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Abstract

The action space of a reinforcement learning (RL) agent defines how it interacts with the world,

whether selecting discrete items in a recommendation system or controlling continuous movements

in robotics. Most RL algorithms, however, assume a fixed and well-defined action space, which

contrasts with humans’ flexibility in making optimal decisions across various dynamic action spaces.

Therefore, the goal of my research is to enable decision-making in complex action spaces that are

unseen, varying, non-convex, or shareable across multiple tasks.

In this thesis, we see these action space complexities through the lens of Q-functions — a

fundamental tool that captures the relationship between each action and its long-term effect on a

task. Specifically, we address decision-making in (1) unseen actions, where agents must generalize

to new tools or skills, by leveraging action representations and a flexible policy architecture; (2)

varying action spaces, such as dynamically changing inventories, by learning the interdependence

between available action space; (3) non-convex Q-functions, where locally optimal actions hinder

the search for global optima, by successively refining policies and Q-functions; and (4) shareable

action spaces in simultaneous multi-task RL, by selectively sharing action proposals across tasks

for improved sample efficiency.

The work presented here is a step towards identifying and addressing fundamental complexities

within the action spaces of RL agents. We hope it will pave the way toward self-reliant agents

capable of autonomously defining and maneuvering their action spaces to solve various decision-

making tasks with human-like robustness.
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Chapter 1

Introduction

Humans exhibit a remarkable ability to select optimal actions in a variety of decision-making

tasks, ranging from simple binary choices like moving left or right to fine-grained control of limb

movements. Consider the example of cooking in an unfamiliar kitchen: despite encountering a

novel set of tools, we can quickly identify which tool is best suited for each task, and despite

the vast range of motions possible with the tool, we can skillfully manipulate it. This robustness,

both in selecting discrete actions and executing continuous ones, is enabled by our understanding

of each action’s long-term effect on the task and our ability to reason about the most promising

actions. How can we build intelligent agents that are similarly capable of acting optimally despite

the complexities in their action spaces?

The introduction of deep neural networks in reinforcement learning (RL) has led to powerful

agents to play Go (Silver et al., 2017), Dota 2 (Berner et al., 2019) and StarCraft II (Vinyals et al.,

2019), and perform robotic grasping (Kalashnikov et al., 2018). Deep RL research is primarily

centered around questions of function approximation of value (Mnih et al., 2015; Lillicrap et al.,

2015), generalization over environments (Cobbe et al., 2018) and tasks (Oh et al., 2017), and

exploration (Pathak et al., 2017). However, these tasks and benchmarks all assume a well-defined

action space. In contrast, the action spaces humans act in can be dynamic, unseen, and intricately

nuanced, which makes finding the optimal action challenging.

Let’s return to the example of humans cooking in an unfamiliar kitchen and identify the core

action space challenges for intelligent agents.
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1. We often use unknown tools or improvise if a common tool is missing, for example, by using

a fork as a whisk when one is unavailable. Thus, to utilize unseen actions, agents must have

the ability to understand the behavior of the given actions.

2. We adapt our tool-selection strategy depending on the toolset available by considering how

the tools might interact. For instance, we can get warm water by simply filling a mug and

heating it in a microwave, but in the absence of a microwave, we would instead fill a pot with

water and heat it on a stove before finally filling our mug. Thus, an agent must be able to

adapt its strategy according to the action space that is varying.

3. Once we select a tool (seen or unseen), there are several imperfect ways to manipulate it, like

grasping it in various orientations. Yet, we can figure out the best way to achieve the desired

result, like finding the optimal angle to chop vegetables efficiently. Similarly, an agent must

be able to optimize the best action in the presence of suboptimal actions.

4. When learning to manipulate multiple new tools simultaneously, we perform trial-and-error

by re-using behaviors across tools that seem similar. Such behavior reuse between tasks can

ease searching for the best actions because it might already be learned in another task. Thus,

an agent must find the best action more efficiently in multi-task RL than in single-task RL by

effectively re-using shareable actions between the different tasks.

Thus, the goal of my research is to enable decision-making in action spaces that are unseen,

varying, non-convex to optimize, or shareable with other tasks. Such action space complexities

are common in various scenarios, including robotics, recommender systems, and physical reasoning.

Like humans, we leverage the relationship of each action with its long-term effect on the task

(Q-value) and reason about the most promising actions. Concretely, we address each problem by

formalizing the relationship of the Q-value over actions, a Q-function, in an architecture that enables

us to maximize and find the optimal action easily. In summary, this thesis addresses decision-making

in complex action spaces, including (1) generalization to unseen and varying action spaces using
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action representations (Part I) and (2) optimizing the action in large or continuous action spaces

with several suboptimal actions in single-task and multi-task RL (Part II).

1.1 Generalization to Unseen and Varying Action Spaces

In Part I, we enable decision-making in unseen and varying discrete action choices. Conventional

RL benchmarks assume a fixed action set, such as Atari games — where actions like moving left,

right, or firing are predefined (Mnih et al., 2015). However, the available inventory of an agent can

change, such as in tool use, skill composition, and recommendation systems. We posit that action

representations — continuous vectors to characterize actions — enable generalization over actions.

In Chapter 2, we leverage action metadata, such as videos of action behavior, and train a dataset

VAE (Edwards and Storkey, 2017) to encode the representation of actions like tools and skills.

We introduce an RL algorithm that uses these representations to compute each action’s long-term

utility (analogous to Q-value). We develop the Chain REaction Tool Environment (CREATE) to

evaluate generalizable tool selection in physics puzzles. When faced with new actions, the agent

can utilize previously learned representations to make informed decisions, facilitating effective

zero-shot generalization to unseen actions. This research was published in Jain et al. (2020).

In Chapter 3, we observe that varying action sets necessitates reasoning about the relations

between the actions available, akin to how selecting a nail is only useful if a hammer is available.

We extend our action generalization framework to incorporate graph attention networks (GATs)

(Veličković et al., 2017) to explicitly learn and utilize relationships between the available actions’

representations for decision-making. An agent informed about its action space zero-shot adapts

its strategies under different action availabilities, including completely unseen action sets. This

research was published in Jain et al. (2021).
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1.2 Near-optimal Action in Non-convex Q-functions

In Part II, we improve decision-making in non-convex Q-functions containing multiple local

optima, making finding the optimal action challenging. Actor-critic RL methods following Silver

et al. (2014) learn a policy that ascends the gradient of the Q-function and thus can get stuck

in locally optimal actions. The key insight to finding near-optimal actions is obtaining multiple

action candidates and explicitly computing the Q-value’s maximum. We realize this insight in both

single-task and multi-task RL.

In Chapter 4, we iteratively prune the Q-function landscape below the current best Q-value,

inspired by tabu search (Glover, 1990), resulting in a refined landscape with fewer local optima.

This enables successive gradient ascent to find actions with a higher Q-value. Finally, we combine

multiple policies through an argmax operation on their Q-values to construct a superior policy,

leading to near-optimal decision-making in algorithms like TD3 (Fujimoto et al., 2018). This work

appeared in Jain et al. (2024).

In Chapter 5, we address this non-convexity with candidate actions for argmax coming from

different task policies in multi-task reinforcement learning (MTRL). We derive the objective that

must be maximized in soft actor-critic (SAC) algorithm (Haarnoja et al., 2018) and prove that the

resulting MTRL algorithm achieves better sample efficiency. Consequently, we achieve a new

way of sharing information between the tasks in MTRL, sharing actions, which is complementary

to prior MTRL paradigms such as parameter sharing and data sharing. This research appeared

in Zhang et al. (2023).

Finally, we conclude by discussing open challenges in complex action spaces and some future

directions in Chapter 6.
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Part I

Generalization to Unseen and Varying Action Spaces
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Chapter 2

Generalization to New Actions via Action Representations

New
Tools

Goal
Action

Goal

Training
Tools

Figure 2.1: An illustration of zero-shot generalization to new actions in a sequential decision-making
task, CREATE. (Left) Learning to select and place the right tools for reaching the goal. (Right)
Generalizing the learned policy to a previously unseen set of tools.

2.1 Introduction

Imagine making a salad with an unfamiliar set of tools. Since tools are characterized by their

behaviors, you would first inspect the tools by interacting with them. For instance, you can observe
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a blade has a thin edge and infer that it is sharp. Afterward, when you need to cut vegetables for the

salad, you decide to use this blade because you know sharp objects are suitable for cutting. Like

this, humans can make selections from a novel set of choices by observing the choices, inferring

their properties, and finally making decisions to satisfy the requirements of the task.

From a reinforcement learning perspective, this motivates an important question of how agents

can adapt to solve tasks with previously unseen actions. Prior work in deep reinforcement learning

has explored generalization of policies over environments (Cobbe et al., 2018; Nichol et al., 2018),

tasks (Finn et al., 2017; Parisi et al., 2018), and agent morphologies (Wang et al., 2018; Pathak

et al., 2019a). However, zero-shot generalization of policies to new discrete actions has not yet been

explored. The primary goal of this work is to propose the problem of generalization to new actions.

In this setup, a policy that is trained on one set of discrete actions is evaluated on its ability to solve

tasks zero-shot with new actions that were unseen during training.

Addressing this problem can enable robots to solve tasks with a previously unseen toolkit, rec-

ommender systems to make suggestions from newly added products, and hierarchical reinforcement

learning agents to use a newly acquired skill set. In such applications, retraining with new actions

would require prohibitively costly environment interactions. Hence, zero-shot generalization to new

actions without retraining is crucial to building robust agents. To this end, we propose a framework

and benchmark it on using new tools in the CREATE physics environment (Figure 2.1), stacking of

towers with novel 3D shapes, reaching goals with unseen navigation skills, and recommending new

articles to users.

We identify three challenges faced when generalizing to new actions. Firstly, an agent must

observe or interact with the actions to obtain data about their characteristics. This data can be in the

form of videos of a robot interacting with various tools, images of inspecting objects from different

viewpoints, or state trajectories observed when executing skills. In present work, we assume such

action observations are given as input since acquiring them is domain-specific. The second key

challenge is to extract meaningful properties of the actions from the acquired action observations,

which are diverse and high-dimensional. Finally, the task-solving policy architecture must be flexible
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to incorporate new actions and be trained through a procedure that avoids overfitting (Hawkins,

2004) to training actions.

To address these challenges, we propose a two-stage framework of representing the given actions

and using them for a task. First, we employ the hierarchical variational autoencoder (Edwards and

Storkey, 2017) to learn action representations by encoding the acquired action observations. In

the reinforcement learning stage, our proposed policy architecture computes each given action’s

utility using its representation and outputs a distribution. We observe that naive training leads to

overfitting to specific actions. Thus, we propose a training procedure that encourages the policy to

select diverse actions during training, hence improving its generalization to unseen actions.

Our main contribution is introducing the problem of generalization to new actions. We propose

four new environments to benchmark this setting. We show that our proposed two-stage framework

can extract meaningful action representations and utilize them to solve tasks by making decisions

from new actions. Finally, we examine the robustness of our method and show its benefits over

retraining on new actions.

2.2 Related Work

Generalization in Reinforcement Learning. Our proposed problem of zero-shot generaliza-

tion to new discrete action-spaces follows prior research in deep reinforcement learning (RL) for

building robust agents. Previously, state-space generalization has been used to transfer policies to

new environments (Cobbe et al., 2018; Nichol et al., 2018; Packer et al., 2018), agent morpholo-

gies (Wang et al., 2018; Sanchez-Gonzalez et al., 2018a; Pathak et al., 2019a), and visual inputs for

manipulation of unseen tools (Fang et al., 2018; Xie et al., 2019). Similarly, policies can solve new

tasks by generalizing over input task-specifications, enabling agents to follow new instructions (Oh

et al., 2017), demonstrations (Xu et al., 2017), and sequences of subtasks (Andreas et al., 2017).

Likewise, our work enables policies to adapt to previously unseen action choices.

Unsupervised Representation Learning. Representation learning of high-dimensional data can

make it easier to extract useful information for downstream tasks (Bengio et al., 2013). Prior work
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has explored downstream tasks such as classification and video prediction (Denton and Birodkar,

2017), relational reasoning through visual representation of objects (Steenbrugge et al., 2018),

domain adaptation in RL by representing image states (Higgins et al., 2017b), and goal representation

in RL for better exploration (Laversanne-Finot et al., 2018) and sample efficiency (Nair et al., 2018b).

In this work, we leverage unsupervised representation learning of action observations to achieve

generalization to new actions in the downstream RL task.

Learning Action Representations. In prior work, Chen et al. (2019b); Chandak et al. (2019);

Kim et al. (2019) learn a latent space of discrete actions during policy training by using forward or

inverse models. Tennenholtz and Mannor (2019) use expert demonstration data to extract contextual

action representations. However, these approaches require a predetermined and fixed action space.

Thus, they cannot be used to infer representations of previously unseen actions. In contrast, we learn

action representations by encoding action observations acquired independent of the task, which

enables zero-shot generalization to novel actions.

Applications of Action Representations. Continuous representations of discrete actions have

been primarily used to ease learning in large discrete action spaces (Dulac-Arnold et al., 2015;

Chandak et al., 2019) or exploiting the shared structure among actions for efficient learning and

exploration (He et al., 2015; Tennenholtz and Mannor, 2019; Kim et al., 2019). Concurrent work

from Chandak et al. (2020b) learns to predict in the space of action representations, allowing

efficient finetuning when new actions are added. In contrast, we utilize action representations

learned separately, to enable zero-shot generalization to new actions in RL.

2.3 Problem Formulation

In order to build robust decision-making agents, we introduce the problem setting of generaliza-

tion to new actions. A policy that is trained on one set of actions is evaluated on its ability to utilize

unseen actions without additional retraining. Such zero-shot transfer requires additional input that

can illustrate the general characteristics of the actions. Our insight is that action choices, such as

tools, are characterized by their general behaviors. Therefore, we record a collection of an action’s
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behavior in diverse settings in a separate environment to serve as action observations. The action

information extracted from these observations can then be used by the downstream task policy to

make decisions. For instance, videos of an unseen blade interacting with various objects can be

used to infer that the blade is sharp. If the downstream task is cutting, an agent can then reason to

select this blade due to its sharpness.

2.3.1 Reinforcement Learning

We consider the problem family of episodic Markov Decision Processes (MDPs) with discrete

action spaces. MDPs are defined by a tuple {S,A, T ,R, γ} of states, actions, transition probability,

reward function, and discount factor. At each time step t in an episode, the agent receives a state

observation st ∈ S from the environment and responds with an action at ∈ A. This results in a state

transition to st+1 and a state-conditioned rewardR(st+1). The objective of the agent is to maximize

the expected discounted reward R =
∑T

t=1 γ
t−1R(st) in an episode of length T .

2.3.2 Generalization to New Actions

The setting of generalization to new actions consists of two phases: training and evaluation.

During training, the agent learns to solve tasks with a given set of actions A = {a1, . . . , aN}. During

each evaluation episode, the trained agent is evaluated on a new action set A sampled from a set

of unseen actions A′. The objective is to learn a policy π(a|s,A), which maximizes the expected

discounted reward using any given action set A ⊂ A′,

R = EA⊂A′, a∼π(a|s,A)

[∑T
t=1 γ

t−1R(st)
]
. (2.1)

For each action a ∈ A∪A′, the set of acquired action observations is denoted withO = {o1, . . . , on}.

Here, each oj ∈ O is an observation for the action like a state-trajectory, a video, or an image,

indicating the action’s behavior. For the set of training actions A, we denote the set of associated

actions observations as O = {O1, . . . ,ON}.
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Figure 2.2: Two-stage framework for generalization to new actions through action representations.
(1) For each available action, a hierarchical VAE module encodes the action observations into
action representations and is trained with a reconstruction objective. (2) The policy πθ encodes the
state with state encoder fω(s) and pairs it with each action representation using the utility function
fν . The utility scores are computed for each action and output to a categorical distribution. The
auxiliary network takes the encoded state and outputs environment-specific auxiliary actions such
as tool placement in CREATE. The policy architecture is trained with policy gradients.

2.4 Approach

Our approach for generalization to new actions is based on the intuition that humans make

decisions from new options by exploiting prior knowledge about the options (Gershman and Niv,

2015). First, we infer the properties of each action from the action observations given as prior

knowledge. Second, a policy learns to make decisions based on these inferred action properties.

When a new action set is given, their properties are inferred and exploited by the policy to solve the

task. Formally, we propose a two-stage framework:

1. Learning Action Representations: We use unsupervised representation learning to encode

each set of action observations into an action representation. This representation expresses

the latent action properties present in the set of diverse observations (Section 2.4.1).

2. Learning Generalizable Policy: We propose a flexible policy architecture to incorporate

action representations as inputs, which can be trained through RL (Section 2.4.2). We
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provide a training procedure to control overfitting to the training action set, making the policy

generalize better to unseen actions (Section 2.4.3).

2.4.1 Unsupervised Learning of Action Representations

Our goal is to encode each set of action observations into an action representation that can be

used by a policy to make decisions in a task. The main challenge is to extract the shared statistics of

the action’s behavior from high-dimensional and diverse observations.

To address this, we employ the hierarchical variational autoencoder (HVAE) by Edwards and

Storkey (2017). HVAE first summarizes the entire set of an action’s observations into a single

action latent. This action latent then conditions the encoding and reconstruction of each constituent

observation through a conditional VAE. Such hierarchical conditioning ensures that the observations

for the same action are organized together in the latent space. Furthermore, the action latent

sufficiently encodes the diverse statistics of the action. Therefore, this action latent is used as the

action’s representation in the downstream RL task (Figure 2.2).

Formally, for each training action ai ∈ A, HVAE encodes its associated action observations

Oi ∈ O into a representation ci by mean-pooling over the individual observations oi,j ∈ Oi. We

refer to this action encoder as the action representation module qϕ(ci|Oi). The action latent ci

sampled from the action encoder is used to condition the encoders qψ(zi,j|oi,j, ci) and decoders

p(oi,j|zi,j, ci) for each individual observation oi,j ∈ Oi. The entire HVAE framework is trained with

reconstruction loss across the individual observations, along with KL-divergence regularization of

encoders qϕ and qψ with their respective prior distributions p(c) and p(z|ci). For additional details

on HVAE, refer to Appendix D.3.1 and Edwards and Storkey (2017). The final training objective

requires maximizing the ELBO:

L =
∑
O∈O

[
Eqϕ(c|O)

[∑
o∈O

Eqψ(z|o,c) log p(o|z, c)−DKL(qψ||p(z|c))
]
−DKL(qϕ||p(c))

]
. (2.2)
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Algorithm 1 Two-stage Training Framework
1: Inputs: Training actions A, action observations O
2: Randomly initialize HVAE and policy parameters
3: for epoch = 1, 2, . . . do
4: Sample batch of action observations Oi ∼ O
5: Train HVAE parameters with gradient ascent on Eq. 2.2
6: end for
7: Infer action representations: ci = qµϕ(Oi),∀ai ∈ A
8: for iteration = 1, 2, . . . do
9: while episode not done do

10: Subsample action set A ⊂ A of size m
11: Sample action at ∼ πθ(s,A) using Eq. 2.3
12: st+1, rt ← ENV(st, at)
13: Store experience (st, at, st+1, rt) in replay buffer
14: end while
15: Update and save policy θ using PPO on Eq. 2.4
16: end for
17: Select θ with best validation performance

For action observations consisting of sequential data, o = {x0, . . . , xm} like state trajectories or

videos, we augment HVAE to extract temporally extended behaviors of actions. We accomplish this

by incorporating insights from trajectory autoencoders (Wang et al., 2017; Co-Reyes et al., 2018)

in HVAE. Bi-LSTM (Schuster and Paliwal, 1997) is used in the encoders and LSTM is used as

the decoder p(x1, . . . , xm|z, c, x0) to reconstruct the trajectory given the initial state x0. Explicitly

for video observations, we also incorporated temporal skip connections (Ebert et al., 2017) by

predicting an extra mask channel to balance contributions from the predicted and first video frame of

the video. We set the representation for an action as the mean of the inferred distribution qϕ(ci|Oi)

as done in Higgins et al. (2017a); Steenbrugge et al. (2018).

