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Abstract

When annotators disagree, predicting the la-
bels given by individual annotators can cap-
ture nuances overlooked by traditional label
aggregation. We introduce three approaches
to predict individual annotator ratings on the
toxicity of text by incorporating individual
annotator-specific information: a neural collab-
orative filtering (NCF) approach, an in-context
learning (ICL) approach, and an intermediate
embedding-based architecture. We also study
the utility of demographic information for rat-
ing prediction. NCF showed limited utility;
however, integrating annotator history, demo-
graphics, and survey information permits both
the embedding-based architecture and ICL to
substantially improve prediction accuracy, with
the embedding-based architecture outperform-
ing the other methods. We also find that, if
demographics are predicted from survey infor-
mation, using these imputed demographics as
features performs comparably to using true de-
mographic data. This suggests that demograph-
ics may not provide substantial information for
modeling ratings beyond what is captured in
survey responses. Our findings raise considera-
tions about the relative utility of different types
of annotator information and provide new ap-
proaches for modeling annotators in subjective
NLP tasks.

1 Introduction

Disagreement among data annotators can reveal nu-
ances in NLP tasks that lack a simple ground truth,
such as hate speech detection. For instance, what
one group of annotators deems acceptable might
be considered offensive by another. The current
standard for resolving such disagreement, aggre-
gation via majority voting, casts aside variance in
annotator labels as noise, when in subjective tasks
this variance is key to understanding the perspec-
tives that arise from the annotators’ individuality
and backgrounds.

To address this problem, recent research has ex-
plored alternatives to majority voting. Most no-
tably, studies have taken the approach of predicting
the ratings of individual annotators (Davani et al.,
2022; Fleisig et al., 2023; Gordon et al., 2022). We
aim to improve the prediction of rating behavior,
guided by the following questions:
• Does incorporating annotator information via

collaborative filtering, embedding-based archi-
tecture, or in-context learning improve down-
stream rating predictions?

• What annotator information best informs toxi-
city rating predictions? Do demographics pro-
vide useful information beyond what survey
information can provide?
We proposed and tested a neural collaborative

filtering (NCF) module, an embedding-based archi-
tecture, and an in-context learning (ICL) module
for individual rating prediction. First, we incorpo-
rated NCF to the classification head of a RoBERTa-
based model (Liu et al., 2019). Embedded anno-
tator information1 was combined with a separate
embedding of annotators’ rating history to predict
individual annotator toxicity ratings. Secondly, we
used embedding models to encode annotator in-
formation, then performed regression to predict
toxicity ratings. Lastly, we prompted LLMs such
as Mistral (Jiang et al., 2023) and GPT-3.5 (Brown
et al., 2020) to study different ways of integrating
annotator information.

Our findings indicate that while NCF does
not outperform baseline models, ICL and our
embedding-based architecture improve perfor-
mance, with the embedding-based architecture
significantly outperforming all other approaches
tested. In addition, our research on the effective-
ness of demographic information as a feature indi-
cates that imputing demographics from survey data

1The annotator information used is a combination of demo-
graphic information, survey information, and annotator rating
history.



performs similarly to using direct demographic
inputs, suggesting that survey responses already
capture the relevant demographic information for
rating prediction. This suggests that, on this task,
demographics have little predictive power beyond
what survey information provides.

2 Motivation and Related Work

Our work is fundamentally motivated by the need
for alternatives to majority-vote label aggregation
in NLP tasks. Pavlick and Kwiatkowski (2019)
find that disagreement among annotators is par-
tially attributed to differences in human judgment.
Basile et al. (2021) underscore the importance of
the consideration of a system’s output over in-
stances where annotators disagree.

Newer work in this field aims to directly model
individual annotator rating behavior. Davani et al.
(2022) employ a multi-task based approach, where
predicting each annotators’ judgment is a subtask
to their larger architecture. Fleisig et al. (2023) use
a RoBERTa-based model to predict an individual
annotators’ ratings. Gordon et al. (2022) put to-
gether a jury of annotators, predicting individual
judgments.

For the individual annotator rating prediction
task, Deng et al. (2023) create individual annotator
embeddings and annotation embeddings. This idea
of learning embeddings based on user-specific data
has been applied in various domains successfully,
e.g., imitation learning (Beliaev et al., 2022) or
recommendation systems (Biyik et al., 2023).

