning reward functions from demonstrations. Learning
reward functions via collected expert demonstrations has
been extensively studied. This is commonly referred to

∗Parts of this work have been published in Robotics: Science and
Systems (RSS) conference (Biyik et al. 2020). This paper adds the reward
optimization variant of the algorithm, and new results on simulation
experiments.
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as inverse reinforcement learning (IRL), where human
demonstrations are assumed to approximately optimize a
reward function which encodes their preferences (Abbeel
and Ng 2004, 2005; Ng and Russell 2000; Ramachandran
and Amir 2007; Ziebart et al. 2008). The robot can then use
the learned reward function to optimize its actions in the
broad range of environments.

Despite promising outcomes of IRL in various domains,
robots, especially manipulators with high degrees of
freedom, are often too difficult to manually operate (Losey
et al. 2020; Akgun et al. 2012; Dragan and Srinivasa 2012;
Javdani et al. 2015; Khurshid and Kuchenbecker 2015).
Moreover, recent studies in autonomous driving, where the
robot does not have a high degree of freedom, reveal that
people generally do not favor an autonomous vehicle to
mimic their own demonstrations. Instead, they prefer a
different behavior that tends to be more timid (Basu et al.
2017). These findings suggest that one needs to go beyond
human demonstrations to effectively capture the preferred
reward function.

In contrast to depending on hard-to-collect human
demonstrations, our framework learns reward functions
through preference queries, eliminating the need for experts
capable of operating the system in the desired manner.

Learning reward functions from other sources of data. In
addition to demonstrations, language (Sharma et al. 2022;
Sontakke et al. 2023) and physical corrections (Bajcsy et al.
2017, 2018), where the robot attempts to learn the reward
function through physical human intervention, learning from
rankings (Brown and Niekum 2019; Myers et al. 2022)
is another popular approach. A particular case of this is
when the rankings are only pairwise comparisons, which
we call preference queries. Previous works have explored
the use of preference queries for reward learning. Lepird
et al. (2015); Sadigh et al. (2017) proposed acquisition
functions to actively generate the queries. Additional studies
broadened this approach to batch-active methods (Biyik
and Sadigh 2018; Biyik et al. 2019c), best-of-many choice
queries instead of pairwise comparisons (Biyik et al. 2019a),
general Markov Decision Process (MDP) settings (Katz et al.
2019), online interactive settings (Myers et al. 2023), and
settings that combine expert demonstrations or other forms
of human feedback with preference queries (Jeon et al. 2020;
Biyik et al. 2021). The reward function assumed by these
priors works is often linear with respect to some hand-
coded features, thereby limiting the model flexibility and
necessitating meticulous feature design (Biyik et al. 2022).

Basu et al. (2019) experimented with modeling a multi-
modal non-stationary reward function, although the reward
remained linear in each mode. Further, their work primarily
focused only on bi-modal rewards, leaving scalability to
more modes a potential problem. Christiano et al. (2017);
Lee et al. (2021); Katz et al. (2021) employed reward
functions that are modeled using neural networks. However,
due to the large parameter spaces of neural networks, they
typically need tens of thousands of preference queries to be
able to learn the reward functions, which poses practicality
issues when working with humans in real-world settings.

In this work, we do not make the linearity assumption
and instead employ a GP to model the reward, allowing the

modeling of complex reward functions without necessitating
large parameter spaces. Our results show this approach
significantly improves the expressive power of the learned
reward function while remaining data-efficient.

Preference-based Reward Optimization. A few works
concentrated on the reward optimization setting where
the objective is to find the optimal trajectory rather than
learning the reward function everywhere. Wilde et al.
(2020) developed an algorithm that aims at minimizing
some regret measure to find the optimal trajectory with as
few preference queries as possible. Indeed, their method
identified the optimal trajectory with fewer preference
queries than the state-of-the-art active preference-based
reward learning method, indicating reward optimization can
be solved with greater data-efficiency than reward learning.
However, they also assume a linear reward function, and
their query generation method relies on the presence of
an efficient planner which outputs the optimal trajectory
given any reward function. In many applications, this planner
demands reinforcement learning training, which is not
efficient enough to run multiple times to optimize a single
query. Contrarily, our reward learning method and its variant
for reward optimization do not require such a planner.

In another line of work, Tucker et al. (2020b,a) employed a
Thompson sampling technique to find the optimal trajectory
(or the optimal exoskeleton gait in their case) as quickly
as possible. While this technique is very fast in terms of
computation time, our empirical results demonstrate that our
methods are more data-efficient.

More recently, reinforcement learning from human feed-
back (RLHF), or preference-based reinforcement learning
(Wirth et al. 2017; Ouyang et al. 2022; Casper et al. 2023),
gained popularity where human feedback is often in the form
of pairwise preference comparisons. The goal in RLHF is
to learn the optimal policy by making on-policy preference
queries to the user, where queries consist of trajectories
that approximately optimize the learned reward. Researchers
adopted various forms of reward functions in RLHF, includ-
ing nonlinear forms such as neural networks (Christiano
et al. 2017) and GPs (Kupcsik et al. 2018). While this
setting is similar to our reward optimization problem, they
require either training a policy after every preference query,
or making a very large number of queries (as in (Christiano
et al. 2017)), or a policy function that is parameterized by
only a small number of parameters (as in (Kupcsik et al.
2018)). Instead, we are interested in the off-policy version
of the problem without the assumption of small policy
parameter space. Furthermore, we also study the reward
learning problem.

Gaussian process regression. On the machine learning
front, González et al. (2017) and Chu and Ghahramani
(2005) proposed methods for preference-based Bayesian
optimization and GP regression, respectively, but they
were not active. The approach by González et al. (2017)
required regression of a GP over 2d-dimensions to model
a d-dimensional function, which causes a computational
burden. Houlsby et al. (2012) presented an active method
for preference-based GP regression. However, similar to
González et al. (2017), the regression was done over a 2d-
dimensional space where the learned model predicts the
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outcome of a comparison rather than outputting a reward
value.

Jensen and Nielsen (2011) showed how to update a GP
with preference data, but the active query generation was
not of interest. Similarly, Kupcsik et al. (2018) developed
and used a preference-based GP regression method for
optimizing robot-to-human object handover. This work
differs from the others by using on-policy trajectories for
preference queries: instead of using a fixed dataset of
queries, they generated them using a policy that optimizes
for the reward function that is learned up to that iteration.
Differently from our work, which is off-policy but generates
queries actively from a pool, this work did not focus
on pool-based active querying, i.e., they did not optimize
an acquisition function to select a query from a set of
candidate queries for data-efficiency. And importantly, they
only considered the reward optimization problem, but not the
reward learning problem.