2.4.2 Adaptable Policy Architecture

To enable decision-making with new actions, we develop a policy architecture that can adapt

to any available action set A by taking the list of action representations as input. Since the action

representations are learned independently of the downstream task, a task-solving policy must learn

to extract the relevant task-specific knowledge.
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Algorithm 2 Generalization to New Actions

1: Inputs: New actions A = {a1, . . . aM}, observations {O1, . . .OM}. Trained networks qϕ and
πθ

2: Infer action representations: ci = qµϕ(Oi),∀ai ∈ A
3: while not done do
4: Sample action at ∼ πθ(s,A) using Eq. 2.3
5: st+1, rt ← ENV(st, at)
6: end while

The policy π(a|s,A) receives a set of available actions A = {a1, . . . , ak} as input, along with

the action representations{c1, . . . , ck}. As shown in Figure 2.2, the policy architecture starts with a

state encoder fω. The utility function fν is applied to each given action’s representation ci and the

encoded state fω(s) (Eq. 2.3). The utility function estimates the score of an action at the current

state, through its action representation, just like a Q-function (Watkins and Dayan, 1992). Action

utility scores are converted into a probability distribution through a softmax function:

π(ai|s,A) =
efν [ci,fω(s)]∑k
j=1 e

fν [cj ,fω(s)]
. (2.3)

In many physical environments, the choice of a discrete action is associated with auxiliary parame-

terizations, such as the intended position of tool usage or a binary variable to determine episode

termination. We incorporate such hybrid action spaces (Hausknecht and Stone, 2015), through an

auxiliary network fχ, which takes the encoded state and outputs a distribution over the auxiliary

actions 1. An environment action is taken by sampling the auxiliary action from this distribution

and the discrete action from Eq. 2.3. The policy parameters θ = {ν, ω, χ} are trained end-to-end

using policy gradients (Sutton et al., 2000).

2.4.3 Generalization Objective and Training Procedure

Our final objective is to find policy parameters θ to maximize reward on held-out action setsA ⊂

A′ (Eq. 2.1), while being trained on a limited set of actions A. We study this generalization problem

based on statistical learning theory (Vapnik, 1998; 2013) in supervised learning. Particularly,

1Alternatively, the auxiliary network can take the discrete selection as input as tested in Appendix C.4
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generalization of machine learning models is expected when their training inputs are independent

and identically distributed (Bousquet et al., 2003). However, in RL, a policy typically acts in the

environment to collect its own training data. Thus when a policy overexploits a specific subset of

the training actions, this skews the policy training data towards those actions. To avoid this form of

overfitting and be robust to diverse new action sets, we propose the following regularizations to

approximate i.i.d. training:

• Subsampled action spaces: To limit the actions available in each episode of training, we

randomly subsample action sets, A ⊂ A of size m, a hyperparameter. This avoids overfitting

to any specific actions by forcing the policy to solve the task with diverse action sets.

• Maximum entropy regularization: We further diversify the policy’s actions during training

using the maximum entropy objective (Ziebart et al., 2008). We add the entropy of the policy

H[πθ(a|s)] to the RL objective with a hyperparameter weighting β. While this objective has

been widely used for exploration, we find it useful to enable generalization to new actions.

• Validation-based model selection: During training, the models are evaluated on held-out

validation sets of actions, and the best performing model is selected. Just like supervised

learning, this helps to avoid overfitting the policy during training. Note that the validation set

is also used to tune hyperparameters such as entropy coefficient β and subsampled action set

size m. There is no overlap between test and validation sets, hence the test actions are still

completely unseen at evaluation.

The final policy training objective is:

max
θ

EA⊂A,a∼πθ(.|s,A)[R(s) + βH[πθ(a|s,A)]]. (2.4)

The training procedure is described in Algorithm 1. The HVAE is trained using RAdam opti-

mizer (Liu et al., 2019), and we use PPO (Schulman et al., 2017a) to train the policy with Adam

Optimizer (Kingma and Ba, 2014). Additional implementation and experimental details, including

the hyperparameters searched, are provided in Appendix D. The inference process is described in

15



Obstacle SeesawPush

CREATE Tasks Diverse Tools Tool ObservationsHybrid Actions

(", $) position

Tool
Selection

Various
Viewpoints

3D ShapesShape Stacking

Shape
Selection

Drop
position

Hybrid Actions Observations ObservationsGrid World 5-step Skills

Skill Selection
Various

Executions

Figure 2.3: Benchmark environments for evaluating generalization to new actions. (Top) In
CREATE, an agent selects and places various tools to move the red ball to the goal. Other moving
objects can serve as help or obstacles. Some tasks also have subgoals to help with exploration
(Appendix C.3 shows results with no subgoal rewards). The tool observations consist of trajectories
of a test ball interacting with the tool. (Left) In Shape Stacking, an agent selects and places 3D
shapes to stack a tower. The shape observations are images of the shape from different viewpoints.
(Right) In Grid World, an agent reaches the goal by choosing from 5-step navigation skills. The
skill observations are collected on an empty grid in the form of agent trajectories resulting from
skill execution from random locations.

Algorithm 2. When given a new set of actions, we can infer the action representations with the

trained HVAE module. The policy can also generalize to utilize these actions since it has learned to

map a list of action representations to an action probability distribution.

2.5 Experimental Setup

2.5.1 Environments

We propose four sequential decision-making environments with diverse actions to evaluate

and benchmark the proposed problem of generalization to new actions. These test the action

representation learning method on various types of action observations. The long-horizon nature

of the environments presents a challenge to use new actions correctly to solve the given tasks

consistently. Figure 2.3 provides an overview of the task, types of actions, and action observations
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in three environments. In each environment, the train-test-validation split is approximately 50-25-

25%. Complete details on each environment, action observations, and train-validation-test splits

can be found in Appendix A.

Grid World. In the Grid world environment (Chevalier-Boisvert et al., 2018), an agent navigates

a 2D lava maze to reach a goal using predefined skills. Each skill is composed of a 5-length sequence

of left, right, up or down movement. The total number of available skills is 45. Action observations

consist of state sequences of an agent observed by applying the skill in an empty grid. This

environment acts as a simple demonstration of generalization to unseen skill sets.

Recommender System. The Recommender System environment (Rohde et al., 2018) sim-

ulates users responding to product recommendations. Every episode, the agent makes a series

of recommendations for a new user to maximize their click-through rate (CTR). With a total of

10,000 products as actions, the agent is evaluated on how well it can recommend previously unseen

products to users. The environment specifies predefined action representations. Thus we only

evaluate our policy framework on it, not the action encoder.

CREATE. We develop the Chain REAction Tool Environment (CREATE) as a challenging

benchmark to test generalization to new actions2. It is a physics-based puzzle where the agent

must place tools in real-time to manipulate a specified ball’s trajectory to reach a goal position

(Figure 2.3). The environment features 12 different tasks and 2,111 distinct tools. Moreover, it tests

physical reasoning since every action involves selecting a tool and predicting the 2D placement for

it, making it a hybrid action-space environment. Action observations for a tool consist of a test ball’s

trajectories interacting with the tool from various directions and speeds. CREATE tasks evaluate

the ability to understand complex functionalities of unseen tools and utilize them for various tasks.

We benchmark our framework on all 12 CREATE tasks with the extended results in Appendix C.1.

Shape Stacking. We develop a MuJoCo-based (Todorov et al., 2012) Shape Stacking environ-

ment, where the agent drops blocks of different shapes to build a tall and stable tower. Like in

CREATE, the discrete selection of shape is parameterized by the coordinates of where to place the

2CREATE environment: https://clvrai.com/create
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selected shape and a binary action to decide whether to stop stacking. This environment evaluates

the ability to use unseen complex 3D shapes in a long horizon task and contains 810 shapes.

2.5.2 Experiment Procedure

We perform the following procedure for each action generalization experiment3.

1. Collect action observations for all the actions using a supplemental play environment that is

task-independent.

2. Split the actions into train, validation, and test sets.

3. Train HVAE on the train action set by autoencoding the collected action observations.

4. Infer action representations for all actions using the HVAE encoder on action observations.

5. Train policy on the task environment with RL. In each episode, an action set is randomly

sampled from the train actions. The policy acts by using inferred action representations as an

input list.

6. Evaluation: In each episode, an action set is subsampled from the test (or validation)

action set. The trained policy uses the inferred representations of these actions to act in the

environment zero-shot. The performance metric (e.g. success rate) is averaged over multiple

such episodes.

(a) Perform hyperparameter tuning & model selection by evaluating on validation action

set.

(b) Report final performance on the test action set.

2.5.3 Baselines

We validate the design choices of the proposed action encoder and policy architecture. For

action encoder, we compare with a policy using action representations from a non-hierarchical

3Complete code available at https://github.com/clvrai/new-actions-rl
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encoder. For policy architecture, we consider alternatives that select actions using distances in the

action representation space instead of learning a utility function.

• Non-hierarchical VAE: A flat VAE is trained over the individual action observations. An

action’s representation is taken as the mean of encodings of the constituent action observations.

• Continuous-output: The policy architecture outputs a continuous vector in the action

representation space, following Dulac-Arnold et al. (2015). From any given action set, the

action closest to this output is selected.

• Nearest-Neighbor: A standard discrete action policy is trained. The representation of this

policy’s output action is used to select the nearest neighbor from new actions.

2.5.4 Ablations

We individually ablate the two proposed regularizations:

• Ours without subsampling: Train over the entire set of training actions without subsampling.

• Ours without entropy: Train without entropy regularization by setting the coefficient to

zero.

2.6 Results and Analysis

Our experiments aim to answer the following questions about the proposed problem and frame-

work: (1) Can the HVAE extract meaningful action characteristics from the action observations? (2)

What are the contributions of the proposed action encoder, policy architecture, and regularizations

for generalization to new actions? (3) How well does our framework generalize to varying diffi-

culties of test actions and types of action observations? (4) How inefficient is finetuning to a new

action space as compared to zero-shot generalization?
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CREATE 
Tools

Hierarchical VAE Non-Hierarchical VAE

Figure 2.4: t-SNE visualization of action representations for held-out tools in CREATE inferred
using a trained HVAE (left) and a VAE (right). The color indicates the tool class (e.g. cannons,
buckets). The HVAE encoder learns to organize semantically similar tools together, in contrast to
the flat VAE, which shows less structure.

2.6.1 Visualization of Inferred Action Representations

To investigate if the HVAE can extract important characteristics from observations of new

actions, we visualize the inferred action representations for unseen CREATE tools. In Figure 2.4,

we observe that tools from the same class are clustered together in the HVAE representations.

Whereas in the absence of hierarchy, the action representations are less organized. This shows that

encoding action observations independently, and averaging them to obtain a representation can result

in the loss of semantic information, such as the tool’s class. In contrast, hierarchical conditioning on

action representation enforces various constituent observations to be encoded together. This helps

to model the diverse statistics of the action’s observations into its representation.

2.6.2 Results and Comparisons

Baselines. Figure 2.5 shows that our framework outperforms the baselines (Section 2.5.3)

in zero-shot generalization to new actions on six tasks. The non-hierarchical VAE baseline has

lower policy performance in both training and testing. This shows that HVAE extracts better

representations from action observations that facilitate easier policy learning.
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Ours Non hierarchical VAE Continuous Output Nearest neighbor

Figure 2.5: Comparison against baseline action representation and policy architectures on 6 en-
vironments, 3 of which are CREATE tasks. The solid bar denotes the test performance and the
transparent bar the training performance, to observe the generalization gap. The results are averaged
over 5000 episodes across 5 random seeds, and the error bars indicate the standard deviation (8
seeds for Grid World). All learning curves are present in Figure A.14. Results on 9 additional
CREATE tasks can be found in Appendix C.1.

The continuous-output baseline suffers in training as well as testing performance. This is likely

due to the complex task of indirect action selection. The distance metric used to find the closest

action does not directly correspond to the task relevance. Therefore the policy network must learn to

adjust its continuous output, such that the desired discrete action ends up closest to it. Our method

alleviates this through the utility function, which first extracts task-relevant features to enable an

appropriate action decision. The nearest-neighbor baseline achieves high training performance

since it is merely discrete-action RL with a fixed action set. However, at test time, the simple

nearest-neighbor in action representation space does not correspond to the actions’ task-relevance.

This results in poor generalization performance.

Ablations. Figure 2.6 assesses the contribution of the proposed regularizations to avoid overfit-

ting to training actions. Entropy regularization usually leads to better training and test performance

due to better exploration. In the recommender environment, the generalization gap is more substan-

tial without entropy regularization. Without any incentive to diversify, the policy achieved high

training performance by overfitting to certain products. We observe a similar effect in the absence

of action subsampling across all tasks. It achieves a higher training performance, due to the ease of

training in non-varying action space. However, its generalization performance is weak because it is

easy to overfit when the policy has access to all the actions during training.
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Ours Ours w/o subsamplingOurs w/o entropy 

Figure 2.6: Analyzing the importance of the proposed action space subsampling and entropy
regularization in our method. Training and evaluation follow Figure 2.5.

2.6.3 Analyzing the Limits of Generalization

Generalization to Unseen Action Classes. Our method is expected to generalize when new

actions are within the distribution of those seen during training. However, what happens when we

test our approach on completely unseen action classes? Generalization is still expected because the

characteristic action observations enable the representation of actions in the same space. Figure 2.7a

evaluates our approach on held-out tool classes in the CREATE environment. Some tool classes

like trampolines and cannons are only seen during training, whereas others like fans and conveyor

belts are only used during testing. While the generalization gap is more substantial than before, we

still observe reasonable task success across the 3 CREATE tasks. The performance can be further

improved by increasing the size and diversity of training actions. Appendix C.6 shows a similar

experiment on Shape Stacking.

Alternate Action Representations. In Figure 2.7b, we study policy performance for various

action representations. See Appendix B for t-SNE visualizations.

• Alternate Data Types of action observations are used to learn representations. For CREATE,

we use video data instead of the state trajectory of the test ball (see Figure 2.3). For Grid

World, we test with a one-hot vector of agent location instead of (x, y) coordinates. The

policy performance using these representations is comparable to the default. This shows that

HVAE is suitable for high-dimensional action observations, such as videos.
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Push Obstacle Seesaw

(a) Unseen tool classes in CREATE

Default Oracle EncoderAlternate Data Types Engineered

(b) Alternate action representations

Figure 2.7: Additional analyses. (a) Our method achieves decent performance on out-of-distribution
tools in 3 CREATE tasks, but the generalization gap is more pronounced. (b) Various action
representations can be successfully used with our policy architecture.

• Oracle HVAE is used to get representations by training on the test actions. The performance

difference between default and oracle HVAE is negligible. This shows that HVAE generalizes

well to unseen action observations.

• Hand-Engineered action representations are obtained for Stacking and Grid World using

ground-truth information about the actions. In Stacking, HVAE outperforms these representa-

tions, since it is hard to specify the information about shape geometry manually. In contrast,

it is easy to specify the complete skill in Grid World. Nevertheless, HVAE representations

perform comparably.

Varying the Difficulty of Generalization. Figure 2.8 shows a detailed study of generalization

on various degrees of differences between the train and test actions in 3 CREATE tasks. We vary

the following parameters:
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Figure 2.8: Varying the test action space. An increasing x-axis corresponds to more difficult
generalization conditions. Each value plotted is the average test performance over 5 random seeds
with the error bar corresponding to the standard deviation.

a) Tool Angle: Each sampled test tool is at least θ degrees different from the most similar tool

seen during training.

b) Tool Embedding: Each test tool’s representation is at least d Euclidean distance away from

each training tool.

c) Unseen Ratio: The test action set is a mixture of seen and unseen tools, with x% unseen.

The results suggest a gradual decrease in generalization performance as the test actions become

more different from training actions. We chose the hardest settings for the main experiments: 15◦

angle difference and 100% unseen actions.

Qualitative Analysis. Figure 2.9 shows success and failure examples when using unseen

actions in the CREATE and Stacking environments. In CREATE, our framework correctly infers

the directional pushing properties of unseen tools like conveyor belts and fans from their action

observations and can utilize them to solve the task. Failure examples include placements being off

and misrepresenting the direction of a belt. Collecting more action observations can improve the

representations.

In Shape Stacking, the geometric properties of 3D shapes are correctly inferred from image

action observations. The policy can act in the environment by selecting the appropriate shapes to
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Success Examples Failure Examples
CREATE Push CREATE Obstacle Shape Stacking

Figure 2.9: Evaluation results showing the trajectories of objects in CREATE and the final tower
in Shape Stacking. Our framework is generally able to infer the dynamic properties of tools and
geometry of shapes and subsequently use them to make the right decisions.

drop based on the current tower height. Failures include greedily selecting a tall but unstable shape

in the beginning, like a pyramid.

2.6.4 The Inefficiency of Finetuning on New Actions

In Figure 2.10, we examine various approaches to continue training on a particular set of new

actions in CREATE Push. First, we train a policy from scratch on the new actions either with our

adaptable policy architecture (Ours Scratch) or a regular discrete policy (Discrete Scratch). These

take around 3 million environment steps to achieve our pretrained method’s zero-shot performance

(Ours Zero-Shot). Next, we consider ways to transfer knowledge from training actions. We train a

regular discrete policy and finetune on new actions by re-initializing the final layer (Discrete Fine-

Tune). While this approach transfers some task knowledge, it disregards any relationship between

the old and new actions. It still takes over 1 million steps to reach our zero-shot performance.

This shows how expensive retraining is on a single action set. Clearly, this retraining process

is prohibitive in scenarios where the action space frequently changes. This demonstrates the

significance of addressing the problem of zero-shot generalization to new actions. Finally, we

continue training our pretrained policy on the new action set with RL (Ours Fine-Tune). We observe

fast convergence to optimal performance, because of its ability to utilize action representations to

transfer knowledge from the training actions to the new actions. Finetuning results for all other

environments are in Figure A.9.

25



0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

CREATE Push

Ours Fine-Tune
Discrete Fine-Tune
Ours Scratch
Discrete Scratch
Ours Zero-Shot

Figure 2.10: Finetuning or training policies from scratch on the new action space. The horizontal
line is the zero-shot performance of our method. Each line is the average test performance over 5
random seeds, while the shaded region is the standard deviation.

2.7 Conclusion

Generalization to novel circumstances is vital for robust agents. In this chapter, we propose the

problem of enabling RL policies to generalize to new action spaces. Our two-stage framework learns

action representations from acquired action observations and utilizes them to make the downstream

RL policy flexible. We propose four challenging benchmark environments and demonstrate the

efficacy of hierarchical representation learning, policy architecture, and regularizations. Exciting

directions for future research include building general problem-solving agents that can adapt to new

tasks with new action spaces and autonomously acquiring informative action observations in the

physical world.
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Chapter 3

Know Your Action Set in Varying Action Spaces via Action

Relations

Task: Picture on Wall

Varying Action Sets

Place Nail

Hit Hammer

Hang Picture

Apply Tape

Stick Hook

Hang Picture

Hook à Tape RelationHammer à Nail Relation

Step-1

Step-2

Step-3

Figure 3.1: Picture hanging task with varying sets of tool-actions. The strategy with each action set
depends on all the pairwise action relations. (Left) The agent infers that a nail and a hammer are
strongly related (bold line). Thus, it takes nail-action in Step-1 because hammer-action is available
for Step-2. (Right) With a different action set, the nail-action is no longer useful due to the absence
of a hammer. So, the agent must use an adhesive-tape in Step-1 since its related action of the hook is
available for later use. We show that a policy with GAT over actions can learn such action relations.

3.1 Introduction

Imagine you want to hang a picture on the wall. You may start by placing a nail on the wall and

then use a hammer to nail it in. However, if you do not have access to a hammer, you would not use
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the nail. Instead, you would try alternative approaches such as using a hook and adhesive-strips or a

screw and a drill (Figure 3.1). In general, we solve tasks by choosing actions that interact with each

other to achieve a desired outcome in the environment. Therefore, the best action decision depends

not only on the environment but also on what other actions are available to use.

This work addresses the setting of varying action space in sequential decision-making. Typically

reinforcement learning (RL) assumes a fixed action space, but recent work has explored variations

in action space when adding or removing actions (Boutilier et al., 2018; Chandak et al., 2020a;c) or

for generalization to unseen actions (Jain et al., 2020). These assume that the given actions can be

treated independently in decision-making. But this assumption often does not hold. As the picture

hanging example illustrates, the optimality of choosing the nail is dependent on the availability of a

hammer. Therefore, our goal is to address this problem of learning the interdependence of actions.

Addressing this problem is vital for many varying action space applications, such as rec-

ommender systems where articles to recommend vary everyday and physical reasoning where

decision-making must be robust to any given set of tools, objects, or skills. In this work, we

benchmark three such scenarios where learning action interdependence is crucial for solving the

task optimally: (i) shortcut-actions in grid navigation, which can shorten the path to the goal when

available, (ii) co-dependent actions in tool reasoning, where tools need other tools to be useful (like

nail-hammer), and (iii) list-actions or slate-actions (Sunehag et al., 2015) in simulated and real-data

recommender systems, where user response is a collective effect of the recommended list.

There are three key challenges in learning action interdependence for RL with varying action

space. First, since all the actions are not known in advance, the policy framework must be flexible

to work with action representations. Second, the given action space is an additional variable, like

state observations in RL. Therefore, the policy framework must incorporate a variably sized set

of action representations as part of the input. Finally, an agent’s decision for each action’s utility

(Q-value or probability) should explicitly model its relationship with other available actions.