Collaborative filtering (CF) learns user embed-
dings based on their past behaviors (Bokde et al.,
2015). He et al. (2017) show that neural collabora-
tive filtering (NCF) offers better performance than
more naive CF implementations. This motivates
our NCF approach to learning annotator embed-
dings. Intuitively, this approach would be effective
in learning deeply rooted preferences and behav-
iors of annotators. Thus, we hypothesized that this
method would more accurately predict individual
annotator ratings.

Several recent approaches use sociodemographic
traits of individual annotators to learn for the rating
prediction task (Fleisig et al., 2023; Davani et al.,
2022), but Andrus et al. (2021) warn that legal and
organizational constraints, such as privacy laws
and concerns around self-reporting, often make
collecting demographic data challenging. Gupta
et al. (2018) suggest using semantically related fea-

tures in the absence of sensitive demographic data.
For instance, in the absence of gender information,
(Zhao et al., 2019) use other demographic features
– age, relation, and marital status – for their pre-
diction task. This work motivates our objective
of incorporating auxiliary annotator information
(survey information and annotator history) in the
prediction task.

Lastly, Orlikowski et al. (2023) challenge the
utility of demographic information, since they do
not find strong evidence that explicitly modeling
demographics helps to predict annotation behav-
ior. In concurrent work, Hu and Collier (2024)
argue that there is an inherent limit to how much
predictive power can be provided by demograph-
ics. Their findings indicate that while incorporat-
ing demographic variables can provide modest im-
provements in prediction accuracy, these gains are
often constrained by the relatively low variance ex-
plained by these variables. This motivates our final
objective, studying the efficacy of demographics as
a useful mediating variable for rating prediction.

3 Approach

Our approach includes creating three separate mod-
ules based on neural collaborative filtering (NCF),
an embedding-based architecture, and in-context
learning (ICL). We evaluate each approach’s effi-
cacy in predicting annotator rating behavior. The
latter two modules are used to investigate our sec-
ond research question; we integrate different abla-
tions of annotator information as input to the rating
prediction models to study their effect on toxicity
rating prediction.

We used Kumar et al. (2021)’s dataset to evaluate
the performance of our rating prediction modules.
This dataset consists of sentences rated for toxicity
(0 = least toxic, 4 = most toxic). Each sentence has
been labeled by 5 annotators and each annotator has
labeled 20 distinct sentences. For each annotator,
the dataset contains their rating behavior; demo-
graphic information (race, gender, importance of
religion, LGBT status, education, parental status,
and political stance); and survey information, e.g.,
their preferred forums, social media, whether they
have seen toxic content, if they think toxic con-
tent is a problem, and their opinion on whether
technology impacts peoples’ lives.

For ablations, we took distinct combinations of
annotator information (rating history, demograph-
ics, survey information) along with the text to be



rated, assessing the impact of each on the model’s
performance. To study whether demographics are
a necessary feature for predicting annotator ratings,
we also used a separate model to predict annotator
demographics using rating history and survey infor-
mation and applied these predicted demographics
as input for our ablations.

For all three methods, we used Mean Absolute
Error (MAE) of predicting individual annotators’
ratings as the evaluation metric, allowing us to
quantify the performance of different model con-
figurations.

3.1 Neural Collaborative Filtering
Our NCF method integrates textual and annotator-
specific information to predict annotator ratings for
the toxicity detection task (Figure 1). We aimed
to create both a textual embedding and an annota-
tor embedding for each (text, annotator) pair and
capture latent interactions between both entities by
using a hybrid neural architecture inspired by neu-
ral collaborative filtering. The goal was to learn
more complex, non-linear relationships between
annotator preferences and the text itself to more
accurately predict an annotator’s toxicity rating.

To create embedded representations of the tex-
tual information which has ranging levels of tox-
icity, we leveraged a RoBERTa model (Liu et al.,
2019) fine-tuned on the Jigsaw Toxic Comment
Classification Challenge dataset (cjadams et al.,
2017) and the hate speech detection datasets in-
troduced by Kumar et al. (2021). In parallel, we
initialized and stored random embeddings for each
annotator in the RoBERTa classification head. Dur-
ing training, these embeddings were concatenated
with text embeddings and passed through 4 dense
layers before predicting the rating.

In developing this hybrid model architecture, we
explored variations in the dimensionality of the an-
notator embeddings, methods for integrating the
sentence and annotator embeddings, and the im-
pact of freezing the RoBERTa model (Appendix A
describes variations tested).

3.2 Embedding-Based Architecture
We generated embeddings for the concatenated an-
notator information and the current text to be rated
using two text embedding models, OpenAI’s text-
embedding-3-small and text-embedding-3-large.
These embeddings then served as input for a cus-
tom regression model with multiple fully connected
layers, which was trained to predict toxicity ratings
based on the extracted features (Figure 2).