Kapoor et al. (2007) formulated an active learning strategy
for classification with GPs. This is a special case of our
problem, as the labels in classification are consistent, i.e.,
the labels assigned to the samples in the dataset, even if
they are incorrect, remain unchanged during training. In our
case, the user’s response to the same preference query may
differ based on their noise model. Houlsby et al. (2011) and
Daniel et al. (2015) proposed active GP regression methods
for classification and reward learning, respectively. While the
latter focused on robotics tasks, they were not preference-
based. Thus, it might not be feasible in many applications as
humans often struggle to assign actual reward values.

In this work, we propose an active query generation
method for preference-based GP regression for reward
learning and optimization. This technique is data-efficient
and does not require humans to assign reward values to
trajectories for fitting the GP.

Problem Formulation

We model the environment the robot is going to operate in as
a finite-horizon MDP. We use st ∈ S to denote the state and
at ∈ A for the action (control inputs) at time t. A trajectory
ξ ∈ Ξ within this MDP is a sequence that consists of the
state-action pairs: ξ = (s0, a0, s1, a1, . . . , sT , aT ), where T
is the finite time horizon. We assume a reward function over
trajectories, R : Ξ → R, encoding the user’s preferences
about how they want the robot to operate.

We assume the reward function R can be formulated
as R(ξ) = f(Ψ(ξ)), where Ψ : Ξ → Rd defines a set of
trajectory features. These features are often hand-designed,
e.g. average speed and minimum distance to the closest car
in a driving trajectory. However, we emphasize that this
formulation of R enables a more general form of functions
that does not require strong assumptions – such as linearity
in the features, which corresponds to constraining f to be
an affine function – which is commonly used when learning
reward functions. We use a GP to model f , which allows us
to avoid strong assumptions about the form of f .†

Our goal in reward learning is to learn this more general
form of reward function using preference data in the form
of pairwise comparisons. In reward optimization, on the

other hand, the objective is to identify the trajectory that
maximizes the reward function, again using preference data.

The robot will demonstrate a query Q consisting of
two trajectories, ξA and ξB as shown in Figure 1 with
blue and green curves, to the user, and will ask which
trajectory they prefer. The user will respond to this query
based on their preferences. The user’s response provides
useful information about the underlying preference reward
function R. Of course, we cannot assume human responses
are perfect for every query. Consequently, we model the
noise in their responses using the commonly adopted probit
model (Kupcsik et al. 2018), which assumes humans make a
binary decision between the two trajectories noisily based on
the cumulative distribution function (cdf) of the difference
between the two reward values:

P (q = ξA | Q = {ξA, ξB}) = P (R(ξA)−R(ξB) > v) ,

where q ∈ Q denotes the user’s choice, and v ∼ N (0, 2σ2)
for some standard deviation σ

√
2. Therefore, equivalently:

P (q = ξA | Q = {ξA, ξB}) = Φ

(︃
R(ξA)−R(ξB)√

2σ

)︃
, (1)

where Φ is the cumulative distribution function of the
standard normal.

Having defined the problem setting, we are now ready to
present our method for learning data-efficient and expressive
reward functions using GPs, as well as its variant for reward
optimization.

Methods
In this section, we first give some background information
about Gaussian processes. We then introduce preference-
based GP regression, where we show how to update a
GP with the results of pairwise comparisons. Next, we
present our approach to active preference query generation
for reward learning, where we discuss how to find the
most informative query that accelerates the learning. Finally,
we discuss how this approach can be modified for reward
optimization where we do not need to learn the reward
function for all possible trajectories.‡ To simplify the
notation, we replace Ψ(ξ) with Ψ, with superscripts and
subscripts when needed.

Gaussian Processes
We start by introducing the necessary background on GPs for
our work. We refer the readers to Rasmussen and Williams
(2005) for other uses of GPs in machine learning.

Suppose we are given a dataset Ψ=(Ψi)
N
i=1, where

Ψi∈Rd. We employ a probabilistic point of view for
f by modeling it using a GP, which enables us to
model nonlinearities and uncertainties without introducing

†Due to computational reasons, we assume d is small. Compared to previous
methods that assume R to be linear in features, this is a very mild
assumption.
‡The Python code for active query generation is publicly
available at https://github.com/Stanford-ILIAD/
active-preference-based-gpr.
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parameters. We have:

P (f | µ,K) =
exp

(︁
− 1

2 (f − µ)⊤K−1(f − µ)
)︁

(2π)N/2|K|1/2
, (2)

where f = (f(Ψi))
N
i=1, µ and K are the mean vector and the

covariance matrix of the GP distribution for the N items in
the dataset. Here, f follows a multivariate distribution. The
covariance matrix depends on the kernel. In this work, we
use a variant of the radial basis function (RBF) kernel with
hyperparameter θ:

k(Ψi,Ψj) = exp
(︁
−θ∥Ψi −Ψj∥22

)︁
− k̄(Ψi,Ψj),

k̄(Ψi,Ψj) = exp
(︁
−θ∥Ψi − Ψ̄∥22 − θ∥Ψj − Ψ̄∥22

)︁
,

where Ψ̄ ∈ Rd is an arbitrary point for which we assume
f(Ψ̄) = 0. This is important because the query responses
only depend on the relative difference between the two
reward function values at the trajectories, i.e., f(Ψ) + c for
any c ∈ R would have the same likelihood for a dataset
as f(Ψ). By setting f(Ψ̄) = 0 for some arbitrary Ψ̄ ∈
Rd, we dissolve this ambiguity. It does not introduce an
assumption because, for any function f ′ and for any point
Ψ̄, one can define f(Ψ) = f ′(Ψ)− f ′(Ψ̄) without loss of
generality—both f ′ and f will encode the same preferences.
Finally, this variant of the RBF kernel is still positive semi-
definite, because it is equivalent to the covariance kernel of
a GP which is initialized with an initial data point§ and a
standard RBF kernel prior.