We propose a novel policy architecture to address these challenges: AGILE, Action Graph for

Interdependence Learning. AGILE builds on the utility network proposed in Jain et al. (2020) to
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incorporate action representations. Its key component is a graph attention network (GAT) (Veličković

et al., 2017) over a fully connected graph of actions. This serves two objectives: summarizing the

action set input and computing the action utility with relational information of other actions.

Our primary contribution is introducing the problem of learning action interdependence for

RL with varying action space. We demonstrate our proposed policy architecture, AGILE, learns

meaningful action relations. This enables optimal decision-making in varying action space tasks

such as simulated and real-world recommender systems and reasoning with skills and tools.

3.2 Related Work

Stochastic Action Sets. In prior work, Boutilier et al. (2018) provide the theoretical foundations

of MDPs with Stochastic Action Sets (SAS-MDPs), where actions are sampled from a known base

set of actions. They propose a solution with Q-learning which Chandak et al. (2020a) extend to

policy gradients. An instance of SAS-MDPs is when certain actions become invalid, like in games,

they are masked out from the output action probability distribution (Huang and Ontañón, 2020; Ye

et al., 2020; Kanervisto et al., 2020). However, the assumption of knowing the finite base action set

limits the practical applicability of SAS-MDPs. E.g., recommender agents often receive unseen

items to recommend and a robotic agent does not know beforehand what tools it might encounter

in the future. We work with action representations to alleviate this limitation. Furthermore, in

SAS-MDPs the action set can vary at any timestep of an episode. Thus, the learned policy will only

be optimal on average over all the possible action sets (Qin et al., 2020). Whereas in our setting, the

action set only changes at the beginning of a task instance and stays constant over the episode. This

is a more practical setup and raises the challenge of solving a task optimally with any given action

space.

Action Representations. In discrete action RL, action representations have enabled learning in

large action spaces (Dulac-Arnold et al., 2015; Chandak et al., 2019), transfer learning to a different

action space (Chen et al., 2019b), and efficient exploration by exploiting the shared structure among

actions (He et al., 2015; Tennenholtz and Mannor, 2019; Kim et al., 2019). Recently, Chandak
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et al. (2020c) use them to accelerate adaptation when new actions are added to an existing action

set. In contrast, our setting requires learning in a constantly varying action space where actions

can be added, removed, or completely replaced in an episode. Closely related to our work, Jain

et al. (2020) assume a similar setting of varying action space while training to generalize to unseen

actions. Following their motivation, we use action representations to avoid assuming knowledge of

the base action set. However, their policy treats each action independently, which we demonstrate

leads to suboptimal performance.

List-wise Action Space. The action space is combinatorial in list size in listwise RL (or slate

RL). Commonly it has applications in recommendation systems (Sunehag et al., 2015; Zhao et al.,

2017; 2018; Ie et al., 2019b; Gong et al., 2019; Liu et al., 2021b; Jiang et al., 2018; Song et al.,

2020). In recent work, Chen et al. (2019a) proposed Cascaded DQNs (CDQN) framework, which

learns a Q-network for every index in the list and trains them all with a shared reward. For our

experiments on listwise RL, we utilize CDQN as the algorithm and show its application with AGILE

as the policy architecture.

Relational Reinforcement Learning. Graph neural networks (Battaglia et al., 2018) have

been explored in RL tasks with a rich relational structure, such as morphological control (Wang

et al., 2018; Sanchez-Gonzalez et al., 2018b; Pathak et al., 2019b), multi-agent RL (Tacchetti

et al., 2019), physical construction (Hamrick et al., 2018), and structured perception in games

like StarCraft (Zambaldi et al., 2018). In this paper, we propose that the set of actions possess a

relational structure that enables the actions to interact and solve tasks in the environment. Therefore,

we leverage a graph attention network (Veličković et al., 2017) to learn these action relations and

show that it can model meaningful action interactions.

3.3 Problem Formulation

A hallmark of intelligence is the ability to be robust in an ever-changing environment. To this

end, we consider the setting of RL with a varying action space, where an agent receives a different

action set in every task instance. Our key problem is to learn the interdependence of actions so the
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agent can act optimally with any given action set. Figure 3.1 illustrates that for a robot with the

task of hanging a picture on the wall, starting with a nail is optimal only if it can access a hammer

subsequently.

3.3.1 Reinforcement Learning with Varying Action Space

We consider episodic Markov Decision Processes (MDPs) with discrete action spaces, sup-

plemented with action representations. The MDP is defined by a tuple {S,A, T ,R, γ} of states,

actions, transition probability, reward function, and a discount factor, respectively. The base set

of actions A can be countably infinite. To support infinite base actions, we use D-dimensional

action representations ca ∈ RD to denote an action a ∈ A. These can be image or text features of a

recommendable item, behavior characteristics of a tool, or simply one-hot vectors for a known and

finite action set.

In each instance of the MDP, a subset of actions A ⊂ A is given to the agent, with associated

representations C. Thereafter, at each time step t in the episode, the agent receives a state observation

st ∈ S from the environment and acts with at ∈ A. This results in a state transition to st+1 and a

reward rt. The objective of the agent is to learn a policy π(a|s,A) that maximizes the expected

discounted reward over evaluation episodes with potentially unseen actions, EA⊂A [
∑

t γ
t−1rt] .

3.3.2 Challenges of Varying Action Space

1. Using Action Representations: The policy framework should be flexible to take a set of

action representations C as input and output corresponding Q-values or probability distribution

for RL.

2. Action Set as part of State: When the action set varies, the original state space S is not

anymore Markovian. For example, the state of a robot hanging the picture is under-specified

without knowing if its toolbox contains a hammer or not. The MDP can be preserved by

reformulating the state space as S ′ = {s ◦ CA : s ∈ S,A ⊂ A} to include the representations
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CA associated with the available actionsA (Boutilier et al., 2018). Thus, the policy framework

must support the input of s ◦ CA, where A is a variably sized action set.

3. Interdependence of Actions: The optimal choice of an action at ∈ A is dependent on

the action choices that would be available in the future steps of the episode, at′ ∈ A.

Recalling Figure 3.1, a nail should only be picked initially from the toolbox if a hammer is

accessible later. Thus, an optimal agent must explicitly model the relationships between the

characteristics of the current action cat and the possible future actions cai∀ai ∈ A.

3.4 Approach

Our goal is to design a policy framework that is optimal for any given action set by addressing

the challenges in Sec. 3.3.2. We build on the utility network proposed by Jain et al. (2020) that acts

in parallel on each action’s representation. Our central insight is to use graph neural networks for

summarizing the set of action representations as a state component and learning action relations.

3.4.1 AGILE: Action Graph for Interdependence Learning

We propose AGILE, a relational framework for learning action interdependence in RL with

a varying action space. Given a list of action representations C, AGILE builds a fully-connected

action graph. A graph attention network (GAT) (Veličković et al., 2017) processes the action graph

and learns action relations. The attention weights in the GAT would be high for closely related

actions such as a nail and a hammer in Figure 3.1. A utility network uses the GAT’s resulting

relational action representations, the state, and a pooled together action set summary to compute

each action’s Q-value or probability logit for policy gradient methods(Figure 3.2).

Action Graph: The input to our policy framework consists of the state s and a list C =

[ca0 , ..., cak ] of action representations for each action ai ∈ A. We build a fully connected action

graph G with vertices corresponding to each available action. If certain action relations are predefined

via domain knowledge, we can reduce some edges to ease training (Appendix B.1). We note that
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Figure 3.2: Given an action set, AGILE builds a complete graph where each node is composed of an
action representation and the state encoding. A graph attention network (GAT) learns action relations
by attending to other relevant actions for the current state. For example, the attention weight between
cannon and fire is high because fire can activate the cannon. The GAT outputs more informed
relational action representations than the original inputs. Finally, a utility network computes each
action’s value or selection probability in parallel using its relational action representation, the state,
and a mean-pooled summary vector of all available actions’ relational features.

the action relations can vary depending on the environment state. For instance, a screwdriver is

related to a screw for furniture repair, but a drill machine is more related when the screw is for a

wall. Therefore, we join the state and action representations, c′ai = (s, cai) to obtain the nodes of

the graph. Sec. 3.6.3 validates that learning state-dependent action relations leads to more optimal

solutions.

Graph Attention Network: The action graph G is input to a GAT. Since the graph is fully-

connected, we choose an attention-based graph network that can learn to focus on the most relevant

actions in the available action set. A similar insight was employed by Zambaldi et al. (2018) where

the entities inferred from the visual observation are assumed to form a fully connected graph. To

enable propagation of sufficient relational information between actions, we use two graph attention

layers with an ELU activation in between (Clevert et al., 2015). We found a residual connection

after the second GAT layer was crucial in experiments, while multi-headed attention did not help.
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Action Set Summary: The output of the GAT is a list of relational action representations

CR = {cRa0 , ...cRak} which contain the information about the presence of other available actions and

their relations. To represent the input action set as part of the state, we compute a compact action

set summary by mean-pooling the relational action features, c̄R = 1
K

∑K
i=1 c

R
ai

.

Action Utility: To use the relational action representations with RL, we follow the utility

network architecture πu from Jain et al. (2020). It takes the relational action representation, the state,

and the action set summary as input for each available action in parallel. It outputs a utility score

πu(c
R
a , s, c̄

R) for how useful an action a is for the current state and in relation to the other available

actions. The utility scores can be used as a Q-value directly for value-based RL or as a logit fed into

a softmax function to form a probability distribution over the available actions for policy-based RL.

3.4.2 Training AGILE framework with Reinforcement Learning

The AGILE architecture can be trained with both policy gradient and value-based RL methods.

Policy Gradient (PPO) : For every action decision step, we take the output action utility and

use a softmax over all available actions to get a probability distribution. We use PPO (Schulman

et al., 2017b) to train the policy. PPO requires a value function V (s′) as a baseline. We represent the

effective state as the concatenation of the state encoding s and the action set summary c̄R inferred

from the GAT, s′ = (s, c̄R). An important implementation detail to make the training faster and

stable was to not share the GAT weights used for the actor π(a|s′, cRa ) and the critic V (s′) networks.

Value-based RL (DQN) The output action utility can be directly treated as the Q(s′, a) value

of the action a at the current effective state s′ with the available action set A. This can be trained

using standard Deep Q-learning Bellman backup (Mnih et al., 2015).

Listwise RL (CDQN): For tasks with listwise actions, we follow the Cascaded DQN (CDQN)

framework of Chen et al. (2019a). The main challenge is that building the action list all at once is

not feasible due to a combinatorial number of possible list-actions. Therefore, the key is to build the

list incrementally, one action at a time. Thus, each list index can be treated as an individual action

decision trained with independent Q-networks. We replace the Q-network of CDQN with AGILE
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to support a varying action space. Sharing the weights of the cascaded Q-networks led to better

performance. Algorithm 5 provides complete details on CDQN for listwise AGILE.

3.5 Environments

We evaluate AGILE on three varying action set scenarios requiring learning action interdepen-

dence: (i) shortcut actions in goal-reaching, which can shorten the optimal path to the goal in a 2D

Grid World when available, (ii) co-dependent actions in tool reasoning, which require other tools to

activate their functionality, and (iii) list-actions in simulated and real-data recommender systems

where the cumulative list affects the user response. Figure 3.3 provides an overview of the tasks, the

base and varying action space, and an illustration of the action interdependence. More environment

details such as tasks, action representations, and data collection are present in Appendix A.

3.5.1 Dig Lava Grid Navigation

We modify the grid world environment (Chevalier-Boisvert et al., 2018) where an agent navigates

a 2D maze with two lava rivers to reach a goal. The agent always has access to four direction

movements and a turn-left skill (Figure 3.5). There are two additional actions randomly sampled

out of four special skills: turn-right, step-forward, dig-orange-lava and dig-pink-lava. If the agent

enters the lava, it will die unless it uses the matching dig-lava skill to remove the lava in the

immediately next timestep. Thus, when available, dig-lava skills can be used to create shortcut

paths to the goal and receive a higher reward. We use PPO for all experiments in this environment.

3.5.2 Chain REAction Tool Environment: CREATE

The CREATE environment (Jain et al., 2020) is a challenging physical reasoning benchmark

with a large variety of tools as actions, supporting evaluation with unseen actions. The objective is

to sequentially place tools to help push the red ball towards the green goal. An action is a hybrid of a

discrete tool-selection from varying toolsets and a continuous (x, y) coordinate of tool-placement on
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Figure 3.3: Environment Setup. (Left) In Grid World, the red agent must avoid orange and pink
lava to reach the green goal. The dig-lava skills enable shortcut paths to the goal when available.
(Middle) In CREATE, tools are selected and placed sequentially to push the red ball to the green
goal. General tools (cannon, fan) require activator tools (fire, electric) to start functioning. The
choice of general tools depends on what activators are available and vice-versa. (Right) In simulated
and real-data recommender systems, the agent selects a list of items. Lists with coherent categories
and complementary sub-categories improve user satisfaction (e.g., click likelihood).

the screen. An auxiliary policy network decides the tool-placement based on the effective state s′ as

input, following Jain et al. (2020). To emphasize action relations, we augment the environment with

special activator tools (e.g., fire) that general tools (e.g., cannon) need in contact to be functional.

Thus, a general tool can be useful only if its activator is also available. Action representations of

general tools encode their physical behavior (Jain et al., 2020), while those of activator tools are

one-hot vectors. We train AGILE and the auxiliary policy jointly with PPO.

3.5.3 Recommender Systems

Recommender system (RecSys) is a natural application of varying action space RL — for

instance, news articles or videos to recommend are updated daily. Action interdependence is

distinctly apparent in the case of listwise actions. A recommended list of diverse videos is more

likely to get a user click than videos about the same thing (Zhou et al., 2010). We experiment with

the listwise metric of Complementary Product Recommendation (CPR) (Hao et al., 2020).
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Complementary Product Recommendation (CPR) is a scenario where user response for a

recommended list is more favorable if the list is diverse at a low level but coherent at a high level.

In our experiments, each item has a primary category (such as shirt or pant) and a subcategory (such

as its color). We define the CPR of an item-list as, Entropy of subcategory
Entropy of category . This encourages diversity in

subcategories (colors) and similarity in the main category (all shirts). We maximize CPR (i) implicit

in the click-behaviors of simulated users and (ii) explicit in the reward computed on real-world data.

Simulated Recommender System: RecSim. We use RecSim (Ie et al., 2019a) to simulate

user interactions and extend it to the listwise recommendation task. We have a base action set of

250 train and 250 test items, and 20 items are sampled as actions for the agent in each episode. The

agent recommends a list-action of size six at each step. We assume a fully observable environment

with the state as the user preference vector and the action representations as item characteristics.

The objective implicitly incorporates CPR by boosting the probability of a user clicking any item

proportional to the list CPR. The implicit CPR objective exemplifies realistic scenarios where the

entire list influences user response. One way to optimize CPR is to identify the most common

category in the available action set and recommend most items from that category. Such counting

of categories requires relational reasoning over all items available in the action set. We train

CDQN-based models to maximize the number of clicks in a user session.

Real-Data recommender system. We collect four-week interaction data in a listwise online

campaign recommender system. Users are represented by attributes such as age, occupation, and

localities. Item attributes include text features, image features, and reward points of campaigns. We

train a VAE (Kingma and Welling, 2013) to learn item representations. We create a representative

RL environment by training two click-estimation models using data from the first two weeks for

training and the last two weeks for evaluation. The training environment consists of 68,775 users

and 57 items, while testing has 82,445 users and 58 items, with an overlap of 30 items. The

reward function combines the user-click and CPR value of the list. The explicit CPR reward is a

representative scenario for when the designer has listwise objectives in addition to user satisfaction.

We train with CDQN and report the test reward.
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3.6 Experiments

We design experiments to answer the following questions in the context of RL with varying

action space: (1) How effective is AGILE compared to prior works that treat actions independently

or assume a fixed action set? (2) How effective are AGILE’s relational action representations for

computing action set summary and action utility score? (3) Does the attention in AGILE represent

meaningful action relations? (4) Is attention necessary in the graph network of AGILE? (5) Is

learning state-dependent action relations important for solving general varying action space tasks?

3.6.1 Effectiveness of AGILE in Varying Action Spaces

We evaluate baselines from prior work in varying action spaces, which either assume a fixed ac-

tion set or act independently of other actions. We ablate the importance of relational action features

by replacing them with original action representations and computing the action set summary in dif-

ferent ways. Refer to the Appendix for detailed comparisons (C.1) and visualizations (Figure B.10)

of all baselines and ablations, hyperparameter-tuning (D.2,D.3) and network designs(C.3).

Baselines.

• Mask-Output (No action representations, No input action set): Assumes a fixed action

space output, Q-values or policy probabilities are masked out for unavailable actions, follows

SAS-MDP works: Boutilier et al. (2018); Chandak et al. (2020a); Huang and Ontañón (2020).

• Mask-Input-Output (No action representations): Augments Mask-Output with action set

input via a binary availability vector: having 1s at available action indices and 0s otherwise.

• Utility-Policy (No input action set): Jain et al. (2020) propose a parallel architecture to com-

pute each action’s utility using action representations, but ignores any action interdependence.

• Simple DQN (No cascade, No input action set): A non-cascaded DQN baseline for listwise

RL that selects top-K items instead of reasoning about the entire list. Thus, it ignores two

action interdependences: (i) on other items in the list and (ii) on other available actions.
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Figure 3.4: We evaluate AGILE against baselines on training actions (top) and unseen testing
actions (bottom). Generalization is enabled by continuous action representations, except Grid World
(Appendix A). All architectures share the same RL algorithm (PPO or CDQN). The results are
averaged over 5 seeds, with seed variance shown with shading. AGILE outperforms all baselines
that assume a fixed action set (cannot generalize) or treat actions independently (suboptimal).

Ablations.

• Summary-LSTM: A Bi-LSTM (Huang et al., 2015) encodes the list of action representations.

• Summary-Deep Set: A deep set architecture (Zaheer et al., 2017a) with mean pooling is

used to aggregate the available action representation list.

• Summary-GAT: The relational action representations output from the GAT in AGILE is used

only for the action set summary but not for the utility network. This does not scale to tasks

with many diverse inter-action relations because the summary vector has a limited modeling

capacity.

Results.

Baselines: Figure 3.4 shows baseline results on train and test actions. Grid world has no unseen

actions, so we report only train reward. Grid World: all methods learn to reach the goal with

perfect success but achieve different rewards due to the length of the path. The methods that do

not take action set as input, Mask-Output and Utility Policy, resort to the safe strategy of going
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Figure 3.5: Test performance of AGILE against ablations with utility network using only action
set summary, but not the relational action representations. The difference is most pronounced in
CREATE, where there are several diverse action (tool) relations for each action decision.

around the lava rivers (Figure 3.6(b)) because the agent must enter the lava and then dig it to take

a shortcut. So before taking the move-right action into lava, the agent must know whether that

dig-lava skill is available. CREATE: Mask baselines do not support generalization due to fixed

action set assumption and train poorly as they do not exploit the structure in action representations.

Utility policy outperforms the other baselines since it can exploit learning with action representations.

Finally, AGILE outperforms all the baselines, demonstrating that relational knowledge of other

available actions is crucial for an optimal policy. RecSim and Real RecSys: result trends are

consistent with CREATE, but less pronounced for Real RecSys. Additionally, DQN is worse than

CDQN-based architectures because the top-K greedy list-action ignores intra-list dependence.