Figure 1: Design of our neural collaborative filtering
(NCF) architecture. Annotator information and the text
being rated were passed into an embedding model, then
concatenated with the annotator embedding, and passed
through a series of dense layers to predict the rating.

3.3 In-Context Learning
Our in-context learning architecture prompts a lan-
guage model to process a range of combinations of
annotator information. Each combination serves as
input to the model (Mistral or GPT-3.5), enabling it
to account for the specific context of the annotator
when predicting toxicity ratings. The model was
prompted to generate predictions based on the con-
textual information provided. This approach aims
to enhance the model’s ability to make informed
predictions by integrating diverse sources of infor-
mation relevant to the rating task. A sample prompt
of this approach is shown in Figure 3.

Figure 2: Design of our embedding-based architecture.



4 Results

Our three approaches predicted annotators’ toxicity
ratings on a scale from 0 to 4, based on both textual
data and various combinations of annotator-specific
information (demographics, survey responses, rat-
ing history). We also examine how well these mod-
els handle predicted demographic data rather than
using the ground truth demographic values for each
annotator. This helps to assess the data efficiency
and effect of demographics as an input to the rating
prediction task.

For our ablations that studied the improvement
on rating predictions, we compared our results to
previous baselines that predicted ratings of annota-
tors using the same dataset.

Q1: Does incorporating annotator informa-
tion via collaborative filtering, the embedding-
based architecture, or in-context learning im-
prove downstream rating predictions?

Our embedding-based architecture outper-
formed all other experiments with an MAE of
0.61; the best ICL approach (with Mistral) reached
an MAE of 0.69. Both the ICL approach
and embedding-based architecture outperform
the most recent baseline for the dataset (Fleisig
et al., 2023) and the embedding-based architecture
matches the best previous MAE on this dataset
(Gordon et al., 2022). The best-performing models
use all available annotator-specific information as
input (annotator demographics, survey information,
and historical rating data). At its best, our ICL con-
figuration with Mistral had an MAE of 0.69 (using
annotator demographics, survey information, and
historical rating data). The NCF approach had con-
sistently poorer results, with a best MAE of 0.79
when including all annotator-specific information.

When creating the NCF architecture, we tested
several variations. We first created a baseline from
which we compared different outputs of our NCF
module. Evaluating the finetuned RoBERTa model
with all annotator-specific information as input
along with the text to be rated yielded a baseline
MAE of 0.81. We experimented with integrating
embeddings through dot product vs. concatenation,
freezing RoBERTa during the training process, and
placing the collaborative filtering task in differ-
ent parts of the RoBERTa architecture. Our best
performing model froze the pretrained RoBERTa
model, used concatenation, and placed the collabo-
rative filtering piece in the classification head. How-
ever, it was only able to achieve an MAE of 0.80,

not significantly improving on our baseline.
Our embedding-based architecture consistently

outperformed other approaches on every ablation,
suggesting that a feature-extraction and regression
hybrid approach most effectively uses annotator-
specific information in rating predictions.

Q2: What annotator information best in-
forms toxicity rating predictions? Do demo-
graphics provide useful information beyond
what survey information can provide?

Incorporating demographic information im-
proves performance over using only survey infor-
mation, rating history, or both across ablations.
However, we find that much of this gap can be
compensated for by distilling demographic infor-
mation out of survey information. Compared to
the text-only baseline, incorporating predicted de-
mographics with survey information and annotator
history achieved MAE reductions of 10.26% with
Mistral, 8.64% with GPT-3.5, 11.84% with text-
embedding-3-small, and 12% with text-embedding-
3-large. Replacing true demographic information
with predicted demographic information results in
nearly as strong performance for Mistral, GPT-3.5,
and text-embedding-3-small.

Incorporating predicted demographics alongside
survey information and annotator history notably
improves accuracy. This occurs despite the fact
that the accuracy of predicted demographics varies
widely (highest for race and gender, but near-
random for some demographics; see Table 4). Al-
though the true demographics are somewhat help-
ful, annotator ratings can be effectively predicted
without direct demographic data. This finding sug-
gests that detailed demographic data may not be
especially useful as a feature in individual rating
prediction, beyond what can be inferred from indi-
vidual preferences in survey responses.