Preference-based GP Regression
In preference-based learning, we have a dataset
Ψ=((Ψ

(1)
i ,Ψ

(2)
i ))Ni=1, consisting of pairs of trajectories

Ψ
(1)
i ,Ψ

(2)
i ∈Rd, and user responses q=(qi)

N
i=1, where

qi∈{0, 1} indicates whether the user preferred Ψ
(1)
i or Ψ(2)

i .
Accordingly, K is now a 2N×2N matrix, whose rows and
columns correspond to Ψj

i ,∀i∈{1, . . . , N},∀j∈{1, 2}.
Similarly, µ is a 2N -vector. Using a Bayesian approach to
update the GP with new preference data (Ψ, q) gives:

P (f | µ,K,Ψ, q) ∝ P (q | f,µ,K,Ψ)P (f | µ,K,Ψ)

= P (q | f,Ψ)P (f | µ,K). (3)

Here, the first term is just the probabilistic human response
model given in Equation (1), and the second term is
Equation (2). However, this posterior does not follow a GP
distribution similar to Equation (2), and becomes analytically
intractable (Jensen and Nielsen 2011).

Prior works have shown it is possible to perform some
approximation such that the posterior is another GP (Jensen
and Nielsen 2011; Rasmussen and Williams 2005). The most
common approximation techniques are

• Laplace approximation, where the idea is to model the
posterior as a GP such that the mode of the likelihood
is treated as the posterior mean, and a second-order
Taylor approximation around the maximum of the
log-likelihood gives the posterior covariance. This
technique is computationally very fast.

• Expectation Propagation (EP), where the idea is to
approximate each factor of the product by a Gaussian.

EP is an iterative method that processes each factor
iteratively to update the distribution to minimize its
KL-divergence with the true posterior. While it is more
accurate than Laplace approximation, it is slower in
practice (Nickisch and Rasmussen 2008).

In this paper, we use the former for its computational
efficiency. Hence, we now show how to compute the
quantities for Laplace approximation, i.e., posterior mean
and covariance.

Finding the posterior mean. We use the mode of the
posterior as an approximation to the posterior mean:

argmax
f

(log (p(q | Ψ, f)) + log (P (f | Ψ))) (4)

Because the preference data are conditionally independent,
the first term can be written as:

log (P (q | Ψ, f)) =

N∑︂
i=1

logP (qi | Ψi, f)

=

N∑︂
i=1

log Φ

(︄
f(Ψ

(1)
i )− f(Ψ

(2)
i )√

2σ

)︄

due to Equation (1). Adopting a zero-mean prior for f , we
can write the second term of the optimization (4) as:

log (P (f | Ψ)) = −1

2
log|K| −N log 2π − 1

2
f⊤K−1f

With these two expressions, we can now optimize the log-
likelihood and thus find the mode of it to approximate the
posterior mean.

Finding the posterior covariance matrix. Following Ras-
mussen and Williams (2005), and omitting the derivation for
brevity, the posterior covariance matrix is (K−1 +W)−1

where W is the negative Hessian of the log-likelihood:

Wij = −∂2 log (P (q | Ψ, f))

∂f (i)∂f (j)
.

Now, we know how to approximate the posterior mean and
the posterior covariance for the Laplace approximation of
Equation (3). This allows us to model and update the reward
with preference data using a GP.

We also want to perform inference from this approximated
GP. Inference is not only useful for active query generation,
but it also enables us to compute the reward expectations and
variances given a trajectory.
Inference. Given two points Ψ

(1)
∗ ,Ψ

(2)
∗ ∈ Rd, we want to

be able to compute the expected mean rewards µ∗ and also
the covariance matrix between those two points K∗, both of
which will be useful for active query generation. These are
given by:

µ∗ = E
[︂
f∗ | Ψ,q,Ψ

(1)
∗ ,Ψ

(2)
∗

]︂
= k⊤∗ K

−1f , (5)

§In cases where some human evaluations of the reward functions are
available in the form of trajectory-reward pairs, one could add more of these
terms to include those information. Thus, our method is easily generalizable
to the cases where both preference and reward evaluation data are available.
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where k∗ij = k(Ψ
(i)
∗ ,Ψj) is a 2× 2N matrix, and

K∗ = K0 − k∗ (I2N +WK)
−1

Wk⊤∗ , (6)

where K0ij = k
(︂
Ψ

(i)
∗ ,Ψ

(j)
∗

)︂
is a 2× 2 matrix, and I2N is

the 2N × 2N identity matrix.
Equipped with all these tools which enable us to

approximate the posterior distribution with a GP and
perform inference over it, we are now ready to present
our contributions on the active query generation for reward
learning and optimization.

Active Query Synthesis for Reward Learning
While we now know how to learn the reward function f using
only pairwise comparisons, this can require a tremendous
amount of data, because each query will give at most 1 bit
of information. Furthermore, we can expect a decreasing
trend in the information gain as we learn the reward function.
Therefore, it is important to select the queries for the human
such that each query gives as much information as possible.
For linear reward models, previous work has shown that this
can be done by maximizing the mutual information, which
also makes the queries easy for the user (Biyik et al. 2019b).
Extending this formulation to the reward functions modeled
with a GP is not trivial, because one needs to sample from the
GP many times for each trajectory, whereas a linear reward
form allows the reward prediction after sampling the linear
weight terms only once.

Hence, for the active query generation, our goal is to
perform information gain maximization with GPs.

Problem 1. Formally, we want to solve the following
problem:

Ψ
(1)
∗ ,Ψ

(2)
∗ = argmax

Ψ(1),Ψ(2)

I(f ; q | Ψ,Ψ,q),

where I is the mutual information and q is the response to
the query Ψ = (Ψ(1),Ψ(2)). This optimization is equivalent
to

argmax
Ψ(1),Ψ(2)

(︁
H(q | Ψ,Ψ,q)− Ef∼P (f |Ψ,q) [H(q | Ψ, f)]

)︁
,

(7)

where H is the information entropy.

This optimization can be interpreted as follows: On one
hand, maximizing the first entropy term H(q | Ψ,Ψ,q)
encourages fast convergence by maximizing the uncertainty
of the outcome of every query for the learned GP model.
On the other hand, minimizing the second entropy term
H(q | Ψ, f) encourages the ease of responding to the queries
by the user, meaning the user should be certain about their
choices.