Ablations: Figure 3.5 shows ablation results on test actions. Grid World: all ablations utilize

the action set summary as input, aggregated via different mechanisms. Thus, they can identify

which dig-lava skills are available and enter lava accordingly to create shortcuts. In such small

action spaces with simple action relations, summary-ablations are on par with AGILE. This trend

also holds for RecSim and Real RecSys, where the summary can find the most common category

and its items are then selected to maximize CPR (e.g., Figure 3.6(c)). Therefore, we observe only

5− 20% gains of AGILE over the ablations. To test the consistency of results, we further evaluate

two more RecSim tasks. (i) Direct CPR: the agent receives additional explicit CPR metric reward

on top of click/no-click reward (Sec. B.3), and (ii) pairing environment: the task is to recommend

pairs of associated items based on predefined pairings (Sec. B.4). We reproduce the trend that

AGILE >= ablations. However, the difference is most pronounced (30− 50%) in CREATE, where

40



t = 0
Place Spring

t = 1
Place Trampoline

(a) CREATE (b) Grid World

Summary-GAT (Ours) Utility Policy

Attention Map: step-right attends to dig-pink-lavaAttention Map: Spring and Trampoline attend to each other

(c) RecSim

User
Click

Action:
Recommended List

1

7 27777 SKIP

77 27777

727777

t=2

t=3

t=1

AGILE (Ours)

7

Candidate Set: Category Distribution

2

1

4

5

8

69

7 7 7

7 7 7 7

2

2

1 6

4

Utility Policy

SKIP

t=2

t=3

t=1

SKIP

8 74 4 7 7

8 74 4 7 7

78 2 1 7 7

8

Figure 3.6: Qualitative Analysis. (a,b) The attention maps from GAT show the reasoning behind an
action decision. The nodes show available actions, and edge widths are proportional to attention
weight (thresholded for clarity). (b) Utility Policy learns the same suboptimal solution for any given
action set, while Summary-GAT (like AGILE) adapts to the best strategy by exploiting dig-skills.
(c) AGILE can optimize CPR by identifying the most common item category available, unlike
Utility Policy. We provide qualitative video results for Grid World and CREATE on the project
page https://sites.google.com/view/varyingaction.

each action decision relies on relations between various tools and activators. In Figure 3.6(a), the

decision of Spring relates with all other tools that spring can activate, and the decision of trampoline

relates with its activator, Spring. In ablations, the action set summary must model all the complex

and diverse action relations with a limited representation capacity. In contrast, the relational action

representations in AGILE model each action’s relevant relations, and the summary models the

global relations.

3.6.2 Does the Attention in AGILE Learn Meaningful Action Relations?

In Figure 3.6, we analyze the agent performance qualitatively. (a) In CREATE, at t = 0, the

selected action spring in AGILE’s GAT attends to various other tools, especially the tools that get

activated with spring, such as trampoline. At t = 1, the trampoline tool is selected with strong

attention on spring. This shows that for selecting the trampoline, the agent checks for its activator,

41

https://sites.google.com/view/varyingaction


0 2 4 6 8
Environment steps (1M)

0

16

32

48

64

Re
wa

rd
Dig Lava Grid World

AGILE
AGILE-GCN
AGILE-Only-Action

0 25 50 75 100
Environment steps (1M)

0

10

20

30

40

Te
st

 S
uc

ce
ss

 R
at

e 
(%

)

CREATE

0 2500 5000 7500 10000
Epoch

0

2

4

6

8

Te
st

 E
pi

so
de

 C
lic

ks

RECSIM

0 1000 2000 3000 4000 5000
Epoch

7

8

9

10

11

12

13

Te
st

 R
ew

ar
d

Real-Data Recommender System

['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33', 
'#a65628', '#f781bf', '#999999', '#e41a1c’] 

AGILE (Ours) Utility Policy Mask-Input-Output Mask-Output

AGILE (Ours) Summary-GAT Summary-LSTM Summary-Deep Set

AGILE (Ours) AGILE-GCN AGILE-Only Action

Figure 3.7: Analyses. (i) GAT v/s GCN (ii) state-action relations v/s action-only relations.

spring, to ensure that it is possible to place spring before or after the trampoline. (b) In Grid World,

we visualize the inter-action attention in Summary-GAT’s summarizer. We consider the case where

both dig − lava skills are available. The agent goes right, digs the orange lava, and is about to enter

the pink lava. At this point, the Right action attends with a large weight to the Dig − Pink skill,

checking for its presence before making an irreversible decision of entering the lava. In contrast, the

Utility Policy always follows the safe suboptimal path as it is blind to the knowledge of dig-skills

before entering lava. (c) In RecSim, we observe that the agent can maximize the CPR score by

selecting 5 out of 6 items in the list from the same primary category. In contrast, Utility Policy

cannot determine the most common available category and is unable to maximize CPR.

3.6.3 Additional Analyses

Importance of Attention in the Graph Network. We validate the choice of using graph

attention network as the relational architecture. In Figure 3.7, we compare GAT against a graph

convolutional network (GCN) (Kipf and Welling, 2016) to act over AGILE’s action graph. We

observe that GCN achieves optimal performance for the grid world and RecSys tasks. GCN can

learn simple action relations even though the edge weights are not learned. However, it suffers

in CREATE and RecSim-pairing (Figure B.9), where the action relations are diverse and plenty.

Moreover, we believe that the attention in GAT makes the graph sparse to ease RL training, which

in contrast, is difficult in a fully-connected GCN.
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Importance of state-dependent learning of action relations. We evaluate a version of AGILE

where the GAT only receives action representations as input and no state. Thus, the action relations

are inferred independently of the state. Figure 3.7 shows a drop in performance for Grid World and

CREATE, where the relevant action relations change based on the state. However, this effect is less

apparent on RecSim because CPR requires only knowing the most common category, independent

of user state.

3.7 Conclusion

In this chapter, we present AGILE, a policy architecture for leveraging action relations for

reinforcement learning with varying action spaces. AGILE builds a complete graph of available

actions’ representations and utilizes a graph attention network to learn the interdependence between

actions. We demonstrate that using the knowledge of available actions is crucial for optimal

decision-making and relational action features ease learning in four environments, including a

real-data recommendation task.

43



Part II

Near-optimal Action in Non-convex Q-functions
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Chapter 4

Optimizing Action in Non-Convex Q-functions via Successive

Actors

Figure 4.1: An actor µ trained with gradient ascent on a challenging Q-landscape gets stuck in local
optima. Our approach learns a sequence of surrogates Ψi of the Q-function that successively prune
out the Q-landscape below the current best Q-values, resulting in fewer local optima. Thus, the
actors νi trained to ascend on these surrogates produce actions with a more optimal Q-value.

4.1 Introduction

In sequential decision-making, the goal is to build an optimal agent that maximizes the expected

cumulative returns (Sondik, 1971; Littman, 1996). Value-based reinforcement learning (RL)
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approaches learn each action’s expected returns with a Q-function and maximize it (Sutton and

Barto, 1998). However, in continuous action spaces, evaluating the Q-value of every possible

action is impractical. This necessitates an actor to globally maximize the Q-function and efficiently

navigate the vast action space (Grondman et al., 2012). But this is particularly challenging in tasks

like restricted locomotion, where the non-convex Q-function has many local optima (Figure 4.2).

Can we build an actor architecture to find near-optimal actions in such complex Q-landscapes?

Prior methods perform a search over the action space with evolutionary algorithms like CEM (De Boer

et al., 2005; Kalashnikov et al., 2018; Shao et al., 2022), but this requires numerous costly re-

evaluations of the Q-function. To avoid this, deterministic policy gradient (DPG) algorithms (Silver

et al., 2014), such as DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) train a parame-

terized actor with gradient ascent to output actions to maximize the Q-function locally.

A significant challenge arises in environments where the Q-function has many local optima, such

as Figure 4.2. An actor trained via gradient ascent may converge to a local optimum with a much

lower Q-value than the global maximum. This leads to suboptimal decisions during deployment and

sample-inefficient training, as the agent fails to explore high-reward trajectories (Kakade, 2003).

To improve actors’ ability to identify optimal actions in complex, non-convex Q-function

landscapes, we propose the Successive Actors for Value Optimization (SAVO) algorithm. SAVO

leverages two key insights: (1) combining multiple policies using an argmax on their Q-values to
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construct a superior policy (§4.4.1), and (2) simplifying the Q-landscape by excluding lower Q-value

regions based on high-performing actions, inspired by tabu search (Glover, 1990), thereby reducing

local optima and facilitating gradient-ascent (§4.4.2). By iteratively applying these strategies

through a sequence of simplified Q-landscapes and corresponding actors, SAVO progressively finds

more optimal actions.

We evaluate SAVO in complex Q-landscapes such as (i) continuous control in dexterous manip-

ulation (Rajeswaran et al., 2017) and restricted locomotion (Todorov et al., 2012), and (ii) discrete

decision-making in the large action spaces of simulated (Ie et al., 2019a) and real-data recommender

systems (Harper and Konstan, 2015), and gridworld mining expedition (Chevalier-Boisvert et al.,

2018). We reframe large discrete action RL to continuous action RL following Van Hasselt and

Wiering (2009) and Dulac-Arnold et al. (2015), where a policy acts in continuous actions, such as

the feature space of recommender items (Figure 4.2), and the nearest discrete action is executed.

Our key contribution is SAVO, an actor architecture to find better optimal actions in complex

non-convex Q-landscapes (Section 4.4). In experiments, we visualize how SAVO’s successively

learned Q-landscapes have fewer local optima (Section 4.6.2), making it more likely to find better

action optima with gradient ascent. This enables SAVO to outperform alternative actor architectures,

such as sampling more action candidates (Dulac-Arnold et al., 2015) and learning an ensemble of

actors (Osband et al., 2016) (Section 4.6.1) across continuous and discrete action RL.

4.2 Related Work

Q-learning (Watkins and Dayan, 1992; Tesauro et al., 1995) is a fundamental value-based RL

algorithm that iteratively updates Q-values to make optimal decisions. Deep Q-learning (Mnih et al.,

2015) has been applied to tasks with manageable discrete action spaces, such as Atari (Mnih et al.,

2013; Espeholt et al., 2018; Hessel et al., 2018), traffic control (Abdoos et al., 2011), and small-scale

recommender systems (Chen et al., 2019a). However, scaling Q-learning to continuous or large

discrete action spaces requires specialized techniques to efficiently maximize the Q-function.
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Analytical Q-optimization. Analytical optimization of certain Q-functions, such as wire fitting

algorithm (Baird and Klopf, 1993) and normalized advantage functions (Gu et al., 2016; Wang

et al., 2019), allows closed-form action maximization without an actor. Likewise, Amos et al.

(2017) assume that the Q-function is convex in actions and use a convex solver for action selection.

In contrast, the Q-functions considered in this paper are inherently non-convex in action space,

making such an assumption invalid. Generally, analytical Q-functions lack the expressiveness

of deep Q-networks (Hornik et al., 1989), making them unsuitable to model complex tasks like

in Figure 4.2.

Evolutionary Algorithms for Q-optimization. Evolutionary algorithms like simulated anneal-

ing (Kirkpatrick et al., 1983), genetic algorithms (Srinivas and Patnaik, 1994), tabu search (Glover,

1990), and the cross-entropy method (CEM) (De Boer et al., 2005) are employed in RL for global

optimization (Hu et al., 2007). Approaches such as QT-Opt (Kalashnikov et al., 2018; Lee et al.,

2023; Kalashnikov et al., 2021a) utilize CEM for action search, while hybrid actor-critic methods

like CEM-RL (Pourchot and Sigaud, 2018), GRAC (Shao et al., 2022), and Cross-Entropy Guided

Policies (Simmons-Edler et al., 2019) combine evolutionary techniques with gradient descent. De-

spite their effectiveness, CEM-based methods require numerous Q-function evaluations and struggle

with high-dimensional actions (Yan et al., 2019). In contrast, SAVO achieves superior performance

with only a few (e.g., three) Q-evaluations, as demonstrated in experiments (Section 4.6).

Actor-Critic Methods with Gradient Ascent. Actor-critic methods can be on-policy (Williams,

1992; Schulman et al., 2015; 2017b) primarily guided by the policy gradient of expected returns,

or off-policy (Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018; Chen et al., 2020)

primarily guided by the Bellman error on the critic. Deterministic Policy Gradient (DPG) (Silver

et al., 2014) and its extensions like DDPG Lillicrap et al. (2015), TD3 (Fujimoto et al., 2018) and

REDQ (Chen et al., 2020) optimize actors by following the critic’s gradient. Soft Actor-Critic

(SAC) (Haarnoja et al., 2018) extends DPG to stochastic actors. However, these methods can

get trapped in local optima within the Q-function landscape. SAVO addresses this limitation by

enhancing gradient-based actor training. This issue also affects stochastic actors, where a local
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optimum means an action distribution (instead of a single action) that fails to minimize the KL

divergence from the Q-function density fully, and is a potential area for future research.

Sampling-Augmented Actor-Critic. Sampling multiple actions and evaluating their Q-values

is a common strategy to find optimal actions. Greedy actor-critic (Neumann et al., 2018) samples

high-entropy actions and trains the actor towards the best Q-valued action, yet remains susceptible

to local optima. In large discrete action spaces, methods like Wolpertinger (Dulac-Arnold et al.,

2015) use k-nearest neighbors to propose actions, requiring extensive Q-evaluations on up to 10%

of total actions. In contrast, SAVO efficiently generates high-quality action proposals through

successive actor improvements without being confined to local neighborhoods.

Ensemble-Augmented Actor-Critic. Ensembles of policies enhance exploration by providing

diverse action proposals through varied initializations (Osband et al., 2016; Chen and Peng, 2019;

Song et al., 2023; Zheng12 et al., 2018; Huang et al., 2017). The best action is selected based

on Q-value evaluations. Unlike ensemble methods, SAVO systematically eliminates local optima,

offering a more reliable optimization process for complex tasks (Section 4.6).

4.3 Problem Formulation

Our work tackles the effective optimization of the Q-value landscape in off-policy actor-critic

methods for continuous and large-discrete action RL. We model a task as a Markov Decision

Process (MDP), defined by a tuple {S,A, T , R, γ} of states, actions, transition probabilities, reward

function, and a discount factor. The action space A⊆RD is a D-dimensional continuous vector

space. At every step t in the episode, the agent receives a state observation st ∈ S from the

environment and acts with at ∈ A. Then, it receives the new state after transition st+1 and a reward

rt. The objective of the agent is to learn a policy π(a | s) that maximizes the expected discounted

reward, maxπ Eπ [
∑

t γ
trt] .
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4.3.1 Deterministic Policy Gradients (DPG)

DPG (Silver et al., 2014) is an off-policy actor-critic algorithm that trains a deterministic

actor µϕ to maximize the Q-function. This happens via two steps of generalized policy iteration,

GPI (Sutton and Barto, 1998): policy evaluation estimates the Q-function (Bellman, 1966) and policy

improvement greedily maximizes the Q-function. To approximate the argmax over continuous

actions in Eq. (4.2), DPG proposes the policy gradient to update the actor locally in the direction of

increasing Q-value,

Qµ(s, a) = r(s, a) + γEs′ [Qµ(s′, µ(s′))] , (4.1)

µ(s) = argmax
a

Qµ(s, a), (4.2)

∇ϕJ(ϕ) = Es∼ρµ
[
∇aQ

µ(s, a)
∣∣
a=µ(s)

∇ϕµϕ(s)
]
. (4.3)

DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) made DPG compatible with deep

networks via techniques like experience replay and target networks to address non-stationarity

of online RL, twin critics to mitigate overestimation bias, target policy smoothing to prevent

exploitation of errors in the Q-function, and delayed policy updates so critic is reliable to provide

actor gradients.

4.3.2 The Challenge of an Actor Maximizing a Complex Q-landscape

DPG-based algorithms train the actor following the chain rule in Eq. (4.3). Specifically, its

first term,∇aQ
µ(s, a) involves gradient ascent in Q-versus-a landscape. This Q-landscape is often

highly non-convex (Figures 4.2, 4.3) and non-stationary because of its own training. This makes the

actor’s output µ(s) get stuck at suboptimal Q-values, thus leading to insufficient policy improvement

in Eq. (4.2). We can define the suboptimality of the µ w.r.t. Qµ at state s as

∆(Qµ, µ, s) = argmax
a

Qµ(s, a)−Qµ(s, µ(s)) ≥ 0. (4.4)
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Suboptimality in actors is a crucial problem because it leads to (i) poor sample efficiency by

slowing down GPI, and (ii) poor inference performance even with an optimal Q-function, Q∗

as seen in Figure 4.3 where a TD3 actor gets stuck at a locally optimum action a0 in the final

Q-function.

Figure 4.3: Non-convex Q-landscape in
Inverted-Pendulum-Restricted leads to a
suboptimally converged actor.

This challenge fundamentally differs from the well-

studied field of non-convex optimization, where non-

convexity arises in the loss function w.r.t. the model

parameters (Goodfellow, 2016). In those cases, stochas-

tic gradient-based optimization methods like SGD and

Adam (Kingma and Ba, 2014) are effective at finding

acceptable local minima due to the smoothness and high

dimensionality of the parameter space, which often al-

lows for escape from poor local optima (Choromanska

et al., 2015). Moreover, overparameterization in deep

networks can lead to loss landscapes with numerous

good minima (Neyshabur et al., 2017).

In contrast, our challenge involves non-convexity in the Q-function w.r.t. the action space. The

actor’s task is to find, for every state s, the action a that maximizes Qµ(s, a). Since the Q-function

can be highly non-convex and multimodal in a, the gradient ascent step∇aQ
µ(s, a) used in Eq. (4.3)

may lead the actor to converge to suboptimal local maxima in action space. Unlike parameter space

optimization, the actor cannot rely on high dimensionality or overparameterization to smooth out the

optimization landscape in action space because the Q-landscape is determined by the task’s reward.

Furthermore, the non-stationarity of the Q-function during training compounds this challenge.

These properties make our non-convex challenge unique, requiring a specialized actor to navigate

the complex Q-landscape.

Tasks with several local optima in the Q-function include restricted inverted pendulum as shown

in Figure 4.3, where certain regions of the action space are invalid or unsafe, leading to a rugged
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Q-landscape (Florence et al., 2022). Dexterous manipulation exhibits discontinuous behaviors like

inserting a precise peg in place with a small region of high-valued actions (Rajeswaran et al., 2017)

and surgical robotics have a high variance in Q-values of nearby motions (Barnoy et al., 2021).

Large Discrete Action RL Reframed as Continuous Action RL. We discuss another practical

domain where non-convex Q-functions are present. In large discrete action tasks like recommender

systems (Zhao et al., 2018; Zou et al., 2019; Wu et al., 2017), a common approach (Van Hasselt

and Wiering, 2009; Dulac-Arnold et al., 2015) is to use continuous representations of actions as

a medium of decision-making. Given a set of actions, I = {I1, . . . ,IN}, a predefined module

R : I → A assigns each I ∈ I to its representation R(I ), e.g., text embedding of a given

movie (Zhou et al., 2010). A continuous action policy π(a | s) is learned in the action representation

space, with each a ∈ A converted to a discrete action I ∈ I via nearest neighbor,

fNN(a) = arg min
Ii∈I
∥R(Ii)− a∥2.

Importantly, the nearest neighbor operation creates a challenging piece-wise continuous Q-function

with suboptima at various discrete points as shown in Figure 4.2 (Jain et al., 2021; 2020).

4.4 Approach: Successive Actors for Value Optimization (SAVO)

Our objective is to design an actor architecture that efficiently discovers better actions in complex,

non-convex Q-function landscapes. We focus on gradient-based actors and introduce two key ideas:

1. Maximizing Over Multiple Policies: By combining policies using an argmax over their

Q-values, we can construct a policy that performs at least as well as any individual policy

(Section 4.4.1).

2. Simplifying the Q-Landscape: Drawing inspiration from tabu search (Glover, 1990), we

propose using actions with good Q-values to eliminate or “tabu” the Q-function regions with

lower Q-values, thereby reducing local optima and facilitating gradient-based optimization

(Section 4.4.2).
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4.4.1 Maximizer Actor over Action Proposals

We first show how additional actors can improve DPG’s policy improvement step. Given a

policy µ being trained with DPG over Q, consider k additional arbitrary policies ν1, . . . , νk, where

νi : S → A and let ν0 = µ. We define a maximizer actor µM for ai = νi(s) for i = 0, 1, . . . , k,

µM(s) := argmax
a∈{a0,a1,...,ak}

Q(s, a), (4.5)

Here, µM is shown to be a better maximizer of Q(s, a) in Eq. (4.2) than µ ∀s :

Q(s, µM(s)) = max
ai

Q(s, ai) ≥ Q(s, a0) = Q(s, µ(s)).

Therefore, by policy improvement theorem (Sutton and Barto, 1998), V µM (s) ≥ V µ(s), proving

that µM is better than a single µ for a given Q. Appendix A proves the following theorem by

showing that policy evaluation and improvement with µM converge.

Theorem 4.4.1 (Convergence of Policy Iteration with Maximizer Actor). A modified policy iteration

algorithm where ν0 = µ is the current policy learned with DPG and maximizer actor µM defined in

Eq. (4.5), converges in the tabular setting to the optimal policy.

This algorithm is valid for arbitrary ν1, . . . νk. We experiment with ν’s obtained by sampling

from a Gaussian centered at µ or ensembling on µ to get diverse actions. However, in high-

dimensionality, randomness around µ is not sufficient to get action proposals to significantly

improve µ.