Predicting Demographics. The performance
of predicting demographics was evaluated across
various configurations (Table 4). The baseline
approach incorporating only survey information
achieved the highest accuracies, with 47% for race
and 63% for gender. Combining survey informa-
tion with text slightly reduced the performance, po-
tentially indicating the noise that the text to be rated
added. The majority class approach is indicated as
a baseline comparison to highlight the performance
improvements for the different categories.

Our findings indicate that successively incor-
porating annotator demographics, rating history,



Model Mistral GPT 3.5 text-embedding-3-small text-embedding-3-large
Text only 0.78 0.81 0.76 0.75
+ demo. 0.76 0.79 0.73 0.71
+ demo. + history 0.75 0.78 0.73 0.69
+ history 0.73 0.75 0.70 0.66
+ survey 0.73 0.75 0.70 0.70
+ demo. + survey 0.71 0.73 0.68 0.64
+ history + survey 0.70 0.73 0.67 0.69
+ predicted demo. + history + survey 0.70 0.74 0.67 0.66
+ demo. + history + survey 0.69 0.72 0.66 0.61

Table 1: Comparison of mean absolute error across different model configurations for the test set (with or without
annotator demographics, rating history, and survey responses). Both ICL and embedding-based architectures
improve on the baseline, with embedding-based architectures performing best.

and survey information improves performance for
nearly all configurations tested (Table 1). Over-
all, the comprehensive model incorporating de-
mographics, annotator history, and survey data
consistently outperformed other configurations,
demonstrating the value of integrating multiple data
sources for demographic and rating predictions.

5 Conclusion

Leveraging the embedding-based architecture and
ICL methods substantially improved toxicity rating
predictions. NCF, by contrast, was not a competi-
tive method for predicting ratings. Incorporating
annotator information significantly enhances model
performance. The best-performing embedding-
based architecture achieved the lowest MAE of
0.61 by integrating demographics, annotator his-
tory, and survey data. This suggests that person-
alized predictions based on individual annotator
preferences can lead to more accurate outcomes.
Meanwhile, the ability to predict some demograph-
ics from survey information, and the fact that these
imputed demographics nearly match performance
with the true demographics, suggest that although
demographics are helpful, individual annotator rat-
ings can be predicted effectively without demo-
graphic data. This finding suggests that some dif-
ferences in annotator opinions may be best captured
by modeling individual preferences rather than de-
mographic trends. In addition, the effectiveness of
our embedding-based architecture suggests that it
could help to inform future frameworks for annota-
tor rating prediction.

6 Limitations

While our study advances the accuracy of annota-
tor rating predictions, several limitations exist. The
generalizability of our findings is limited to English
text from the U.S. and Canada, which hinders ap-
plicability in other linguistic and cultural contexts.

The integration of detailed annotator information
poses ethical and privacy risks and can amplify
existing biases in the data. Additionally, the com-
plexity and computational demands of our models
challenge scalability and interpretability. Future
research should address these issues to enhance the
robustness and fairness of predictive models in sub-
jective NLP tasks. It should also focus on expand-
ing these methods to other domains and exploring
the ethical implications of incorporating inferred
data for predictions. By continuing to refine these
approaches, we can develop more accurate and re-
liable models that better capture the complexities
of human behavior and preferences.

7 Ethical Considerations

We found that individual ratings can be predicted
well without demographic information. This is
helpful in that it permits individualized rating pre-
diction without collecting demographic informa-
tion. Unfortunately, that does not mean the ratings
are predicted independent of demographic informa-
tion: in fact, we also found that survey information
is a close enough proxy that demographics can
be predicted with substantially better than random
accuracy, especially for race and gender, off of
survey information responses. Incorporating these
predicted demographics further improves accuracy.
However, our finding thus uncovered the potential
privacy issue that collecting seemingly innocuous
survey information data carries the risk of revealing
annotator demographics. This suggests that future
research in this area must proceed with caution:
collecting or inferring demographic information
improves prediction accuracy, but risks tokenism
(where opinions within a demographic group are
assumed to be homogeneous). Instead, future re-
search could identify survey information questions
that help to improve rating prediction but do not
risk revealing annotator demographics.
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System Prompt
You are a model that predicts the toxicity rating
of text from 0 to 4, where 0 is the least toxic and
4 is the most toxic.

User Prompt
The annotator has annotated these texts: “This
is a harmless comment” is rated as 0, “You’re
an idiot” is rated as 3, “I respectfully disagree”
is rated as 1 [SEP] The reader uses social me-
dia, news sites, and video sites. The reader has
seen toxic comments, has been personally tar-
geted by toxic comments, thinks technology has
a positive impact on people’s lives, and thinks
toxic comments are a serious problem. [SEP]
The reader is a 25-34 year old Asian female who
has a Bachelor’s degree, is politically liberal, is
not a parent, and thinks religion is not important.
[SEP] Annotate this text: “Why don’t you go
jump off a cliff?”