We defer the full derivation of (7) to the appendix,
but here we give an easy-to-implement formulation of the
optimization. Denoting the posterior mean of f(Ψ(i)), which
is obtained using Equation (5), with µ(i), the objective
function can be written as

h

(︄
Φ

(︄
µ(1) − µ(2)√︁

2σ2 + g(Ψ(1),Ψ(2))

)︄)︄
−m (Ψ) (8)

where

g(Ψ(1),Ψ(2)) =Var
(︂
f(Ψ(1))

)︂
+Var

(︂
f(Ψ(2))

)︂
− 2 Cov

(︂
f(Ψ(1)), f(Ψ(2))

)︂
,

whose terms can be computed using Equation (6); h is the
binary entropy function, i.e.,

h(p) = −p log2(p)− (1− p) log2(1− p),

and

m (Ψ) =

√︁
π ln(2)σ2 exp

(︂
− (µ(1)−µ(2))2

π ln(2)σ2+2g(Ψ(1),Ψ(2))

)︂
√︁
π ln(2)σ2 + 2g(Ψ(1),Ψ(2))

.

Synthesizing queries that maximize this objective will
give very informative data points for preference-based GP
regression for reward learning and improve data-efficiency.

Previously, Biyik et al. (2019b) have shown for the linear
reward models that using an information gain formulation
accelerates the learning whereas volume removal based
methods (such as (Sadigh et al. 2017)) rely on local optima
and can produce trivial queries that compare the exact same
trajectory and so gives no information. In the following, we
show our formulation also does not suffer from this trivial
query problem.

Remark 1. The trivial query Ψ = {Ψ(A),Ψ(A)} does not
maximize our acquisition function given in (8), and is in fact
a global minimizer.

Proof. For the query Ψ={Ψ(A),Ψ(A)}, we rewrite (8) as

h

(︄
Φ

(︄
µ(A) − µ(A)√︁

2σ2 + g(Ψ(A),Ψ(A))

)︄)︄
−m (Ψ) = 1−m(Ψ)

where Var
(︁
f(Ψ(A))

)︁
= Cov

(︁
f(Ψ(A)), f(Ψ(A))

)︁
, and so

g(Ψ(A),Ψ(A)) = 0, and

m (Ψ) =

√︁
π ln(2)σ2 exp

(︂
− (µ(A)−µ(A))2

π ln(2)σ2+2g(Ψ(A),Ψ(A))

)︂
√︁

π ln(2)σ2 + 2g(Ψ(A),Ψ(A))
= 1

which makes the objective value 0. Since the information
gain must be nonnegative, this completes the proof that the
trivial query is a global minimizer of the objective.

Active Query Synthesis for Reward Optimization
In the previous section, we described how one can generate
queries to maximize the information gain from query
responses. However, note that it is the information gain about
the entire reward function, i.e., we are trying to learn R(ξ) =
f(Ψ(ξ)) for every possible trajectory ξ. In some cases, the
ultimate goal of reward learning is to find the best trajectory,
i.e., argmaxξ R(ξ). For example, if we are trying to find the
most comfortable gait for an exoskeleton user (Tucker et al.
2020b), we do not need to know how two suboptimal gaits
compare to each other. Or if we are trying to train a race car
to autonomously drive in a fixed parkour, it is sufficient to
find the best trajectory.
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Mathematically, one could attempt to solve:

argmax
Ψ(1),Ψ(2)

I(ξ∗; q | Ψ,Ψ,q),

at every iteration of querying, where ξ∗ is the trajectory
that maximizes the reward function. However, this is not
computationally tractable. To see why, we equivalently write:

argmax
Ψ(1),Ψ(2)

(︁
H(q | Ψ,Ψ,q)− Eξ∗∼P (ξ∗|Ψ,q) [H(q | Ψ, ξ∗)]

)︁
.

While the first entropy term is the same as in Equation 7,
the second term requires computing H(q | Ψ, ξ∗), i.e., the
entropy of the user’s response to the query conditioned
only on the query itself and the best trajectory being
ξ∗. Computing this is possible through rejection sampling:
we could sample reward functions from P (f | Ψ,q) and
only accept those whose maximizer is ξ∗. This introduces
not only potential numerical instabilities but also a huge
computational burden. Besides, we will have to do this
rejection sampling for every ξ∗ sample from P (ξ∗ | Ψ,q)
due to the expectation in the second term.

Therefore, while mathematically attractive, maximizing
the information gain about the reward maximizer trajectory
ξ∗ is not viable in practice. Instead, we identify why our
active query synthesis method for reward learning is not
readily suitable for reward optimization, and modify it
accordingly to adapt to reward optimization.

The problem with our query synthesis approach for reward
learning is the fact that it is trying to learn the reward
function over the entire landscape of trajectories. Hence, it
will often query the user with two trajectories that it knows
to be suboptimal with high probability. This is because it
needs to learn the reward values of those trajectories, too,
even though they are suboptimal. Instead, we want the active
query synthesis for reward optimization to focus only on the
regions of the trajectory space where the reward function
may attain its globally maximum value. To this end, we
propose a simple modification to our previous approach and
solve:

argmax
Ψ(1),Ψ(2)

I(f ; q | Ψ,Ψ,q)

subject to Ψ(2) = argmax
Ψ′

Ef∼P (f |Ψ,q)[f(Ψ
′)],

where we constrain one of the trajectories in the query to be
the trajectory that maximizes the mean reward function with
respect to the posterior distribution P (f | Ψ,q). In this way,
the algorithm will avoid synthesizing queries that include
highly suboptimal trajectories because the first entropy term
of the mutual information, i.e., H(q | Ψ,Ψ,q), is very low
for the queries where the GP model can already predict the
user’s response q.

In the next section, we will validate this approach, as well
as our original approach for reward learning, against various
baselines in simulation experiments.

Simulation Experiments
In this section, we present our experiments in three
simulation domains to demonstrate how (i) GP rewards
improve expressiveness over linear reward functions, and

Driver Tosser Swimmer

Figure 2. Sample trajectories are shown for the three
simulation environments. In Driver, another car is cutting in front
of the ego vehicle. In Tosser, the robot must hit the dropping
capsule such that it will fall into one of the baskets. In Swimmer,
a three-link and two-rotor swimmer robot must move over a two
dimensional plane.

(ii) active query generation improves data-efficiency over
random querying, both in reward learning and reward
optimization.