4.4.2 Successive Surrogates to Reduce Local Optima

To train additional policies νi that can improve upon µM , we introduce surrogate Q-functions

with fewer local optima, inspired by the principles of tabu search (Glover, 1990), which is an

optimization technique that uses memory structures to avoid revisiting previously explored inferior

solutions, thereby enhancing the search for optimal solutions. Similarly, our surrogate functions act
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Figure 4.4: SAVO Architecture. (left) Q-network is unchanged. (center) Instead of a single
actor, we learn a sequence of actors and surrogate networks connected via action predictions.
(right) Conditioning on previous actions is done with the help of a deep-set summarizer and FiLM
modulation.

as memory mechanisms that “tabu” certain regions of the Q-function landscape deemed suboptimal

based on previously identified good actions. Given a known action a†, we define a surrogate function

that elevates the Q-values of all inferior actions to Q(s, a†), which serves as a constant threshold:

Ψ(s, a; a†) = max{Q(s, a), Q(s, a†)}. (4.6)

Extending this idea, we define a sequence of surrogate functions using the actions from previous

policies. Let a<i = {a0, a1, . . . , ai−1}. The i-th surrogate function is:

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
Q(s, aj)

}
. (4.7)

Theorem 4.4.2. For a state s ∈ S and surrogates Ψi defined as above, the number of local optima

decreases with each successive surrogate:

Nopt(Q(s, ·)) ≥ Nopt(Ψ1(s, ·; a0)) ≥ · · · ≥ Nopt(Ψk(s, ·; a<k)),

where Nopt(f) denotes the number of local optima of function f over A.

Proof Sketch. As Ψi→ Ψi+1, the anchor Q-value in Eq. (4.7) weakly increases, maxj<iQ(s, aj) ≤

maxj<(i+1) Q(s, aj), thus, eliminating more local minima below it (proof in Appendix B.1).
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4.4.3 Successive Actors for Surrogate Optimization

To effectively reduce local optima using the surrogates Ψ1, . . . ,Ψk, we design the policies νi

to optimize their respective surrogates Ψi(s, a; a<i). Each νi focuses on regions where Q(s, a) ≥

maxj<iQ(s, aj), allowing it to find better optima than previous policies. The actor νi is conditioned

on previous actions {a0, . . . , ai−1}, summarized using deep sets (Zaheer et al., 2017b) (Figure 4.4).

The maximizer actor µM (Eq. (4.5)) selects the best action among all proposals.

We train each actor νi using gradient ascent on its surrogate Ψi, similar to DPG:

∇ϕiJ(ϕi) = Es∼ρµM
[
∇aΨi(s, a; a<i)

∣∣
a
∇ϕiνi(s; a<i)

]
. (4.8)

4.4.4 Approximate Surrogate Functions

The surrogates Ψi have zero gradients when Q(s, a) < τ , where τ = maxj<iQ(s, aj),

∇aΨi(s, a; a<i) =


∇aQ

µM (s, a) if Q(s, a) ≥ τ,

0 if Q(s, a) < τ.

This means the policy gradient only updates νi when Q(s, a) ≥ τ , which may slow down learning.

To address this issue, we ease the gradient flow by learning a smooth lossy approximation Ψ̂i of Ψi.

We approximate each surrogate Ψi with a neural network Ψ̂i. This approach leverages the

universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) and benefits from empirical

evidence that deep networks can effectively learn non-smooth functions (Imaizumi and Fukumizu,

2019). The smooth surrogate Ψ̂i enables continuous gradient propagation, which is essential for

optimizing the actors νi. We train Ψ̂i to approach Ψi by minimizing the mean squared error at two

critical points:

1. µ̃M(s) is the action selected by the current maximizer actor µM , having a high Q-value,

2. νi(s; a<i) is the action proposed by the i-th actor conditioned on previous actions a<i,
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Figure 4.5: In restricted inverted pendulum, given an anchor Q(a0) value, Ψ (left) has some zero-
gradient surfaces which Ψ̂ (right) approximately follows while allowing non-zero gradients towards
high Q-values to flow into its actor ν.

Lapprox = Es∼ρµM

 ∑
a∈{µ̃M (s),νi(s;a<i)}

∥∥∥Ψ̂i(s, a; a<i)−Ψi(s, a; a<i)
∥∥∥2
2

 . (4.9)

This design ensures Ψ̂i is updated on high Q-value actions, and thus, the landscape is biased

towards those values. This makes the gradient flow trend in the direction of high Q-values. So, even

when ai from νi falls in a region of zero gradients for Ψi, in Ψ̂i would provide a policy gradient in a

higher Q-value direction if it exists. Figure 4.5 shows Ψ1 and Ψ̂1 in restricted inverted pendulum.

4.4.5 SAVO-TD3 Algorithm and Design Choices

While the SAVO architecture (Figure 4.4) can be integrated with any off-policy actor-critic

algorithm, we choose to implement it with TD3 (Fujimoto et al., 2018) due to its compatibility

with continuous and large-discrete action RL (Dulac-Arnold et al., 2015). Using the SAVO actor

in TD3 enhances its ability to find better actions in complex Q-function landscapes. Algorithm 3

56



Algorithm 3 SAVO-TD3

Initialize Q,Q2, µ, Ψ̂1, . . . , Ψ̂k, ν1, . . . , νk
Initialize target networks Q′ ← Q, Q′

2 ← Qtwin

Initialize replace buffer B.
for timestep t = 1 to T do

Select Action:
a0 = µ(s), ai = νi(s; a<i) for i = 1, ..., k
Add perturbations with OU Noise âi = ai + ϵi
Evaluate µM(s) = argmaxa∈{â0,...,âk}Q(s, a)
Exploration action a = µ̃M(s) = µM(s) + ϵ
Observe reward r and new state s′

Store (s, a, {âi}Ki=0, r, s
′) in B

Update:
Sample N transitions (s, a, {âi}Ki=0, r, s

′) from B
Compute target action ã = µM(s′)
Update Q,Q2 ← r + γmin{Q′(s′, ã), Q′

2(s
′, ã)}

Update Ψ̂i with Eq. 4.9 ∀i = 1, . . . k
Update actor µ with Eq. 4.3
Update actor νi with Eq. 4.8 ∀i = 1, . . . k

end for

depicts SAVO (highlighted) applied to TD3. We discuss design choices in SAVO and validate them

in Section 4.6.

1. Removing policy smoothing: We eliminate TD3’s policy smoothing, which adds noise

to the target action ã during critic updates. In non-convex landscapes, nearby actions may have

significantly different Q-values and noise addition might obscure important variations.

2. Exploration in Additional Actors: Added actors νi explore the surrogate landscapes for

high-reward regions by adding OU (Lillicrap et al., 2015) or Gaussian (Fujimoto et al., 2018) noise

to their actions.

3. Twin Critics for Surrogates: To prevent overestimation bias in surrogates Ψ̂i, we use twin

critics to compute the target of each surrogate, mirroring TD3.

4. Conditioning on Previous Actions: Actors νi and surrogates Ψ̂i are conditioned on preceding

actions via FiLM layers (Perez et al., 2018b) as in Figure 4.4.

5. Discrete Action Space Tasks: We apply 1-nearest-neighbor fNN before Q-value evaluation

to ensure the Q-function is only queried at in-distribution actions.
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SAVO-TD3 employs SAVO actor to systematically reduce the local optima in its base algorithm

TD3. We empirically validate the proposed design improvements.

4.5 Environments

We evaluate SAVO on discrete and continuous action space environments with challenging

Q-value landscapes. More environment details are presented in Appendix C and Figure C.1.

Locomotion in Mujoco. We evaluate on MuJoCo (Todorov et al., 2012) environments of

Hopper-v4, Walker2D-v4, Inverted Pendulum-v4, and Inverted Double Pendulum-v4.

Valid Action Space

Original Action Space

Figure 4.6: Restricted Hopper’s 3D visualization
of Action Space.

Locomotion in Restricted Mujoco. We cre-

ate a restricted locomotion suite of the same en-

vironments as in MuJoCo. A hard Q-landscape

is realized via high-dimensional discontinuities

that restrict the action space. Concretely, a set

of predefined hyper-spheres (as shown in Fig-

ure 4.6) in the action space are sampled and set

to be valid actions, while the other invalid ac-

tions have a null effect if selected. The complete

details can be found in Appendix C.3.1.

Adroit Dexterous Manipulation. Ra-

jeswaran et al. (2017) propose manipulation

tasks with a dexterous multi-fingered hand.

Door: In this task, a robotic hand is required to open a door with a latch. The challenge lies

in the precise manipulation needed to unlatch and swing open the door using the fingers. Hammer:

the robotic hand must use a hammer to drive a nail into a board. This task tests the hand’s ability to

grasp the hammer correctly and apply force accurately to achieve the goal. Pen: This task involves

the robotic hand manipulating a pen to reach a specific goal position and rotation. The objective
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is to control the pen’s orientation and position using fingers, which demands fine motor skills and

coordination.

Mining Expedition in Grid World. We develop a 2D Mining grid world environment (Chevalier-

Boisvert et al., 2018) where the agent (Figure C.1) navigates a 2D maze to reach the goal, removing

mines with correct pick-axe tools to reach the goal in the shortest path. The action space includes

navigation and tool-choice actions, with a procedurally-defined action representation space. The

Q-landscape is non-convex because of the diverse effects of nearby action representations.

Simulated and Real-Data Recommender Systems. RecSim (Ie et al., 2019a) simulates

sequential user interactions in a recommender system with a large discrete action space. The agent

must recommend the most relevant item from 10,000 items based on user preference information.

The action representations are simulated item characteristic vectors in simulated and movie review

embeddings in the real-data task based on MovieLens (Harper and Konstan, 2015) for items.

4.6 Experiments

4.6.1 Effectiveness of SAVO in challenging Q-landscapes

We compare SAVO against the following baseline actor architectures, where k = 3:

• 1-Actor (TD3): Conventional single actor architecture which is susceptible to local optima.

• 1-Actor, k samples (Wolpertinger): Gaussian sampling centered on actor’s output. For

discrete actions, we select k-NN discrete actions around the continuous action (Dulac-Arnold

et al., 2015).

• k-Actors (Ensemble): Best Q-value among actions from ensemble (Osband et al., 2016).

• Evolutionary actor (CEM): CEM search over the action space (Kalashnikov et al., 2018).

• Greedy-AC: Greedy Actor Critic (Neumann et al., 2018) trains a high-entropy proposal

policy and primary actor trained from best proposals with gradient updates.

• Greedy TD3: Our version of Greedy-AC with TD3 exploration and update improvements.
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(a) SAVO versus baseline actor architectures.
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(b) SAVO versus ablations of SAVO

Figure 4.7: Aggregate performance profiles using normalized scores over 7 tasks and 10 seeds each.

• SAVO: Our method with k successive actors and surrogate Q-landscapes.

We ablate the crucial components and design decisions in SAVO:

• SAVO - Approximation: removes the approximate surrogates (Section 4.4.4), using Ψi

instead of Ψ̂i.

• SAVO - Previous Actions: removes conditioning on a<i in SAVO’s actors and surrogates.

• SAVO + Action Smoothing: TD3’s policy smoothing (Fujimoto et al., 2018) is used to

compute Q-targets.

• SAVO + Joint Action: trains an actor with a joint action space of 3 × D. The k action

samples are obtained by splitting the joint action into D dimensions. Validates successive

nature of SAVO.

Aggregate performance. We use performance profiles (Agarwal et al., 2021) to aggregate re-

sults across different environments in Figure 4.7a (evaluation mechanism detailed in Appendix G.1).

SAVO consistently outperforms baseline actor architectures like single-actor (TD3) and sampling-

augmented actor (Wolpertinger), showing wide robustness across challenging Q-landscapes. In

Figure 4.7b, SAVO outperforms its ablations, validating each component and design decision.
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Figure 4.8: SAVO against baselines on discrete and continuous tasks. Results over 10 seeds.

Per-environment results. In discrete action tasks, the Q-value landscape is only well-defined

at exact action representations and nearby discrete actions might have very different values (Sec-

tion 4.3.2). This makes the Q-value landscape uneven, with multiple peaks and valleys (Figure 4.2).

For example, actions in Mining Expedition involve both navigation and tool-selection which are

quite different, while RecSim and RecSim-Data have many diverse items to choose from. Methods

like Wolpertinger that sample many actions a local neighborhood perform better than TD3 which

considers a single action (Figure 4.8). However, SAVO achieves the best performance by directly

simplifying the non-convex Q-landscape. In restricted locomotion, there are several good actions

that are far apart. SAVO actors can search and explore widely to optimize the Q-landscape better

than only nearby sampled actions. Figure C.4 ablates SAVO in all 7 tasks and shows that the most

critical features are its successive nature, removing policy smoothing, and approximate surrogates.

4.6.2 Q-Landscape Analysis: Do successive surrogates reduce local optima?

Figure 4.9 visualizes surrogate landscapes in Inverted-Pendulum-Restricted for a given state s.

Successive pruning and approximation smooth the Q-landscapes, reducing local optima. A single

actor gets stuck at a local optimum a0 (left), but surrogate Ψ̂1 uses a0 as an anchor to find a better
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(a) Q(s, a0) (b) Ψ̂1(s, a1; a0) (c) Ψ̂2(s, a2; {a0, a1})

Figure 4.9: SAVO helps a single actor escape the local optimum a0 in the Restricted Inverted
Pendulum Task. Each successive surrogate learns a Q-landscape with fewer local optima and thus is
easier to optimize by its actor.
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Figure 4.10: SAVO improves the sample-efficiency of TD3 on Adroit dexterous manipulation tasks.

optimum a1. The maximizer policy finally selects the highest Q-valued action among a0, a1, a2.

Figure C.12 extends this visualization to Inverted-Double-Pendulum-Restricted. Figure C.11

shows how one actor is sufficient in the convex Q-landscape of unrestricted Inverted-Pendulum-v4.

Figures C.13, C.14 show how Hopper-v4 Q-landscape provides a path to global optimum, while

Hopper-Restricted is non-convex.

4.6.3 Challenging Dexterous Manipulation (Adroit)

In Adroit dexterous manipulation tasks (Door, Pen, Hammer) (Rajeswaran et al., 2017), SAVO

improves sample efficiency of TD3 (Figure 4.10). The non-convexity in Q-landscape likely arises

from nearby actions having high variance outcomes like grasping, missing, dropping, or no impact.
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Figure 4.11: (L) More successive actor-surrogates are better, (R) SAVO v/s single-actor on inference.

4.6.4 Quantitative Analysis: The Effect of Successive Actors and Surrogates

We investigate the effect of increasing the number of successive actor-surrogates in SAVO in

Pendulum (Figure 4.11a) and MineWorld (Figure 4.11b). Additional actor-surrogates significantly

help to reduce severe local optima initially. However, the improvement saturates as the suboptimality

gap reduces.

Next, we show that successive actors are needed because a single actor can get stuck in local

optima even with an optimal Q-function. In Figure 4.11c, we consider a SAVO agent trained to

optimality with 3 actors. When we remove the additional actors, the remaining single-actor agent

resembles TD3 trained to maximize an “optimal” Q-function. However, the significant performance

gap indicates that the single actor could not find optimal actions for the given Q-function.

4.6.5 Does RL with Resets address the issue of Q-function Optimization?

Primacy bias (Nikishin et al., 2022; Kim et al., 2024) occurs when an agent is trapped in

suboptimal behaviors from early training. To mitigate this, methods like resetting parameters and

re-learning from the replay buffer aim to reduce reliance on initial samples. We run TD3 in MineEnv

with either a full-reset or last-layer reset every 200k, 500k, or 1 million iterations. None of these

versions outperformed the original TD3 algorithm without resets. This is because resetting does

not help an actor to navigate the Q-landscape better and can even cause an otherwise optimal actor

to get stuck in a suboptimal solution during retraining. In contrast, the SAVO actor architecture
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Figure 4.12: Reset (primacy bias) does not improve Q-optimization.

specifically addresses the non-convex Q-landscapes, being a more robust method to finding closer

to optimal actions.

4.6.6 Further experiments to validate SAVO

• Unrestricted locomotion. Figure C.3 shows that both SAVO and baselines achieve opti-

mal performance in simple Q-landscapes, confirming effective hyperparameter tuning (Sec-

tion G.4, Section G.3) and indicating that the baselines underperform due to the complexity

introduced in Q-landscapes.

• SAVO orthogonal to SAC. Figure C.5 shows that SAVO+TD3 ¿ SAC ¿ TD3, indicating

that SAC’s stochastic policy does not address non-convexity, but can itself suffer from local

optima (Figure C.6)

• Design Choices. Figure C.8 shows that LSTM, DeepSet, and Transformers are all valid

choices as summarizers of preceding actions a<i in SAVO. Figure C.9 shows that FiLM

conditioning on a<i especially helps for discrete action space tasks but has a smaller effect

in continuous action space. In Figure C.10a, we find Ornstein-Uhlenbeck (OU) noise and

Gaussian noise to be largely equivalent.
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Method GPU Mem. Return Time

TD3 619MB 1107.795 0.062s
SAVO k=3 640MB 2927.149 0.088s
SAVO k=5 681MB 3517.319 0.122s

Table 4.1: Compute v/s Performance Gain (Mujoco)

• Massive Discrete Actions. SAVO outperforms in RecSim with 100k and 500k actions

(Figure C.7).

4.7 Limitations and Conclusion

Introducing more actors in SAVO has negligible influence on GPU memory, but leads to longer

inference time (Table 4.1). However, even for 3 actor-surrogates, SAVO achieves significant

improvements in all our experiments. Further, for tasks with a simple convex Q-landscape, a single

actor does not get stuck in local optima, making the gain from SAVO negligible.

In this chapter, we improve Q-landscape optimization in deterministic policy gradient RL with

Successive Actors for Value Optimization (SAVO) in both continuous and large discrete action

spaces. We demonstrate with quantitative and qualitative analyses how the improved optimization

of Q-landscape with SAVO leads to better sample efficiency and performance.
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Chapter 5

Sharing Actions in Multi-Task Reinforcement Learning via

Q-switch Mixture of Policies

Grasping
Drawer
Handle

Grasping
Door

Handle

𝜋!"#$%"	'(%)

𝜋!"#$%"	*+,-%

𝜋!,,"	'(%)

𝜋!,,"	*+,-%

Selective Behavior Sharing for Policy Training

Approaching 
Tabletop

Figure 5.1: We propose a sample-efficient MTRL framework that selectively shares behaviors by
acting with other task policies for data collection. For example, Drawer Open and Drawer
Close can share behaviors for grasping the drawer handle, while Drawer Open and Door
Close share behaviors for approaching the tabletop.

5.1 Introduction

In multi-task reinforcement learning, each task has something to learn from the others. Consider

a task set where a robot is simultaneously learning to open and close a drawer and a door on a

tabletop, as illustrated in Figure 5.1. These tasks share many similar behaviors, like approaching
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the tabletop or grasping the object handle. While learning to open a drawer, the robot can benefit by

exploring behaviors found rewarding in other related tasks (such as grasping the drawer or door

handle), then incorporating the helpful behaviors into its own policy, instead of randomly exploring

the entire action space. Can we craft a framework to learn from similar behaviors across tasks to

accelerate overall learning?

Most multi-task reinforcement learning (MTRL) methods share task information via policy

parameters (Vithayathil Varghese and Mahmoud, 2020) or data relabeling (Kaelbling, 1993). We

propose a new framework for MTRL: share behaviors between tasks to improve data collection by

employing useful policies from other tasks for more informative training data. This approach offers

a simple, general, and sample-efficient approach that complements existing MTRL methods.

Prior works (Teh et al., 2017; Ghosh et al., 2018) share behaviors between task policies uniformly

by regularizing to one shared distilled policy (Rusu et al., 2015). This introduces a bias towards

the mean behavior and causes negative interference when tasks might require differing optimal

behaviors from the same state. In contrast, reusing other policies for data collection does not

introduce any bias.

We propose selective behavioral policy sharing as a novel and general mechanism to improve

sample efficiency in any MTRL architecture. Our key insight is that behaviors being acquired in

other tasks can help when appropriately selected and shared, as shown in human learners (Tomov

et al., 2021). In the Drawer Open task, while learning to approach the drawer handle, the robot

should share behaviors between the Drawer policies, but avoid Door policies which would lead it to

the wrong object.

The key question with selective behavioral policy sharing is how to identify helpful behaviors

from other policies in a principled way. We propose a principled way of selecting shared behaviors:

a Q-switch Mixture of Policies (QMP). At each state, one policy from a mixture of all policies is

selected to collect data. The Q-switch makes this selection based on which policy best optimizes

the current task’s soft Q-value because that is an estimate of the most helpful behavior for the

current task. We prove that this selection mechanism preserves the convergence guarantees of
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the underlying RL algorithm and potentially improves sample efficiency. Crucially, QMP uses

other tasks’ policies only for data collection, allowing policy training to remain unbiased under any

off-policy RL algorithm.

Our primary contribution is introducing behavioral policy sharing for MTRL as a novel avenue

of information sharing between tasks and addressing the problem of principled selective behavior

sharing. Our proposed framework, Q-switch Mixture of Policies (QMP), can effectively identify

shareable behaviors between tasks and incorporates them to gather more informative training data.