Figure 3: Sample prompt for toxicity prediction model.
The system prompt (in teal) defines the model’s role.
The user prompt (in olive) provides historical annota-
tions, survey results, demographic information, and the
text to be rated.

A Appendix

Approaches Taken

1. Tried to cluster the annotator embeddings (PCA)
– they weren’t linearly separable based on demo-
graphics

2. Where to incorporate recommender systems

(a) Classification head start – features
(b) Later layer
(c) before appending to ‘features‘

3. Tried to train plan RoBERTa on the entire dataset
using the pretrained_multitask_demographic
dataset

4. Different dimensions of annotator embeddings

(a) Tried dim 8: little to no predictive power for
annotator demographics

(b) Changed to 512
(c) Now using dim 768

5. Dual RoBERTa

(a) Instead of randomly instantiating an embedding
layer, we tried using RoBERTa to represent an-
notators based on their IDs.

Text Structure
For these predictions, the input is formatted as

h1 . . . hn [SEP] s1 . . . sn [SEP] d1 . . . dn
[SEP] w1 . . . wn, where h1 . . . hn represents the
other texts reviewed and their ratings as provided
by the annotator, s1 . . . sn is a template string de-
scribing the annotator’s survey information data,
d1 . . . dn is a template string containing the anno-
tator’s demographic information (e.g., “The reader
is a 55-64 year old white female who has a bache-
lor’s degree, is politically independent, is a parent,
and thinks religion is very important. The reader
is straight and cisgender”), w1 . . . wn is the text
being rated, and [SEP] is a separator token. We
use a template string instead of categorical vari-
ables in order to best take advantage of the model’s
language pretraining objective (e.g., underlying as-
sociations about the experiences of different demo-
graphic groups).

Dataset Size
The dataset we used to evaluate the performance

of our approaches – (Kumar et al., 2021) – has 3
splits: train, dev, and test. The training set has
488,100 samples, the dev set has 25,000 samples,
and the test set also has 25,000 samples.

Model Information
For the collaborative filtering approach, we used

a RoBERTa model that has 355 million trainable
parameters, and it took 2 GPU hours per epoch
when fine-tuned on 2 NVIDIA Quadro RTX 8000
GPUs.

For the ICL approach, we used an API version
of OpenAI’s text-embedding-3-large model, which
we don’t have access to, so as to determine its size,
and infrastructure requirements.

Experimental Setup
We observed the best performance when having

4 dense layers after the embedding was outputted,
which transformed the embedding from 3072 di-
mensions to 1024 dimensions, then keeps it at 1024
dimensions for another 2 layers after which the last
layer is then shrunk to 5 dimensions.

Demographics Prediction Task Figure 1: Neu-
ral Collaborative Filtering



Model Mistral GPT 3.5 text-embedding-3-small text-embedding-3-large
Text only 0.74 0.77 0.73 0.72
+ D 0.73 0.76 0.71 0.68
+ D + H 0.71 0.74 0.69 0.66
+ H 0.70 0.72 0.67 0.63
+ S 0.69 0.71 0.66 0.67
+ D + S 0.67 0.69 0.64 0.61
+ H + S - - - 0.65
+ PD + H + S - - - 0.62
+ D + H + S 0.65 0.68 0.62 0.58

Table 2: Comparison of mean absolute error across different model configurations (dev set results). Ablations that
included both annotator history and survey information were only performed on the best-performing model. D
refers to Annotator Demographics, H refers to other texts an annotator has rated, S refers to survey responses, PD
refers to predicted demographics.

Experiment Description Individual MAE
Initial training with Collaborative Filtering approach and RoBERTa 1.12
Adjusted annotation embedding dimensions from 8 to 512 0.89
Freezing RoBERTa after pre-training on (Kumar et al., 2021) 0.80

Table 3: Significant Experiments and Their Impact on Mean Absolute Error (MAE)

Generated Data Race Gender Importance of Religion LGBT Status Education Political Stance
Survey Info 47% 63% 37% 38% 57% 48%
Survey Info + Text 43% 60% 33% 34% 52% 44%
Majority Class 9% 52% 31% 81% 52% 40%

Table 4: Comparison of demographic prediction accuracy across different data configurations.