Simulation Environments
To validate our framework on robotics tasks, we used three
simulation environments: a 2D Driver simulation (Sadigh
et al. 2016), a MuJoCo (Todorov et al. 2012) environment
to simulate a Tosser robot that tries to throw a capsule-
shaped object into a basket (Biyik and Sadigh 2018), and
another MuJoCo environment implemented in OpenAI Gym
Brockman et al. (2016) to simulate a Swimmer robot that
tries to move as further as possible on a 2D plane. We show
images from these environments with sample trajectories in
Figure 2. For example in Driver, the user is asked whether
they would move forward or backward in the given scenario.
In Swimmer, the user is asked whether to move down, or up
but a little further. While the users would have a common
response to this query, some questions may differ among the
users. For instance, in Tosser, the query asks the user whether
to throw the ball into the green basket or to drop it instead.
Depending on the users’ preferences about the green basket,
different users may have different responses.

In the first two environments, we use the following simple
features for the function Ψ similar to Biyik and Sadigh
(2018):

• Driver: Distance to the other car, speed, heading angle,
and distance to the closest lane center.

• Tosser: The maximum horizontal range, and the
number of capsule flips.

In contrast to what the previous work reported, here we
do not need to fine-tune the feature parameters to learn
the reward functions because GPs can effectively capture
nonlinearities. To further demonstrate this, we do not hand-
design any features in Swimmer. Instead, we directly use the
state and action information, averaged over the time steps, as
the features function Ψ. Specifically, these correspond to:

• Swimmer: Angle of the front tip, angle of the first rotor,
angle of the second rotor, velocity of the tip along the
x-axis, velocity of the tip along the y-axis, angular
velocity of front tip, angular velocity of first rotor,
angular velocity of second rotor, the torque applied on
the first rotor, and the torque applied on the second
rotor.
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(a) Linear True Reward (b) Poly. True Reward (c) Poly. True Reward

Figure 3. Accuracies and average log-likelihoods for test set queries are shown for the Driver environment (mean±std over 5
runs). (a) Expressiveness results when the true underlying reward function is linear. (b) Expressiveness results when the true
underlying reward function is a degree-of-two polynomial. (c) Data-efficiency results that compare ACTIVEGP with RANDOMGP.
Accuracies and average log-likelihoods for test set queries are shown (mean±std). Active query generation improves
data-efficiency over random querying in both tasks. This can be seen through both accuracy and log-likelihood.

With 10 features, the Swimmer environment enables us to
investigate our methods in higher-dimensional problems.

Simulated Human Model. We simulated human responses
with an underlying true reward function f with some
Gaussian noise, in accordance with Equation (1). We
modeled f as either a degree-of-two polynomial, or a linear
function, or a function that is randomly drawn from the GP
prior. In the former two cases, we selected the parameters
of f as i.i.d. random samples from the standard normal
distribution.

N
um

be
r o

f F
lip

s

Maximum Horizontal Range

Original Set
Unif. Random
Poisson Disk

Figure 4. Features of 1000 Tosser trajectories are visualized in
two-dimensional plane (gray). Poisson disk sampling allows us
to obtain a diverse set of 20 samples (orange), whereas
sampling uniformly at random yields mostly uninteresting
trajectories (blue).

Baselines
For our analyses, we compared five methods:

• RANDOMGP: The reward is modeled using a
Gaussian process. The two distinct trajectories
selected in each training query are sampled from a
training dataset uniformly at random.

• ACTIVELINEAR: The reward is modeled as a
linear combination of features, and the active query
generation method of Biyik et al. (2019b) selects the
most informative comparison queries at every step of
training.

• ACTIVEGP: The reward is modeled as a Gaussian
process. We will use our active query generation
method to generate the most informative comparison
queries to efficiently learn the reward function.

• SEMIACTIVEGP: The reward is modeled as a
Gaussian process. We will use the variant of
our active query generation method, which we
modified for reward optimization. We call this method
SEMIACTIVEGP since one of the two trajectories
in each query is constrained to be the maximizer
trajectory of the posterior mean.

• THOMPSONGP: The reward is modeled as a Gaussian
process. We will generate the comparison queries
such that each query consists of: (1) the trajectory
that was preferred in the previous query (an arbitrary
trajectory for the first query), and (2) the trajectory
that maximizes a reward function sample from the
posterior given the data provided thus far. This
baseline is from Tucker et al. (2020b).

We generated a training dataset of trajectories with
uniformly randomly selected actions. At every iteration
of ACTIVEGP and ACTIVELINEAR, we computed the
expected information gain of each possible query from
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this dataset to select the most informative query. Similarly,
SEMIACTIVEGP performs a search over this dataset to select
the trajectory that will be queried along with the current
posterior mean. This approach decreases the computation
time compared to solving a continuous optimization over
all possible trajectories as it was done by Sadigh et al.
(2017); Palan et al. (2019). For fairness, RANDOMGP and
THOMPSONGP also used this dataset to select their queries.

Evaluation
We conduct several analyses:

1. We compare GP reward with linear reward in terms of
expressiveness (ACTIVEGP vs. ACTIVELINEAR).

2. Next, we compare active query generation for reward
learning with random querying baseline in terms of
data-efficiency (ACTIVEGP vs. RANDOMGP).

3. Finally, we compare all query generation methods
that employ a GP reward for optimization in terms of
data-efficiency, but also include evaluations for reward
learning for completeness (ACTIVEGP vs. SEMIAC-
TIVEGP vs. THOMPSONGP vs. RANDOMGP).

Test Set Generation. For the first two analyses on
expressiveness and data-efficiency, we also generated test
sets of trajectories from the same distribution as the training
set. However, it would not be fair to use the test set
as is. Obtained with uniformly random action sequences,
the majority of the training set consists of uninteresting
trajectories, e.g. the ego agent moves slightly forward and
backward (similar to a random walk) in Driver and in
Swimmer, or the robot does not hit the capsule in Tosser.
Using the test set without further modification would mean
we give more importance to these uninteresting behaviors as
they form the majority in the datasets. Obviously, this is not
the case. We want to learn the reward function everywhere in
the dynamically feasible region with equal importance.

Hence, we adopted Poisson disk sampling (Bridson 2007)
to get a diverse set of trajectories from the test set. Poisson
disk sampling makes sure the difference between trajectories
is above some threshold by rejecting the samples that violate
this constraint. In this work, we used L2 distance between
the feature vectors to quantify these differences. A small
example set of samples is compared to uniformly random
samples in Figure 4 for the Tosser environment.