We prove that QMP’s behavior sharing not only preserves the policy convergence of the underlying

RL algorithm, but is at least as sample efficient. We demonstrate that QMP provides complementary

gains to other forms of MTRL in a range of manipulation, locomotion, and navigation tasks and

performs well over diverse task families when compared to other behavior sharing methods.

5.2 Related Work

Information Sharing in Multi-Task RL. There are multiple, mostly complementary ways

to share information in MTRL, including sharing data, sharing parameters or representations,

and sharing behaviors. In offline MTRL, prior works selectively share data between tasks (Yu

et al., 2021; 2022). Sharing parameters across policies can speed up MTRL through shared

representations (Xu et al., 2020; D’Eramo et al., 2020; Yang et al., 2020; Sodhani et al., 2021; Misra

et al., 2016; Perez et al., 2018a; Devin et al., 2017; Vuorio et al., 2019; Rosenbaum et al., 2019; Yu

et al., 2023; Cheng et al., 2023; Hong et al., 2022) and can be easily combined with other types

of information sharing. Most similar to our work, Teh et al. (2017) and Ghosh et al. (2018) share

behaviors between multiple policies through policy distillation and regularization. Vuong et al.

(2019) identify which states between tasks share optimal behavior and regularize to each other there.

These works share behaviors through regularization, biasing the policy objective when tasks have

differing optimal behaviors. In contrast, our work selectively shares behavioral policies without

modifying the training objective.
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Multi-Task Learning for Diverse Task Families. Multi-task learning in diverse task families

is susceptible to negative transfer between dissimilar tasks, hindering training. Prior works combat

this by measuring task relatedness through validation loss on tasks (Liu et al., 2022; Ackermann

et al., 2021) or influence of one task to another (Fifty et al., 2021; Standley et al., 2020) to find task

groupings for training. Other works focus on the challenge of multi-objective optimization (Sener

and Koltun, 2018; Hessel et al., 2019; Yu et al., 2020; Liu et al., 2021a; Schaul et al., 2019; Chen

et al., 2018; Kurin et al., 2022). Similar to these works, we identify that prior behavior-sharing

MTRL approaches are susceptible to negative transfer. However, we avoid the challenge of negative

transfer entirely by selectively sharing behaviors only during off-policy data collection.

Exploration in Multi-Task Reinforcement Learning. Our approach of modifying the behav-

ioral policy to leverage shared task structures can be seen as a form of MTRL exploration, which

we discuss further in Appendix Section D.16c. Bangaru et al. (2016) encourage agents to increase

their state coverage by providing an exploration bonus. Zhang and Wang (2021) study sharing

information between agents to encourage exploration under tabular MDPs. Kalashnikov et al.

(2021b) directly leverage data from policies of other specialized tasks (like grasping a ball) for their

general task variant (like grasping an object).

In contrast to these approaches, we do not require a pre-defined task similarity measure or

exploration bonus; we demonstrate in Section 5.6 that QMP works across many tasks and domains

without these additional measures. Skill learning can be seen as behavior sharing in a single task

setting such as learning options for exploration or heirarchical RL (Machado et al., 2017; Jinnai et al.,

2019b;a; Hansen et al., 2019; Riemer et al., 2018). We also discuss the difference to single-task

exploration in Appendix Section G.3.

Using Q-functions as filters. Yu et al. (2021) uses Q-functions to filter which data should be

shared between tasks in a multi-task setting. In the imitation learning setting, Nair et al. (2018a) and

Sasaki and Yamashina (2020) use Q-functions to filter out low-quality demonstrations, so they are

not used for training. In both cases, the Q-function is used to evaluate some data that can be used for

training. Zhang et al. (2022) reuses pre-trained policies to learn a new task, using a Q-function as a
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filter to choose which pre-trained policies to regularize to as guidance. In contrast to prior works,

our method uses a Q-function to evaluate different task policies to gather training data.

5.3 Problem Formulation

Multi-task reinforcement learning (MTRL) addresses sequential decision-making tasks, where

an agent learns a policy to act optimally in an environment (Kaelbling et al., 1996; Wilson et al.,

2007). Therefore, in addition to typical multi-task learning techniques, MTRL can also share

behaviors, i.e., actions, to improve sample efficiency. However, current approaches share behaviors

uniformly (Section 5.2), which assumes that different tasks’ behaviors do not conflict. To address

this limitation, we seek to develop a selective behavior-sharing method that can be applied in more

general task families for sample-efficient MTRL.

Multi-Task RL with Behavior Sharing. We aim to simultaneously learn a set {T1, . . . ,TN}

of N tasks. Each task Ti is a Markov Decision Process (MDP) defined by state space S, action

space A, transition probabilities Ti, reward functionsRi, initial state distribution ρi, and discount

factor γ ∈ [0, 1]. While we use S to denote shared state spaces for simplicity, our formulation

extends to tasks with different state spaces as it complements policy architectures that share state

encoders. The agent learns a set of N policies {π1, . . . , πN}, where each policy πi(a|s) represents

the behavior on task Ti. The objective is to maximize the average expected return over all tasks,

{π∗
1, . . . , π

∗
N} = max

{π1,...,πN}

1

N

N∑
i=1

[
Eat∼πi

∞∑
t=0

γtRi(st, at)

]
.

Unlike prior works, our tasks can exhibit conflicting optimal behaviors: for any s, π∗
i (a|s) may

differ from π∗
j (a|s). Thus, prior methods that bias policy learning objectives like direct policy shar-

ing (Kalashnikov et al., 2021a) or behavior regularization (Teh et al., 2017) would be suboptimal.
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Figure 5.2: Our method (QMP) shares behavior between task policies in the data collection phase
using a mixture of these policies. For example, in Task 1, each task policy proposes an action aj .
The task-specific Q-switch evaluates each Q1(s, aj) and selects the best scored policy to gather
reward-labeled data to train Q1 and π1. Thus, Task 1 will be boosted by incorporating high-reward
shareable behaviors into π1 and improving Q1 for subsequent Q-switch evaluations.

5.4 Approach

To improve the sample efficiency of multi-task RL, we propose a framework that selectively

incorporates behaviors from policies of other tasks without introducing bias into the RL objective

for the current task. We achieve this by using a mixture of all policies as the behavioral policy for

the current task, thereby modifying only its off-policy training data. However, naively mixing other

policies into the current task’s behavioral policy does not necessarily improve its sample efficiency.

To address this, we derive a specific definition of this mixture, named Q-switch Mixture of Policies

(QMP), that selects a policy based on the current task’s Q-function (see Figure 5.2 and Algorithm 4)

and prove that QMP guarantees greater than or equal sample efficiency than using the current task’s

policy alone.

5.4.1 Multi-Task Behavior Sharing via Off-Policy Data Collection

MTRL methods like Teh et al. (2017) use regularization to a common average policy to enforce

task policies to share behaviors. However, this introduces bias to each policy’s RL objective, leading

to suboptimal actions in states where tasks require different actions. To address this, we propose
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using a mixture of policies for off-policy data collection as the means of behavior-sharing. At each

state in any given task, one of the task policies is selected to gather training data as the current

behavioral policy. This approach is compatible with any off-policy RL algorithm (Watkins and

Dayan, 1992) because the environment rewards help determine the best actions from the collected

data. However, an effective mixture policy must choose the behavioral policies in a selective and

principled way.

Definition 5.4.1 (Mixture of Policies). For each task Ti, the mixture policy πmix
i (a | s) is defined

as πmix
i (a | s) = π

fi

(
s,π1,...,πN

)(a | s), where fi(s, π1, . . . , πN) : S × ΠN → {1, . . . , N} is a

mixture-switch function that selects one of the policies π1, . . . , πN based on the current state s.

Our intuition of policy mixture shares inspiration with hierarchical RL (Çelik et al., 2021; Daniel

et al., 2016; End et al., 2017; Goyal et al., 2019) where a mixture of options is learned according

to the downstream task(s). However, a key difference in an MTRL mixture is that each policy is

optimized for its own specific task and not designed to fit the task where the mixture is employed.

5.4.2 Q-switch Mixture of Policies (QMP)

We aim to derive a principled mixture-switch function fi such that the mixture policy πmix
i

selectively incorporates behaviors from other policies while being guaranteed to be no worse than

the current task’s policy πi. We recall the generalized policy iteration procedure (Sutton and Barto,

2018) underlying single-task SAC (Haarnoja et al., 2018): policy evaluation learns Q by minimizing

the bellman error on the collected data, and policy improvement follows Q by minimizing the KL

divergence between the new policy and the exponential of the current Q-function, Qπold:

πnew = argmin
π′∈Π

DKL

π′(· | st)
∥∥∥∥∥exp

(
1
α
Qπold

(st, ·)
)

Zπold(st)

 (5.1)

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization

in Eq. 5.1, leaving a suboptimality gap to catch up to the Q-function. Thus, a mixture policy πmix
i

that selects the best policy from a set of all given policy candidates, including the current policy,
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Algorithm 4 Q-switch Mixture of Policies (QMP)

Input: Task Set {T1, . . . ,TN}
Initialize {πi}Ni=1, {Qi}Ni=1, Data buffers {Di}Ni=1

for each epoch do
for i = 1 to N do

while Task Ti episode not terminated do
Observe state s
Compute πmix

i as in Eq. 5.3.
Take action proposal from a ∼ πmix

i

Di←Di ∪ (s, a, ri, s
′)

end while
end for
for i = 1 to N do

Update πi, Qi using Di with SAC
end for

end for
Output: Trained policies {πi}Ni=1

ensures that πmix
i is at least as good as πi for the current state s, while potentially being a better

optimizer of Eq. 5.1 due to shareable behaviors from the other task policies:

min
π′∈{π1,...,πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp( 1αQπi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp( 1αQπi(s, ·))
Zπi(s)

)
(5.2)

We simplify the expression on the left in Appendix B, deriving the following definition.

Definition 5.4.2 (Q-switch Mixture of Policies: QMP). For a task Ti and available candidate

policies {π1, ..., πN}, the QMP πmix
i (a | s) selects a policy according to:

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] (5.3)

Algorithm 4 shows that QMP can be plugged into any MTRL framework, making it complemen-

tary with various MTRL frameworks like parameter-sharing and data relabeling (see Section 5.7.1).

In practice, we estimate the expectation in Eq. 5.3 by evaluating the Q-value for the mean action

of each task policy’s distribution π′(·|s) ignoring the entropy term. We do not find any empirical

difference when using a sampled estimate of the expectation (see Appendix G.2) or including the

entropy term, as the Q-value is the primary distinguishing factor between policies. In terms of
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compute, sampling from QMP’s πmix
i (a|s) does require more policy and Q-function evaluations.

However, evaluations are parallelized and impact runtime negligibly, as shown in Appendix G.4.

While πmix
i can mistakenly choose a poor policy due to estimation error in Qπi , this is identical to

Q-learning or SAC, where the Q-function would be inaccurate at less-seen states. In both Q-learning

and QMP, this is corrected with online interactions where the Q-function is trained to be more

accurate in a subsequent iteration. Furthermore, πmix
i actually better maximizes Qπi than πi, which

is the objective under generalized policy iteration. Note that QMP does not exacerbate the problem

of overestimation because the soft policy evaluation step stays the same, i.e., it uses πi and not πmix
i .

5.5 Why QMP Works: Theory and Didactic Example

5.5.1 QMP: Convergence and Improvement Guarantees

QMP performs simultaneous MTRL by collecting data using a Q-switch guided mixture of

policies πmix
i . In Appendix C, we prove that QMP with underlying RL algorithm Soft-Actor

Critic (SAC) (Haarnoja et al., 2018) shares the same convergence guarantees in a tabular setting.

Particularly, we show that under QMP, policy evaluation converges because QMP only modifies

data collection of off-policy RL, policy improvement guarantees are preserved (Theorem 5.5.1),

and policy iteration converges to an optimal policy at least as sample-efficiently (Theorem C.2).

The key reason for better policy improvement of QMP over the current task policy πi is the

argmax operation in Eq. 5.3, which ensures that the selected policy πmix
i ∈ {πj}Nj=1 optimizes

the SAC objective at least as well as πi itself. We formalize this in Theorem 5.5.1 with proof in

Appendix C.1. Due to the suboptimality gap in Eq. 5.1 in SAC, QMP can actually achieve better

policy improvement when there are shareable behaviors between policies.

Theorem 5.5.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 5.3. Then, Qπmix
i (st, at) ≥

Qπi(st, at) ≥ Qπold
i (st, at) for all tasks Ti and for all (st, at) ∈ S ×A with |A| <∞.
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Figure 5.3: QMP generalized policy iteration

While QMP in Def. 5.4.2 applies to any set of candidate policies {π1, ..., πN}, one expects πmix
i

to improve over πi when some πj ̸= πi proposes an action candidate better than πi for Task Ti. This

is more likely in MTRL policies that share structure between tasks than an arbitrary set of policies.

For instance, if Ti and Tj share a subtask that appears early in the episodes for Tj , then πj would

have already learned it before πi and be a better policy for certain states of Ti, according to Qi.

QMP making bigger policy improvement results in each iteration of generalized policy iteration

progressing more towards optimality. This reduces the number of iterations required to converge,

improving the sample efficiency of the algorithm as illustrated in Fig. 5.3 and proved in Theorem C.2.

5.5.2 Illustrative Example: 2D Point Reaching

We demonstrate when QMP can utilize alternate policy candidates {π1, . . . , πN} to more

effectively learn a policy by bridging a policy improvement suboptimality gap as π tries to follow Q

in Eq. 5.1. Consider a 2D point-reaching task where the agent must navigate from the bottom-left

corner (0, 0) to the goal in the top-right corner (10, 10). The point agent receives dense rewards

based on its proximity to the goal and takes incremental 2D actions (∆x,∆y) ∈ [−1, 1]2.

Figure 5.5 shows that the SAC policy π converges to a suboptimal solution. Fig. 5.4a confirms

that the data collected by SAC policy never reaches the goal. This shows that if the suboptimality

gap in π is not successfully bridged, it can make the entire algorithm converge suboptimally.

To illustrate QMP’s effect, we add 3 fixed gaussian policies centered on (↑ → ↙) or (↑ → ↗),

and only let π be trainable. Fig. 5.4b, 5.4c show that πmix
i employs alternate policies at many states
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(a) SAC: π (b) QMP: π ↑ → ↙ (c) QMP: π ↑ → ↗

Figure 5.4: 2D Point Reaching. We visualize the training trajectories of π with different sets of
task policies (fixed but stochastic) and color each step with the policy that proposed it. (a) The
single-task SAC policy cannot reach the goal. (b) With 3 diverse policies (↑ → ↙), QMP often
selects other policies, showing the suboptimality gap from Q in Eq. 5.1. (c) When a highly relevant
↗ policy is added, QMP often selects↗ as it is likely to best optimize the learned Q-function.
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Figure 5.5: QMP improves performance using other policies, increasingly so when task-relevant.

in data collection as they optimize Eq. 5.3 better than π itself. This selectivity enables πmix
i to

generate more effective goal-reaching trajectories by bridging the suboptimality gap, resulting in

better performance in Fig. 5.5. A policy like↗ relevant to the underlying task leads to a larger gain.

The same principle extends to the simultaneous multi-task RL setting. In MTRL, each task’s

policy continuously improves and can serve as a valuable candidate in the mixture for other tasks.

QMP enables tasks to selectively share their behaviors, allowing each task to benefit from the

progress of others. This mutual assistance accelerates learning across all tasks, as the mixture

policy πmix
i for each task Ti selects the most promising action proposals from all available policies
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according to the task-specific Q-function, guaranteed to be at least as good as πi itself. Consequently,

MTRL combined with QMP leverages the collective knowledge of all tasks to bridge suboptimality

gaps more efficiently, leading to improved sample efficiency and overall performance.

5.6 Experiments

5.6.1 Environments

We evaluate our method in 7 multi-task designs in manipulation, navigation, and locomotion

environments, shown in Figure 5.6. These tasks vary in the degree of shared and conflicting

behaviors between tasks and the number of tasks in the set. Further details in Appendix Section D.

Multistage Reacher: A 6 DoF Jaco arm learns 5 tasks with ordered subgoals. The first 4 tasks

share some subgoals, while the 5th conflicting task requires the agent to stay at its initial position.

Maze Navigation: Building on point mass maze navigation (Fu et al., 2020), we define 10 tasks

with various start-goal locations exhibiting coinciding and conflicting segments in the optimal paths.

Meta-World Manipulation: We use three task sets based on the Meta-World environment (Yu

et al., 2019). Meta-World MT10 and Meta-World MT50 are sets of 10 and 50 table-top manipula-

tion tasks involving different objects and behaviors. Meta-World CDS is a 4-task set proposed in

Yu et al. (2021), which places the door and drawer next to each other on the same tabletop so all 4

tasks (door open & close, drawer open & close) are solvable in a simultaneous multi-task setup.

Walker2D: Walker2D is a 9 DoF bipedal walker agent with the multi-task set containing 4

locomotion tasks proposed in Lee et al. (2019): walking forward, walking backward, balancing,

and crawling. These tasks require different gaits without an obviously identifiable shared behavior

in the optimal policies but can still benefit from intermediate behaviors like balancing.

Kitchen: We use the challenging manipulation environment proposed by Gupta et al. (2019)

where a 9 DoF Franka robot performs tasks in a kitchen. We create a task set out of 10 manipulation

tasks: turning on or off different burners and light switches, and opening or closing different cabinets.
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(a) Jaco Reacher (b) Maze Navigation (c) Meta-World (d) Walker2D (e) Franka Kitchen

Figure 5.6: Environments & Tasks: (a) Multistage Jaco Reacher. The agent must reach different
subgoals or stay still (Task 4). (b) Maze Navigation. The agent (green circle) must navigate to the
goal (red circle). 4 other tasks are shown in orange. (c) Meta-World: 10 table-top manipulation
tasks. (e) Franka Kitchen: 10 tasks, interacting with one appliance or cabinet.

5.6.2 Baselines

We first select popular and representative MTRL methods that share other forms of information

to evaluate how behavior-sharing with QMP improves their performance:

• No-Sharing consists of N (number of tasks) independent RL architectures where each agent

is assigned one task and trained to solve it without any information sharing with other agents.

• Data-Sharing (UDS) proposed in Yu et al. (2022) shares data between tasks, relabelling with

minimum task reward. We modified this offline RL algorithm to online.

• Parameter-Sharing multi-head SAC policy sharing parameters but not behaviors over tasks.

We validate QMP’s approach to share behaviors via off-policy data collection with baselines:

• No-Shared-Behaviors consists of N RL agents where each agent is assigned one task and

trained to solve it without any behavior sharing with other agents: no bias and no sharing.

• Fully-Shared-Behaviors: single SAC agent learning one shared policy, outputting the same

action for a given state regardless of task (full parameter sharing): fully biased sharing.

• Divide-and-Conquer RL (DnC) (Ghosh et al., 2018) N policies sharing behaviors through

policy distillation and mean regularization (adapted for MTRL): biased objective for sharing.

• DnC (Regularization Only) is a no policy distillation variant of DnC we propose as baseline.

• QMP (Ours) N policies that share behaviors in off-policy data collection: unbiased sharing.
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Figure 5.7: Behavior sharing is complementary. QMP (solid lines) shows improvement over
MTRL frameworks (same-colored dashed lines): no-shared architecture (blue), shared parameters
(pink), and shared data (green). Methods without parameter-sharing on MT50 converge very slowly.
Success rate means and std (shaded) are over N tasks, 10 episodes per task, and 5 seeds.

We used SAC Haarnoja et al. (2018) for all environments and methods. All the non-parameter

sharing baselines use the same SAC hyperparameters. Please refer to Appendix H for details.

5.7 Results

Our experiments address: (1) Does QMP provide complementary gains to other forms of MTRL?

(2) How does sharing behavioral policies compare with alternate forms of behavior sharing? (3)

Can QMP effectively identify shareable behaviors? (4) Ablating key components of QMP.

5.7.1 Is Behavior Sharing Complementary to other MTRL frameworks?

We demonstrate that our method is compatible with and provides complementary performance

gains with other forms of MTRL that share different kinds of information, including parameter
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sharing and data sharing. We compare the performance between 3 base MTRL algorithms, No-

Sharing, Parameter-Sharing, and Data-Sharing, with the addition of QMP in Figure 5.7. The

No-Sharing baseline provides a baseline comparison of QMP’s effectiveness on its own. For the

Parameter-Sharing and Data-Sharing baselines we chose the base algorithms for their popularity

and simplicity. In each case, we add QMP by simply replacing the data collection policy with πmix
i .