After obtaining the diverse test set, we stored the true
(noiseless) response of the simulated user for each possible
query in this set. For the analysis of expressiveness, we
computed the accuracy and the log-likelihood of the true
responses under the reward functions that are learned
with N actively chosen queries (up to N = 200). While
existing methods that adaptively select the number of queries
considering the cost of making each query (Biyik et al.
2019b) is applicable to our ACTIVEGP method, we leave its
evaluation to future work.

For data-efficiency in reward learning analysis, we again
used the true human responses to the queries in the diverse
test set (only from the polynomial reward functions) to
calculate the accuracy and the log-likelihood under the
learned reward functions.

For data-efficiency in reward optimization, we calculated
regret: the true reward difference between the actual best
trajectory and the predicted best trajectory. A data-efficient
optimization algorithm should be able to decrease regret
within as few queries as possible.

Expressiveness. Figures 3(a,b), 5(a,b) and 6(a,b) show
the results of expressiveness simulations (with 5 random
seeds). When the true reward is polynomial, the linear
model results in very high variance in both accuracy and
likelihood, because its performance relies on how good a
linear function can explain the true nonlinear reward. In
this case, the GP model captures nonlinearities better than
the linear model and provides better learning (Figures 3(b),
5(b), and 6(b)). When the true reward function is linear in
features, a linear model naturally learns faster. However,
as shown in Figures 3(a) and 5(a), even in that case, the
GP model can achieve linear model’s performance. In the
Swimmer environment, on the other hand, ACTIVEGP seems
to be performing worse than ACTIVELINEAR, although still
improving after 200 queries. This is only due to the higher-
dimensional feature function. To further improve the reward
model, one can consider an approach to combine the linear
and GP models by keeping a belief distribution over whether
the true reward is linear or not, and actively querying the user
according to this belief. We leave this extension as future
work.

Data-Efficiency in Reward Learning. We then evaluated
how our active query generation helps with data-efficiency
in reward learning. Figures 3(c), 5(c), and 6(c) compare
ACTIVEGP and RANDOMGP for the simulation environ-
ments (with 5 random seeds). It can be seen that active query-
ing significantly accelerates learning over random querying.
It should be noted that the number of samples taken via
Poisson disk sampling matters: While choosing a very small
number will increase the variance in the results, choosing
a very large number will make random querying seem like
it performs comparable to (or even better than) the active
querying as the test set will mostly consist of uninteresting
trajectories, which are also abundant in the training set, as
we stated earlier.

Data-Efficiency in Reward Optimization. Finally, we
compared the query generation methods in terms of their
data-efficiency in reward optimization. For this, we randomly
sampled a reward function from the GP prior and used it
as the true reward function. Our baselines that model the
reward as a GP then attempted to learn this true reward
function by querying the simulated user up to N = 200
times. We repeated this experiment in the three simulation
environments, with 50 random seeds each. We used more
random seeds compared to previous simulation experiments
because the regret metric does not take an average over
several data points.

Figures 7, 8, and 9 show the results that compare
ACTIVEGP, RANDOMGP, THOMPSONGP, and SEMIAC-
TIVEGP. It can be seen that RANDOMGP is significantly
worse not only for reward learning, i.e., in terms of accuracy
and log-likelihood metrics, but also for reward optimization,
i.e., in terms of the regret metric. In Tosser, the remain-
ing three methods performed comparably. This is arguably
because the Tosser environment has only 2 features, and so
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(a) Linear True Reward (b) Poly. True Reward (c) Poly. True Reward

Figure 5. Accuracies and average log-likelihoods for test set queries are shown for the Tosser environment (mean±std over 5
runs). (a) Expressiveness results when the true underlying reward function is linear. (b) Expressiveness results when the true
underlying reward function is a degree-of-two polynomial. (c) Data-efficiency results that compare ACTIVEGP with RANDOMGP.
Accuracies and average log-likelihoods for test set queries are shown (mean±std). Active query generation improves
data-efficiency over random querying in both tasks. This can be seen through both accuracy and log-likelihood.
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Figure 6. Accuracies and average log-likelihoods for test set queries are shown for the Swimmer environment (mean±std over 5
runs). (a) Expressiveness results when the true underlying reward function is linear. (b) Expressiveness results when the true
underlying reward function is a degree-of-two polynomial. (c) Data-efficiency results that compare ACTIVEGP with RANDOMGP.
Accuracies and average log-likelihoods for test set queries are shown (mean±std). Active query generation improves
data-efficiency over random querying in both tasks. This can be seen through both accuracy and log-likelihood.

it is relatively easy to find the trajectory that maximizes the
reward.

On the other hand, we observe some significant differ-
ences in the Driver environment. First, SEMIACTIVEGP led
to the best initial reduction in regret – even better than its
unconstrained version ACTIVEGP. The reason for this is
easy to see: ACTIVEGP asks queries that maximize the infor-
mation about the entire reward function, so it spends some
queries to learn about the regions of the reward function
that it already knows to be suboptimal. On the other hand,

SEMIACTIVEGP constrains one of the trajectories in the
query to be the best trajectory with respect to the posterior,
thereby forcing the search to focus more on the regions of
the reward function that may include the optimal trajectory.
The differences are even more amplified in the Swimmer
environment as it has more features per trajectory. In this
environment, SEMIACTIVEGP again leads to the lowest
regret initially.

Besides, SEMIACTIVEGP generates queries much faster
than ACTIVEGP as it needs to optimize only one trajectory
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ActiveGP ThompsonGPRandomGP SemiActiveGP

Figure 7. Accuracies, average log-likelihoods for test set queries, and regret values are shown for the Driver environment
(mean±std over 50 runs). SEMIACTIVEGP and THOMPSONGP are bad at reward learning but competitive at reward optimization.
SEMIACTIVEGP leads to the lowest regret values with very limited data, but ACTIVEGP achieves the lowest regret when the enough
user responses are actively collected. Interestingly, THOMPSONGP performs worse than both ACTIVEGP and SEMIACTIVEGP with
enough data.

ActiveGP ThompsonGPRandomGP SemiActiveGP

Figure 8. Accuracies, average log-likelihoods for test set queries, and regret values are shown for the Tosser environment
(mean±std over 50 runs). SEMIACTIVEGP and THOMPSONGP are bad at reward learning but competitive at reward optimization,
where all methods other than RANDOMGP performs comparably.

ActiveGP ThompsonGPRandomGP SemiActiveGP

Figure 9. Accuracies, average log-likelihoods for test set queries, and regret values are shown for the Swimmer environment
(mean±std in the first two plots and mean±s.e. in the third plot over 50 runs). SEMIACTIVEGP and THOMPSONGP are bad at
reward learning. However, SEMIACTIVEGP clearly outperforms all others in reward optimization where THOMPSONGP also starts
as a competitive method but incurs higher regret as the number of queries increases.

(see Table 1). It should also be noted, however, that
SEMIACTIVEGP could not decrease the regret as much as
ACTIVEGP in the long term in the Driver environment.
This is because ACTIVEGP explores the entire landscape of
trajectories whereas SEMIACTIVEGP may lack exploration
on the regions that it believes to be suboptimal but in fact
include the optimal trajectory even though this might a
rare case. On the other hand in Swimmer, SEMIACTIVEGP
remains as the lowest regret method for the entire 200
queries. While it is possible that ACTIVEGP will again
outperform when the data are abundant, experimenting with
N > 200 is computationally too expensive, as we will
discuss in the Conclusion section.

Second, THOMPSONGP performed worse than
ACTIVEGP and SEMIACTIVEGP in Driver and eventually

in Swimmer, even though it generates each query
significantly faster (see Table 1). This might be surprising
because THOMPSONGP is based on Thompson sampling,
an algorithm that is known to minimize cumulative regret
over queries in the non-comparative setting, where the user
provides direct reward estimations instead of preferences
between trajectories. One possible explanation for this
result is that THOMPSONGP’s querying is likely to generate
queries that consist of trajectories that are close to each other
in terms of their reward values. This causes the (simulated)
user’s feedback to be more noisy and less informative. On
the contrary, both ACTIVEGP and SEMIACTIVEGP try
to minimize the user uncertainty as we discussed earlier,
thereby potentially leading to better reward optimization
results, as well.
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Table 1. Query Generation Times (seconds)

Driver Tosser Swimmer

ACTIVEGP 83.4± 35.7 83.9± 35.3 81.7± 35.1
RANDOMGP (6.9± 1.7)× 10−5 (6.9± 1.9)× 10−5 (6.4± 1.6)× 10−5

THOMPSONGP (5.0± 1.0)× 10−3 (4.6± 0.8)× 10−3 (0.7± 2.0)× 10−2

SEMIACTIVEGP 0.12± 0.03 0.12± 0.03 0.12± 0.03

Reported query generation times are mean±std over 200 queries, and are based on our approach
that uses a pre-computed set of 1000 trajectories.
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Figure 10. Top view of the eight targets in the variant of
mini-golf user study. The users assign distinct scores from 2 to
9 to the targets. The figure shows an example of this ranking.
While the robot is capable of hitting the ball into the entire
shaded region, the maximizers of a linear reward always lie
near the corners of the shaded region in blue. Therefore, while
the GP reward model can query the user with better trajectories
(e.g. the green trajectory), the linear model only explores the
boundaries (e.g. the blue trajectory that throws the ball outside
of this region). Crosses show where the ball hits the ground.

User Studies

Experiment Setup
We also compare our method ACTIVEGP with ACTIVELIN-
EAR and RANDOMGP on a user study with a Fetch mobile
manipulator robot (Wise et al. 2016). In this study, the human
subjects teach the Fetch robot how to play a variant of mini
golf where the robot can achieve different scores by hitting
the ball to different targets (see Figure 1 and Figure 10 for the
setup). However, these scores are only known to the human.
In fact, the robot does not even know the locations of the
targets, and it tries to learn the reward as a function of its
control inputs. Fixing some of the joints, we let the robot vary
only its shot speed and angle, which are also the features of
the reward function.

This experiment setting is interesting because a linear
reward function can only encode whether the robot must
hit the ball to the right or to the left, or whether it must
hit with high or low speed. It cannot particularly encourage
(or discourage) hitting with a modest angle and/or speed.
Therefore, as we show in Figure 10, the targets that are
around the middle region cannot be the maximizers of a
linear reward function.

Subjects and Procedure
We recruited 10 users (6 males, 4 females) with an age
range from 19 to 28. Each user first assigned their distinct

scores (from 2 to 9) to the eight targets. The robot then
queried them with 50 pairwise comparison questions: 15 for
ACTIVEGP, 15 for ACTIVELINEAR, 15 for RANDOMGP
and 5 queries generated uniformly at random to create a
test set. We shuffled the order of queries to avoid any bias.
We used the reward models, each of which is learned with
15 queries, to predict the user responses in the test set. The
prediction score on the test set provides an accuracy metric.

In addition to the accuracy, we assessed whether the robot
could successfully learn how to perform a good shot. For
this, after the subjects responded to 50 queries, the robot
demonstrated 3 more trajectories each of which correspond
to the optimal trajectory of one method, the trajectory that
maximizes the learned reward function. Again, the order
of these trajectories was shuffled. After watching each
demonstration, the subjects assigned a score to the shot from
a 9-point rating scale (1-very bad, 9-very good).

Results and Discussion
We provide a video that gives an overview of user studies and
their results at https://youtu.be/SLSO2lBj9Mw.

Figure 11(a) shows the prediction accuracy values on
the test sets collected from the subjects (averaged over the
subjects). By modeling the reward using a GP and querying
the users with the most informative questions, ACTIVEGP
achieves significantly higher prediction accuracy (0.74±
0.04, mean±se) compared to both ACTIVELINEAR (0.62±
0.07) and RANDOMGP (0.62± 0.06) with p < 0.05
(Wilcoxon signed rank test). The results from this user study
are aligned with our simulation user studies.

In reward learning, it is crucial to validate whether the
learned reward function can encode the desired behavior or
not. Figure 11(b) shows the user ratings to the trajectories
that the robot showed after learning the user preferences
via 3 different methods. ACTIVEGP obtains significantly
higher scores (6.9± 0.6) than both ACTIVELINEAR (3.4±
0.7) and RANDOMGP (5.1± 0.7) with p < 0.05. While
ACTIVELINEAR occasionally achieves high scores when the
users’ preferred target is near the edge, it generally fails
to produce the desired behavior due to its low expressive
power.