We find that QMP is complementary to all three baseline frameworks, mostly with additive

performance gains in sample efficiency and final performance, while not hurting the performance

of the base method in all but one case (Data-Sharing in Kitchen). We additionally see that QMP

improves PCGrad’s (Yu et al., 2020) performance significantly in 3 out of 4 environments tested in

Appendix E.3, showing that QMP is a simple and complementary addition to other forms of MTRL.

QMP significantly improves upon the No-Sharing baseline in all environments except Meta-

World CDS where it performs comparatively. This demonstrates that sharing behavioral policies is

a promising avenue for efficient and performant MTRL. In the data-sharing comparison, we see

that the addition of QMP improves or performs comparatively to the base algorithm. In Multistage

Reacher and Maze Navigation, we see that both Data-Sharing and Data + QMP perform worse

than the other MTRL methods, highlighting the fact that sharing data directly between tasks can be

ineffective without access to a re-labeled task rewards like in our setting. In environments where

data-sharing does well, like Meta-World CDS, adding QMP does improve sample efficiency.

We find that Parameters + QMP generally outperforms Parameter-Sharing, while inheriting its

sample efficiency gains. In many cases, the parameter-sharing methods converge sub-optimally,

highlighting that shared parameter MTRL has its own challenges. However, in Maze Navigation,

we find that sharing Parameters + Behaviors greatly improves the performance over both the

Parameter-Sharing baseline and No-Sharing + QMP variant of QMP. This demonstrates the

additive effect of these two forms of information sharing in MTRL. The agent initially benefits

from the sample efficiency gains of the multi-head parameter-sharing architecture, while behavior

sharing accelerates learning by selectively using other policies to keep learning even after the

parameter-sharing effect plateaus. demonstrating the compatibility between QMP and parameter
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Figure 5.8: QMP reliably shares behaviors. In task sets exhibiting conflicting behaviors, QMP
consistently matches or exceeds baselines in rate of convergence and final performance.

sharing as key ingredients to sample efficient MTRL. We further highlight that this benefit of QMP

increases with the number of tasks increasing from 10 to 50 in Meta-World, where we see that

QMP is actually more effective when combined with parameter sharing in MT50 than in MT10.

QMP scales well with the number of tasks and can actually perform better likely due to more shared

behaviors in the larger task set.

5.7.2 Baselines: Comparing Different Approaches to Share Behaviors

To verify QMP’s efficacy as a behavior-sharing mechanism, we evaluate baselines that share

behaviors in different ways on 6 environments in Figure 5.8. QMP reliably matches or exceeds

other methods, especially in tasks that require conflicting behaviors, while baselines are ineffective.

In the task sets with the most directly conflicting behaviors, Multistage Reacher and Maze

Navigation, our method clearly outperforms other behavior-sharing and data-sharing baselines. In
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Multistage Reacher, our method reaches > 90% success rate at 0.5 million environment steps, while

DnC (reg.), the next best method, takes 3 times the number of steps to fully converge. The rest

of the methods fail to attain the maximum success rate. The UDS baseline performs particularly

poorly, illustrating that data sharing can be ineffective without ground truth rewards. We also see

that QMP scales better from 3 to 10 tasks in Maze compared to other behavior sharing methods in

Appendix Section E.4.

In the remaining task sets with no directly conflicting behaviors, we see that QMP is competitive

with the best-performing baseline for more complex manipulation and locomotion tasks. Particularly,

in Walker2D and Meta-World CDS, we see that QMP is the most sample-efficient method and

converges to a better final performance than any other behavior sharing method. In Meta-World

MT10 and Kitchen, DnC (regularization only) also performed very well, showing that well-tuned

uniform behavior sharing can be very effective in tasks without conflicting behavior. However,

QMP also performs competitively and more sample efficiently, showing that QMP is effective under

the same assumptions as uniform behavior-sharing methods but can do so adaptively and across

more general task families. The Fully-Shared-Behaviors baseline often performs poorly because

it totally biases the policies, while the No-Shared-Behavior is a surprisingly strong baseline as it

introduces no bias.

5.7.3 Can QMP effectively identify shareable behaviors?

Figure 5.9a shows the average proportion of sharing from other tasks for Multistage Reacher

Task 0 over the course of training. We see that QMP learns to generally share less behavior from

Policy 4 than from Policies 1-3 (Appendix Figure D.15). Conversely, QMP in Task 4 also shares

the least total cross-task behavior (Appendix Figure D.14). We see this same trend across all 5

Multistage Reacher tasks, showing that the Q-switch successfully identifies conflicting behaviors

that should not be shared. Further, Figure 5.9a also shows that total behavior-sharing from

other tasks goes down over training. Thus, Q-switch learns to prefer its own task-specific policy

as it becomes more proficient.
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We visualize a QMP rollout during training for the Drawer Open task where we label each transition to a new policy.  We break the episode into two subtasks: grasping the drawer 
handle (top row) and pulling the drawer handle (bottom row).  To learn to grasp the drawer handle, QMP uses all policies to approach the handle and then the drawer policies as 
the agent nears the handle.  To learn to pull the drawer open, QMP uses only Drawer Open and Door Open policies. For clarity, we first subsample the episode timesteps by 10.(b) Behavior-sharing in a single training episode.

Figure 5.9: (a) Mixture probabilities of other policies for Task 0 in Multistage Reacher with the
conflicting task Policy 4 shown in red. (b) Policies chosen by the QMP behavioral policy every 10
timesteps for the Drawer Open task throughout one training episode. The policy approaches and
grasps the handle (top row), then pulls the drawer open (bottom row).

We qualitatively analyze how behavior sharing varies within a single episode by visualizing a

QMP rollout during training for the Drawer Open task in Meta-World CDS (Figure 5.9b). We see

that it makes reasonable policy choices by (i) switching between all 4 task policies as it approaches

the drawer (top row), (ii) using drawer-specific policies as it grasps the drawer-handle, and (iii) using

Drawer Open and Door Open policies as it pulls the drawer open (bottom row). In conjunction with

the overall results, this supports our claim that QMP can effectively identify shareable behaviors

between tasks. For details on this visualization and the full analysis results see Appendix Section F.

Inspired by hierarchical RL (Dabney et al., 2021) and multi-task exploration (Xu et al., 2024),

we briefly investigate temporally extended behavior sharing in Appendix E.6.Recently, Xu et al.

(2024) showed that if one assumes a high overlap between optimal policies of different tasks, other

task policies can aid exploration. So, we simply roll out each policy QMP selects for a fixed number

of steps. While QMP theory no longer holds as it requires selecting a policy at every step, this naive

temporal extension yields improvements in some environments like Maze with strong overlap.

5.7.4 Ablations

We show the importance of Q-switch in QMP (Def. 5.4.2) against alternate forms of policy

mixtures (Def. 5.4.1). QMP-Uniform is a uniform distribution over policies, fi = U({1, . . . , N})
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Figure 5.10: QMP outperforms alternate policy mixtures in Multistage Reacher.

and achieves only 60% success rate (Figure 5.10), showing the importance of selectivity. QMP-

Domain-Knowledge is a hand-crafted, fixed policy distribution based on an estimate of similarity

between tasks. Multistage Reacher measures this similarity by the shared sub-goal sequences

between tasks (Appendix D). QMP-Domain performs well initially but plateaus early, showing

that which behaviors are shareable depends on the state and current policy. We further ablate

the argmax in Q-switch against a softmax variation resulting in a probabilistic mixture policy in

Appendix G.1, and evaluating on the mean policy actions (Appendix G.2) to validate our design.

5.8 Conclusion

In this chapter, we propose an unbiased approach to sharing behaviors in MTRL: Q-switch

Mixture of Policies. QMP shares policies between tasks for off-policy data collection. We demon-

strate empirically that QMP effectively improves the rate of convergence and task performance in

manipulation, locomotion, and navigation tasks, and is guaranteed to be as good as the underlying

RL algorithm and complementary to alternate MTRL. QMP does not assume that optimal task

behaviors always coincide. Thus, its improvement magnitude is limited by the degree of shareable

behaviors and the suboptimality gap that exists. At the same time, this lets the QMP algorithm

be unbiased and find optimal policies with convergence guarantees while being equally or more

sample-efficient.
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Chapter 6

Conclusion

In this thesis, we presented methods for decision-making in complex action spaces where

traditional reinforcement learning approaches fall short. Specifically, we addressed decision-making

challenges involving unseen, varying, non-convex, and shareable action spaces by leveraging

action representations and multiple policy candidates. Through developing new environments like

CREATE, adapting existing tools like PPO, TD3, and SAC, and proposing new algorithms like

SAVO and QMP, we demonstrated that intelligent agents could achieve effective generalization,

optimal action selection, and efficient multi-task performance in action space settings reminiscent

of human decision-making.

In Part I, we showed how action representations could enable an agent to generalize effectively

to unseen and varying action spaces. By leveraging action metadata and learning representations

through deep autoencoders, we were able to equip agents with the ability to reason about novel

actions and adapt dynamically to their availability, much like humans do when cooking in a new

kitchen. We found that relational reasoning between actions, modeled using graph neural networks,

further enhanced this ability by accounting for interdependencies within a changing action set.

In Part II, we tackled the challenge of finding optimal actions within non-convex action-value

landscapes. We developed methods for iteratively refining these landscapes, allowing agents to

escape local optima by combining multiple policies and utilizing refined value landscapes inspired

by tabu search. Extending this approach to multi-task reinforcement learning, we proposed a
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novel paradigm of action sharing between tasks, showing significant gains in sample efficiency and

performance.

The contributions of this thesis have applications in diverse domains such as robotics, recom-

mendation systems, and physical reasoning. More importantly, the concepts we introduced help

bridge the gap between human-like decision-making and current RL systems by enabling effective

generalization, adaptation, optimization, and sharing in complex action spaces.

6.1 Open Challenges and Future Directions

While addressing the fundamental challenges in decision-making over complex action spaces,

we discover new research questions.

Conception of action spaces. How can agents identify their action space for various tasks? All

reinforcement learning works, including the problems considered in this work, assume access to a

predefined auxiliary system that can enumerate or define the available actions for task solving. For

instance, generalization to unseen tool choices is well defined over a list of tools that an auxiliary

system provides to the agent. However, any AI agent, whether a virtual agent browsing the Internet

or an embodied robot controlling its joint torques, has a fixed embodied action space where it can

act. Yet, this agent must solve tasks at a higher abstraction, such as decision-making over different

internet links to click on and different kitchen tools or ingredients to use while cooking.

Humans are embodied agents that can make innumerable decisions from self-conceived action

spaces in the mental models of various tasks they encounter. Imagine planning and reasoning about

potential future career paths. Each path represents an action in a decision-making process, yet

we seamlessly formulate and decide between such actions by estimating their long-term impact.

Similarly, in the physical world, what tools are viable in a particular task is ambiguous. Yet, we

can truly improvise by reasoning about surrounding objects as a potential tool or even create new

tools that can be used to solve our tasks. Identifying and creating an abstracted action space to

subsequently use for achieving goals is a crucial hallmark of human intelligence, which remains

farfetched for current RL agents as a fundamental open challenge of action space.
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Reinforcement learning with token action space in LLMs. Reinforcement learning in token-

level decision-making within large language models (LLMs) (Ouyang et al., 2022) introduces unique

challenges due to the fixed yet vast discrete action space. This token space encompasses every possi-

ble token that the model can generate, making exploration inherently complex. Current approaches

explore with temperature-based sampling from the current model’s probability distribution. This

is a valid heuristic mechanism for exploration but limits the experiences to be close to the initial

policy without necessarily covering the entire token space, especially for low-probability tokens

that might be critical in niche contexts. This lack of coverage limits the capability of fine-tuning

the model with a reinforcement learning signal because all algorithms require at least a minimal

coverage over all the tokens.

Future research should explore exploration strategies with better state-action coverage. However,

doing so sample-efficiently requires domain-specific research in how to heuristically limit the space

of exploration. One way is to leverage hierarchical action representations where groups of tokens or

subword units form higher-level ”meta-actions” for exploration and data collection. Additionally,

exploration methods in RL could be incorporated, such as intrinsic motivation (Schmidhuber, 2010),

curiosity (Pathak et al., 2017), and uncertainty-based exploration (Osband et al., 2016; Burda

et al., 2018) could enable LLMs to autonomously discover novel yet meaningful token sequences.

Similarly, specialized hard exploration techniques that can exploit simulation and resetting, like

GoExplore (Ecoffet et al., 2019) are suitable for LLM token space exploration. These advances

could substantially enhance the fine-tunability of LLMs for tasks that may be vastly different from

the domain of the pre-training data.

Actor-free Q-learning algorithms. One key reason for the introduction of actors in reinforce-

ment learning in continuous action spaces is the need to find the optimal action. The state-of-the-art

off-policy RL methods like DDPG and SAC utilize deterministic or stochastic actors for this exact

purpose. However, this introduction of a gradient-based actor introduces challenges of local optima

as we discovered in Part II. One natural question arises about whether such actors are even needed

and what alternatives exist to find the most optimal action given a Q-function. One way to achieve
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this could be to embed the maximization in the Q-function itself, which was explored in normalized

advantage functions Gu et al. (2016). However, this modeling constraint limits the expressivity of

the Q-function, and more expressive Q-function models could help alleviate the need for an actor

completely.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

John Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and
Sergey Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning
with trajectory embeddings. In International Conference on Machine Learning, pages
1008–1017, 2018.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

Will Dabney, Georg Ostrovski, and Andre Barreto. Temporally-extended ε-greedy explo-
ration. In International Conference on Learning Representations, 2021.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative
entropy policy search. Journal of Machine Learning Research, 2016.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on
the cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Emily L Denton and vighnesh Birodkar. Unsupervised learning of disen-
tangled representations from video. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 4414–4423. Cur-
ran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7028-unsupervised-learning-of-disentangled-representations-from-video.
pdf.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters, et al. Sharing
knowledge in multi-task deep reinforcement learning. In International Conference on
Learning Representations, 2020.

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning
modular neural network policies for multi-task and multi-robot transfer. In IEEE Interna-
tional Conference on Robotics and Automation, 2017.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679,
2015.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual
planning with temporal skip connections. In Conference on Robot Learning, pages 344–356,
2017.

92

http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf
http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf


Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Harrison Edwards and Amos Storkey. Towards a neural statistician. In International
Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=HJDBUF5le.

Felix End, Riad Akrour, Jan Peters, and Gerhard Neumann. Layered direct policy search for
learning hierarchical skills. In IEEE International Conference on Robotics and Automation,
2017.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pages 1407–1416. PMLR, 2018.

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and
Silvio Savarese. Learning task-oriented grasping for tool manipulation from simulated
self-supervision. arXiv preprint arXiv:1806.09266, 2018.

Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning. In Neural Information Processing Systems,
2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral
cloning. In Conference on Robot Learning, pages 158–168. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets
for deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research.
https://github.com/rlworkgroup/garage, 2019.

Samuel J Gershman and Yael Niv. Novelty and inductive generalization in human reinforce-
ment learning. Topics in cognitive science, 7(3):391–415, 2015.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine. Divide-
and-conquer reinforcement learning. In International Conference on Learning Representa-
tions, 2018.

93

https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=HJDBUF5le
https://github.com/rlworkgroup/garage


Ruben Glatt, Felipe Leno Da Silva, Reinaldo Augusto da Costa Bianchi, and Anna Helena Re-
ali Costa. Decaf: Deep case-based policy inference for knowledge transfer in reinforcement
learning. Expert Systems with Applications, 2020.

Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, and Kenny Q
Zhu. Exact-k recommendation via maximal clique optimization. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
617–626, 2019.

Ian Goodfellow. Deep learning, 2016.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua
Bengio. Reinforcement learning with competitive ensembles of information-constrained
primitives. arXiv, abs/1906.10667, 2019.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on
Systems, Man, and Cybernetics, part C (applications and reviews), 42(6):1291–1307, 2012.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-
learning with model-based acceleration. In International conference on machine learning,
pages 2829–2838. PMLR, 2016.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long horizon tasks via imitation and reinforcement learning. In
Conference on Robot Learning, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

Jessica B Hamrick, Kelsey R Allen, Victor Bapst, Tina Zhu, Kevin R McKee, Joshua B
Tenenbaum, and Peter W Battaglia. Relational inductive bias for physical construction in
humans and machines. arXiv preprint arXiv:1806.01203, 2018.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv
preprint arXiv:1906.05030, 2019.

Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, and
Wei Wang. P-companion: A principled framework for diversified complementary product
recommendation. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pages 2517–2524, 2020.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

94



Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action
space. arXiv preprint arXiv:1511.04143, 2015.

Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Osten-
dorf. Deep reinforcement learning with a natural language action space. arXiv preprint
arXiv:1511.04636, 2015.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will
Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. Proceedings of the AAAI conference on
artificial intelligence, 32(1), 2018.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and
Hado van Hasselt. Multi-task deep reinforcement learning with popart. In AAAI Conference
on Artificial Intelligence, 2019.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. ICLR, 2(5):6, 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel,
Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot
transfer in reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1480–1490. JMLR. org, 2017b.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for
inhomogeneous multi-task reinforcement learning. In International Conference on Learning
Representations, 2022.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

Jiaqiao Hu, Michael C Fu, and Steven I Marcus. A model reference adaptive search method
for global optimization. Operations research, 55(3):549–568, 2007.
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Appendix A

Generalization to New Actions via Action Representations

A Environment Details

A.1 Grid World

State

Action (Skill) RDDDD DRRUU UUDRR RDDDD

State

Action (Skill) RURRD DLLDD LDRRR RUUUR

(Null Interaction with Wall) (Death from Lava)

(Reached Goal)(Pass Subgoal)

Figure A.1: Grid World Environment: 9x9 grid navigation task. The agent is the red triangle, and
the goal is the green cell. The environment contains one row or column of lava wall with a single
opening acting as a subgoal (blue). Each action consists of a sequence of 5 consecutive moves in
one of the four directions: U(p), D(own), R(ight), L(eft).

The Grid World environment, based on Chevalier-Boisvert et al. (2018), consists of an agent and

a randomly placed lava wall with an opening, as shown in Figure A.1. The lava wall can either be

horizontal or vertical. The agent spawns in the top left corner, and its objective is to reach the goal

in the bottom-right corner of the grid while avoiding any path through lava. The agent can move

using 5-step skills composed of steps in one of the four directions (Up, Down, Left, and Right).
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An episode is terminated when the agent uses a maximum of 10 actions (50 moves), or the agent

reaches the goal (success) or lava wall (failure).

State: The state space is a flattened version of the 9x9 grid. Each element of the 81-dimensional

state contains an integer ID based on whether the cell is empty, wall, agent, goal, lava, or subgoal.

Actions: An action or skill of the agent is a sequence of 5 consecutive moves in 4 directions.

Hence, 45 = 1, 024 total actions are possible. Once the agent selects an action, it executes 5

sequential moves step-by-step. During a skill execution, if the agent hits the boundary wall, it will

stay in the current cell, making a null interaction. If the agent steps on lava during any action, the

game will be terminated.

Reward: Grid world provides a sparse subgoal reward on passing the subgoal for the first time

and a sparse goal reward when the agent reaches the goal. The goal reward is discounted based on

the number of actions taken to encourage a shorter path to the goal. More concretely,

R(s) = λSubgoal · 1Subgoal + (1− λGoal
Ntotal

Nmax

) · 1Goal (A.1)

where λSubgoal = 0.1, λGoal = 0.9, Nmax = 50,

Ntotal = number of moves to reach the goal.

Action Set Split: The whole action set is randomly divided into a 2:1:1 split of train, validation,

and test action sets.

Action Observations: The observations about each action demonstrate an agent performing the

5-step skill in an 80x80 grid with no obstacles. Each observation is a trajectory of states resulting

from the skill being applied, starting from a random initial state on the grid. A set of 1024 such

trajectories characterizes a single skill. By observing the effects caused on the environment through

a skill, the action representation module can extract the underlying skill behavior, which is further

used in the actual navigation task. Different types of action representations are described and

visualized in Section B.
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A.2 Recommender System

We adapt the Recommender System environment from Rohde et al. (2018) that simulates users

responding to product recommendations (the schematic shown in Figure A.2). Every episode, the

agent makes a series of recommendations for a new user to maximize their cumulative click-through

rate. Within an episode, there are two types of states a user can transition between: organic session

and bandit session. In the bandit session, the agent recommends one of the available products to the

user, which the user may select. After this, the user can transition to an organic session, where the

user independently browses products. The agent takes action (product recommendation) whenever

the user transitions to the bandit session. Every user interaction with organic or bandit sessions

varies their preferences slightly, resulting in a change to the user’s vector. As a result, the agent

cannot repetitively recommend the same products in an episode, since the user is unlikely to click

it again. The environment provides engineered action representations, which are also used by the

environment to determine the likelihood of a user clicking on the recommendation. The episode

terminates after 100 recommendations or stochastically in between the session transitions.