Conclusion

Summary. We developed an active preference-based GP
regression technique for reward learning and optimization.
Our work tackles the lack of expressiveness of reward func-
tions, data-inefficiency, and the incapability to demonstrate
or quantify trajectories. Our results in simulations and user

Prepared using sagej.cls

https://youtu.be/SLSO2lBj9Mw


CONCLUSION 13

Pr
ed

ic
tio

n 
A

cc
ur

ac
y

(a) (b)

U
se

r R
at

in
g

Figure 11. (a) Prediction accuracy results (mean±se). Each trained with 15 queries, ACTIVEGP achieves significantly higher
prediction accuracy than both ACTIVELINEAR and RANDOMGP (p < 0.05). (b) User ratings on the final robot performance
(mean±se). ACTIVEGP accomplishes the task significantly better than both ACTIVELINEAR and RANDOMGP (p < 0.05).

studies suggest our method is more successful in expres-
siveness and data-efficiency in reward learning compared to
the baselines. Similarly, we achieve high data-efficiency in
reward optimization with a simple modification in our query
generation procedure.

Limitations and Future Work. We developed our methods
only for pairwise comparisons. While extending them
to learning from rankings is not mathematically very
complicated, its data-efficiency compared to pairwise
comparisons needs thorough analysis. Similarly, one could
easily incorporate options to denote user uncertainty,
which was shown to ease the process for humans (Biyik
et al. 2019b; Wilde et al. 2021). GP regression becomes
computationally heavy when the domain is high-dimensional
(when d is large). This is a limitation of our work due to the
use of GPs, and can be alleviated through efficient rank-one
GP update approximations (Tucker et al. 2020a). Another
computational challenge due to GPs is about the number of
preference data samples: when it is too large, inverting the
kernel matrix becomes too costly. In such cases, one could
consider incorporating some of the data in to the GP prior,
e.g., to the mean function, or using scalable GPs that are
beyond the scope of this work (Liu et al. 2020; Hensman
et al. 2013). Although our methods ease the feature design,
there still needs to be a design stage—it is often unrealistic
to hope Ψ(ξ) = ξ will work due to the high dimensionality
of Ξ. Further research is warranted to simultaneously learn
both the reward function f and the feature function Ψ.
Finally, in reward optimization, Thompson sampling based
approaches still remain attractive due to their time-efficiency
even though they performed worse in terms of data-
efficiency. Future work can investigate whether regularizing
the Thompson sampling to avoid querying trajectories with
similar reward values improves its data-efficiency.
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Appendix

Active Query Generation Derivation
Let Σ be the posterior covariance matrix between f(Ψ(1)) and f(Ψ(2)). And let

Σ−1 =

[︃
c d
d c′

]︃
.

Throughout the derivation, all integrals are calculated over R, but we drop it to simplify the notation. We write the first
entropy term in the optimization (7) as:

H(q |Ψ,Ψ, q) = h

(︃∫︂ ∫︂
Φ

(︃
f (1) − f (2)

√
2σ

)︃
N ([f (1), f (2)] | [µ(1), µ(2)],Σ)df (2)df (1)

)︃
= h

(︄√
cc′−d2

2π

∫︂ ∫︂
Φ

(︃
f (1)−f (2)

√
2σ

)︃
e−

1
2 (c(f

(1)−µ(1))2+c′(f(2)−µ(2))2+2d(f(1)−µ(1))(f(2)−µ(2)))df (2)df (1)

)︄

= h

(︄√
cc′−d2

2π

∫︂ ∫︂
Φ

(︃
f (1)−f (2)

√
2σ

)︃
e−

1
2 (c((f

(1)−µ(1))2+ 2d
c (f(1)−µ(1))(f(2)−µ(2)))+c′(f(2)−µ(2))2)df (1)df (2)

)︄

= h

(︄√
cc′−d2

2π

∫︂ ∫︂
Φ

(︃
f (1)−f (2)

√
2σ

)︃
e−

1
2 (c(f

(1)−µ(1)+ d
c (f

(2)−µ(2)))2−d2

c (f(2)−µ(2))2+c′(f(2)−µ(2))2)df (1)df (2)

)︄

= h
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cc′−d2

2π
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1
2 c

′(f(2)−µ(2))2e
1
2

d2

c (f(2)−µ(2))2
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Φ

(︃
f (1)−f (2)

√
2σ
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e−

1
2 (c(f

(1)−µ(1)+ d
c (f

(2)−µ(2)))2)df (1)df (2)
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1
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1
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2π√
c
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2π√
c

df (1)df (2)

⎞⎠
Using the mathematical identity

∫︁
x
ϕ(x)N(x|µ, σ2)dx = ϕ( µ√

1+σ2
), we obtain

H(q | Ψ,Ψ, q) = h
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cc′ − d2√
2π
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c
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Using the same identity again,

H(q | Ψ,Ψ, q) = h

⎛⎜⎜⎝Φ

⎛⎜⎜⎝ µ(1) − µ(2)
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1 + 1
2cσ2
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2σ2+ 1
c

(1+ d
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One can then expand the expression in the denominator and use the facts that Var(f(Ψ(1))) = c′

cc′−d2 , Var(f(Ψ(2))) =
c

cc′−d2 and Cov(f(Ψ(1)), f(Ψ(2))) = −d
cc′−d2 to obtain

H(q | Ψ,Ψ, q) = h

(︄
Φ

(︄
µ(1) − µ(2)√︁

2σ2 + g(Ψ(1),Ψ(2))

)︄)︄
.

where g(Ψ(1),Ψ(2)) = Var(f(Ψ(1))) + Var(f(Ψ(2)))− 2Cov(f(Ψ(1)), f(Ψ(2)))
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We next make the derivation for the second entropy term. To simplify the notation, we let σ′2 = πln(2)
2 , σ′′2 = σ′2 + 1

c ,

and σ2
b =

c(1+ d
c )

2

c′c−d2 . By performing a linearization over the logarithm of the second entropy term as in Houlsby et al. (2011),
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By the change of variables for the inner integral with u = f (1) + d
c f

(2),
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By another change of variables for the outer integral with v = f(2)

1+d/c ,
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1 + d
c
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By identifying the inner integral as a convolution of two Gaussians, we get

Ef∼P (f |Ψ,q) [H(q | Ψ, f)] =
1

1 + d
c
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By repeating the same convolution trick for the second integral,
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Again, we express this in terms of covariance and variance expressions:

Ef∼P (f |Ψ,q) [H(q | Ψ, f)] =

√︁
π ln(2)σ2 exp
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2
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