State: The state is a 16-dimensional vector representing the user, vuser. Every episode, a

new user is created with a vector vuser ∼ N (0, I). After each step in the episode, the user

transitions between organic and bandit sessions, where the user vector is perturbed by resampling

vuser ∼ N (vuser, σ1σ2I), where σ1 = 0.1 and σ2 ∼ N (0, 1).

Actions: There are a total of 10,000 actions (products) to recommend to users. Each action is

associated with a 16 dimension representation, c ∼ N (0, I). The selected product’s representation

and the current user vector determine the probability of a click. The agent’s objective is to

recommend articles that maximize the user’s click-through rate. The probability of clicking a

recommended product i with action representation ci is given by:

pclick(vuser, ci) = f(ci · vuser + µi),where

f(x) = σ(a ∗ σ(b ∗ σ(c ∗ x)− d)− e),

(A.2)
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Environment

Agent

User

Organic Session

Update vuser

Bandit Session

vuser

Recommend 
Product

Click?

Reward = 1 or 0

Figure A.2: Recommender System schematic: The user transitions stochastically between two
sessions: organic and bandit. Each transition updates the user vector. Organic sessions simulate
the user independently browsing other products. Bandit sessions simulate the agent recommending
products to the current user. A reward is given if the user clicks on the recommended product.

State

Action Fan

(Hit Target Ball) (Reach Goal)(Initial State)

Belt Funnel Trampoline Lever

Figure A.3: CREATE Push Environment: The blue ball falls into the scene and is directed towards
the target ball (red), which is pushed towards the goal location (green star). This is achieved with
the use of various physical tools that manipulate the path of moving objects in peculiar ways. At
every step, the agent decides which tool to place and the (x, y) position of the tool on the screen.

where a = 14, b = 2, c = 0.3, d = 2, e = 6, σ is the sigmoid function, · denotes a vector dot product.

Here, µi is an action-specific constant kept hidden from the agent to simulate partial observability,

as would be the case in real-world recommender systems. Constants used in the function f make
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the click-through rate, pclick, to be a reasonable number, adapted and modified from Rohde et al.

(2018).

In Section C.5, we also provide results on the fully observable recommender system environment,

where the agent has access to µi as well. Concretely, µi is concatenated to ci to form the action

representation which the learning agent utilizes to generalize.

Reward: There is a dense reward of 1 on every recommendation that receives a user click,

which is determined by pclick computed in Eq A.2.

Action Set Split: The 10,000 products are randomly divided into a 2:1:1 split of train, validation,

and test action sets.

A.3 Chain REAction Tool Environment (CREATE)

Inspired by the popular video game, The Incredible Machine, Chain REAction Tool Environment

(CREATE) is a physics-based puzzle where the objective is to get a target ball (red) to a goal position

(green), as depicted in Figure A.3. Some objects start suspended in the air, resulting in a falling

movement when the game starts. The agent is required to select and place tools to redirect the

target ball towards the goal, often using other objects in the puzzle (like the blue ball in Figure A.3).

The agent acts every 40 physics simulation steps to make the task reasonably challenging and

uncluttered. An episode is terminated when the agent accomplishes the goal, or after 30 actions, or

when there are no moving objects in the scene, ending the game. CREATE was created with the

Pymunk 2D physics library (Blomqvist, n.d.) and Pygame physics engine (Shinners, n.d.).

CREATE environment features 12 tasks, as shown in Figure A.7. Results for 3 main tasks

are shown in Figure 2.5, 2.6 and 9 others in Figure A.8. Concurrently developed related environ-

ments (Allen et al., 2019; Bakhtin et al., 2019) focus on single-step physical reasoning with a few

simple polygon tools. In contrast, CREATE supports multi-step RL, features many diverse tools,

and requires continuous tool placement.
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State: At each time step, the agent receives an 84x84x3 pixel-based observation of the game

screen. Here, each originally colored observation is turned into gray-scale and the past 3 frames are

stacked channel-wise to preserve velocity and acceleration information in the state.

Actions: In total, CREATE consists of 2,111 distinct tools (actions) belonging to the classes

of: ramp, trampoline, lever, see-saw, ball, conveyor belt, funnel, 3-, 4-, 5-, and 6-sided polygon,

cannon, fan, and bucket. 2,111 tools are obtained by generating tools of each class with appropriate

variations in parameters such as angle, size, friction, or elasticity. The parameters of variation are

carefully chosen to ensure that any resulting tool is significantly different from other tools. For

instance, no two tools are within 15◦ difference of each other. There is also a No-Operation action,

resulting in no tool placement.

The agent outputs in a hybrid action space consisting of (1) the discrete tool selection from the

available tools, and (2) (x, y) coordinates for placing the tool on the game screen.

Reward: CREATE is a sparse reward environment where rewards are given for reaching the

goal, reaching any subgoal once, and making the target ball move in certain tasks. Furthermore, a

small reward is given to continue the episode. There is a penalty for trying to overlap a new tool

over existing objects in the scene and an invalid penalty for placing outside the scene. The agent

receives the following reward:

R(s, a) = λalive + λGoal · 1Goal ·

λSubgoal · 1Subgoal · λtarget hit · 1target hit+

λinvalid · 1invalid + λoverlap · 1overlap

(A.3)

where λalive = 0.01, λGoal = 10.0, λSubgoal = 2.0, λtarget hit = 1, and λinvalid = λoverlap = −0.01.

Action Set Split: The tools are divided into a 2:1:1 split of train, validation, and test action

sets. In Default Split presented in the main experiments, the tools are split such that the primary

parameter (angle for most) is randomly split between training and testing. This ensures that the

test tools are considerably different from the training tools in the same class. The validation set is
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obtained by randomly splitting the testing set into half. In Full Split, 1,739 of the total tools are

divided into a 2:1:1 split by tool class, as described in Table A.1.

Train Ramp, Trampoline, Ball, Bouncy Ball,
See-saw, Cannon, Bucket

Validation
and Test

Triangle, Bouncy Triangle, Lever,
Fan, Conveyor Belt, Funnel

Table A.1: Tool classes in the CREATE Full split.

Additionally, we used a total of 7566 tools generated at 3◦ angle differences for analysis

experiments to study generalization properties. HVAE was trained as an oracle encoder over

the entire action set, to get action representations suitable for all three analyses. The policy’s

performance was studied independently by training it on 762 distinct tools with at least 15◦ angle

differences and evaluated based on analysis-specific action sampling from the rest of the tools (e.g.

at least 5◦ apart).

Action Observations: Each tool’s observations are obtained by testing its functionality through

scripted interactions with a probe ball. The probe ball is launched at the tool from various angles, po-

sitions, and speeds. The tool interacts with the ball and changes its trajectory depending on its prop-

erties, e.g. a cannon will catch and re-launch the ball in a fixed direction. Thus, these deflections of

the ball can be used to infer the characteristics of the tool. Examples of these action observations are

shown at https://sites.google.com/view/action-generalization/create.

The collected action observations have 1024 ball trajectories of length 7 for each tool. The

trajectory is composed of the environment states, which can take the form of either the 2D ball

position (default) or 48x48 gray-scale images. The action representation module learns to reconstruct

the corresponding data mode, either state trajectories or videos, for obtaining the corresponding

action representations. Different types of action representations used are described and visualized

in Section B.
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A.4 Shape Stacking

In Shape Stacking, the agent must place shapes to build a tower as high as possible. The scene

starts with two cylinders of random heights and colors, dropped at random locations on a line, which

the agent can utilize to stack towers. For each action, the agent selects a shape to place and where to

place it. The agent acts every 300 physics simulator steps to give time for placed objects to settle

into a stable position. The episode terminates after 10 shape placements.

State: The observation at each time step is an 84x84 grayscale image of the shapes lying on the

ground. We stack past 4 frames to preserve previous observations in the state.

Actions: The action consists of a discrete selection of the shape to place, the x position on the

horizontal axis to drop the shape, and a binary episode termination action. The height of the drop is

automatically calculated over the topmost shape, enabling a soft drop. If a shape has already been

placed, trying to place it again does nothing. There are a total of 810 shapes of classes: triangle,

tetrahedron, rectangle, cone, cylinder, dome, arch, cube, sphere, and capsule. These shapes are

generated by varying the scale and vertical orientation in each shape class. The parameter variance

is carefully chosen to ensure all the shapes are sufficiently different from each other.

In Figure A.13, we compare various hybrid action spaces with shape selection. We study

different ways of placing a shape: dropping at a fixed location, or deciding x-position, or deciding

(x, y)-positions.

Reward: To encourage stable and tall towers, there is a sparse reward at episode end, for the

final height of the topmost shape in the scene, added to the average heights of all N shapes in the

scene:

R(s) = (λtopmax(hi) + λavg
1

N

∑
i

hi) · 1Done, (A.4)

where hi is the height of shape i and λtop = λavg = 0.5.

Action Set Split: The shapes are divided into a 2:1:1 split of train, validation, and test action

sets. In Default Split presented in the main experiments, the shapes are split such that the primary
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parameter of scale is randomly split between training and testing. This ensures that test tools are

considerably different in scale from the train tools in the same class. The validation set is obtained

by randomly splitting the test set into half. In Full Split, the split is determined by shape class, as

shown in Table A.2.

Train Domes, Rectangles, Capsules, Triangles,
Arches, Spheres

Validation
and Test

Cylinders, Tetrahedrons, Cubes, Cones,
Angled-Rectangles, Angled-Triangles

Table A.2: Shape classes in the Shape Stacking Full split.

Action Observations: In Shape Stacking the functionality of each action is characterized by the

physical appearance of the shape. Thus, the action observations consist of images of the shape from

various camera angles and heights. Each shape has 1,024 observed images of resolution 84x84.

Examples of these action observations are shown at https://sites.google.com/view/

action-generalization/shape-stacking.

B Visualizing Action Representations

State Trajectories (Default) Non-Hierarchical VAE EngineeredOne-hot (Alternate Data)

Figure A.4: t-SNE Visualization of learned skill representation space for Grid World environment.
Colored by the quadrant that the skill translates the agent to.

In this work, we train and evaluate a wide variety of action representations based on environ-

ments, data-modality, presence or absence of hierarchy in action encoder, and different action splits.

We describe these in detail and provide t-SNE visualizations of the inferred action representations

of previously unseen actions. These visualizations show how our model can extract information
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Non-Hierarchical VAEState Trajectories (Default) Videos (Alternate Data) Full-split

Figure A.5: t-SNE Visualization of learned tool representation space for CREATE environment.
Colored by the tool class.

Viewpoints (Default) Non-Hierarchical VAE Full-split

Figure A.6: t-SNE Visualization of learned action representation space for the Shape-stacking
environment. Colored by the shape class.

about properties of the actions, by clustering similar actions together in the latent space. Unless

mentioned otherwise, the HVAE model is used to produce these representations.

Grid World: Figure A.4 shows the inferred action or skill representations in Grid World. The

actions are colored by the relative change in the location of the agent after applying the skill. For

example, the skill ”Up, Up, Up, Right, Down” would translate the agent to the upper right quadrant

from the origin, hence visualized in red color. All learned action representations are 16-dimensional.

We plot the following action representations:

• State Trajectories (default): HVAE encodes action observations consisting of trajectories of 2D

(x, y) coordinates of the agent on the 80x80 grid.

• Non-Hierarchical VAE (baseline): A standard VAE encodes all the state-based action observations

individually, and then computes the action representation by taking their mean.
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(a) Push (b) Obstacle (c) Seesaw (d) Belt (e) Bucket (f) Cannon

(g) Navigate (h) Collide (i) Moving (j) Ladder (k) Basket (l) Funnel

Figure A.7: 12 CREATE tasks. Complete results on (a) - (c) are in Figure 2.5, 2.6, while (d) - (l)
are in Figure A.8.

• One-hot (alternate): State is represented by two 80-dimensional one-hot vectors of the agent’s x

and y coordinates on the 80x80 grid. Reconstruction is based on a softmax cross-entropy loss

over the one-hot observations in the trajectory.

• Engineered (alternate): These are 5-dimensional representations containing the ground-truth

knowledge of the five moves (up, down, left, right) that constitute a skill. The clustering of our

learned representations looks comparable to these oracle representations.

CREATE: Figure A.5 shows the inferred action or tool representations in CREATE. The actions

are colored by tool class. All action representations are 128-dimensional.

• State Trajectories (default): HVAE encodes action observation data composed of (x, y)

coordinate states of the probe ball’s trajectory.

• Non-Hierarchical VAE (baseline): A standard VAE encodes all the state-based action obser-

vations individually, and then computes the action representation by taking their mean.

• Video (alternate): HVAE encodes action observation data composed of 84x84 grayscale

image-based trajectories (videos) of the probe ball interacting with the tool. The data is

collected identically as the state case, only the modality changes from state to image frames.
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Figure A.8: Results on the remaining 9 CREATE tasks with the same evaluation details as the main
paper (Figure 2.5). We compare our method against all the baselines (Section 2.5.3) and ablations
(Section 2.5.4).

• Full Split: HVAE encodes state-based action observations, however, the training and testing

tools are from the Full Split experiment. The visualizations show that even though training

tools are vastly different from evaluation tools, HVAE generalizes and clusters well on unseen

tools.

Shape Stacking: Figure A.6 shows the inferred action representations in Shape Stacking. The

shapes are colored according to shape class. All action representations are 128-dimensional.

• Viewpoints (default): HVAE encodes action observations in the form of viewpoints of the

shape from different camera angles and positions.
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Figure A.9: Finetuning or training the policy from scratch on the new action space across the
remaining 5 tasks (Figure 2.10 only shows results on CREATE Push). The evaluation settings are
the same as described in Section 2.6.4.

• Non-Hierarchical VAE (baseline): A standard VAE encodes all the image-based action

observations individually, and then computes the action representation by taking their mean.

• Full-split: The training and testing tools are from the Full Split experiment. Previously unseen

shape types are clustered well, showing the robustness of HVAE.

C Further Experimental Results

C.1 Additional CREATE Results

Figure A.7 visually describes all the CREATE tasks. The objective is to make the target ball

(red) reach the goal (green), which may be fixed or mobile. Figure A.8 demonstrates our method’s

results on the remaining nine CREATE tasks (the initial three tasks are in Figure 2.5, 2.6). Strong

training and testing performance on a majority of these tasks shows the robustness of our method.

The developed CREATE environment can be easily modified to generate more such tasks of varying
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difficulties. Due to the diverse set of tools and tasks, we propose CREATE and our results as a

useful benchmark for evaluating action space generalization in reinforcement learning.

C.2 Additional Finetuning Results

We present additional results of finetuning and training from scratch to adapt to unseen actions

across all CREATE Obstacle, CREATE Seesaw, Shape Stacking, Grid World, and Recommender.

In the results presented in Figure A.9, we observe the same trend holds where additional training

takes many steps to achieve the performance our method obtains zero-shot.

C.3 CREATE: No Subgoal Reward

To verify our method’s robustness, we also run experiments on a version of the CREATE

environment without the subgoal rewards. The results in Figure A.10 verify that even without

reward engineering, our method exhibits strong generalization, albeit with higher variance in train

and testing performance.

C.4 Auxiliary Policy Alternative Architecture

While in our framework, the auxiliary policy is computed from the state encoding alone, here we

compare to also taking the selected discrete-action as input to the auxiliary policy. Comparison of

this alternative auxiliary policy to the auxiliary policy from the main paper is shown in Figure A.11.

There are minimal differences in the average success rates of the two design choices.

C.5 Fully Observable Recommender System

Figure A.12 demonstrates our method in a fully observable recommender environment where

the product constant µi from Eq. A.2 is also included in the engineered action representation. All

methods achieve better training and generalization performance compared to the original partially

observable Recommender System environment. However, full observability is infeasible in practical
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Figure A.10: Comparison of a version of CREATE that does not use subgoal rewards. The “Main”
methods are from the main paper using subgoal rewards (Figure 2.5).

recommender systems. Therefore, we focus on the partially observed environment in the main

results.

C.6 Additional Shape Stacking Results

Figure A.13 demonstrates performance on different shape placement strategies in Shape Stacking

using our framework. In No Place, the shapes are dropped at the center of the table, and the agent

only selects which shape to drop from the available set. Since there are two randomly placed

cylinders on the table, this setting of dropping in the center gives less control to the agent while

stacking tall towers. Thus we report default results on 1D Place, where the agent outputs in a

hybrid action space consisting of shape selection and 1D placement through x-coordinate of the

dropping location. The y-coordinate of the drop is fixed to the center. Finally, in 2D Place, the

agent decides both x and y coordinates to have more control but makes the task more challenging

due to the larger search space. The evaluation videos of these new settings are available on https:

//sites.google.com/view/action-generalization/shape-stacking.
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Figure A.11: Comparison of an alternative auxiliary network architecture that is conditioned on the
selected discrete action. The “Main” results are the default results that do not condition the auxiliary
policy on the selected action (Figure 2.5).

Figure A.13 also shows the results of our method trained and evaluated on Full Split which

was introduced in Table A.2. Poor performance on this split could be explained by the policy not

seeing enough shape classes during training to be able to generalize well to new shape classes

during testing. This is also expected since this split severely breaks the i.i.d. assumption essential

for generalization (Bousquet et al., 2003).

C.7 Learning Curves

Figure A.14 show the training and validation performance curves for all methods and environ-

ments to contrast the training process of a policy against the objective of generalization to new

actions. The plots clearly show how the generalization gap varies over the training of the policy.

Ablation curves (last two columns) for some environments depict that an increase in training perfor-

mance corresponds to a drop in validation performance. This is attributed to the policy overfitting to
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Ours 

Ours w/o subsamplingOurs w/o entropy 

Continuous Output Nearest neighbor

Figure A.12: Training and testing results on the fully observable version of Recommender System
with standard evaluation settings.

the training set of actions, which is often observed in supervised learning. Our proposed regularizing

training procedure aims to avoid such overfitting.

D Experiment Details

Hyperparameter Grid world Recommender CREATE Shape Stacking

HVAE

action representation size 16 16 128 128
batch size 128 - 128 32
epochs 10000 - 10000 5000

Policy

entropy coefficient 0.05 0.01 0.005 0.01
observation space 81 16 84× 84× 3 84× 84× 4
actions per episode 50 500 50 20
total environment steps 4× 107 4× 107 6× 107 3× 106

max. episode length 10 100 30 10
continuous entropy scaling - - 0.1 0.1
PPO batch size 4096 2048 3072 1024

Table A.3: Environment-specific hyperparameters for Grid World, Recommender, CREATE, and
Shape Stacking tasks relevant to HVAE and policy.
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1D Place (Main) No Place 2D Place Full Split

Figure A.13: Comparing different placement strategies in shape stacking and showing performance
on the Full Split action split. Results are using our method with the standard evaluation details.

D.1 Implementation

We use PyTorch (Paszke et al., 2017) for our implementation, and the experiments were primarily

conducted on workstations with 72-core Intel Xeon Gold 6154 CPU and 4 NVIDIA GeForce RTX

2080 Ti GPUs. Each experiment seed takes about 6 hours (Recommender) to 25 hours (CREATE) to

converge. For logging and tracking experiments, we use the Weights & Biases tool (Biewald, 2020b).

All the environments were developed using the OpenAI Gym interface (Brockman et al., 2016). The

HVAE implementation is based on the PyTorch implementation of Neural Statistician (Edwards and

Storkey, 2017), and we use RAdam optimizer (Liu et al., 2019). For training the policy network,

we use PPO (Schulman et al., 2017a; Kostrikov, 2018) with the Adam optimizer (Kingma and Ba,

2014). Further details can be found in the supplementary code.1

1Code available at https://github.com/clvrai/new-actions-rl
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D.2 Hyperparameters

The default hyperparameters shared across all environments are shown in Table A.4 and

environment-specific hyperparameters are given in Table A.3. We perform linear decay of the

learning rate over policy training.

Hyperparameter Value

HVAE

learning rate 0.001
action observations 1024
MLP hidden layers 3
qϕ hidden layer size 128
default hidden layer size 64

Policy

learning rate 0.001
discount factor 0.99
parallel processes 32
hidden layer size 64
value loss coefficient 0.5
PPO epochs 4
PPO clip parameter 0.1

Table A.4: General Hyperparameters for HVAE and policy shared across environments

D.2.1 Hyperparameter Search

Initial HVAE hyperparameters were inherited from the implementation of Edwards and Storkey

(2017) and PPO hyperparameters from Kostrikov (2018). The hyperparameters were finetuned to

optimize the performance on the held-out validation set of actions. Certain hyperparameters were

sensitive to the environment or the method being trained and were searched for more carefully.

Specifically, entropy coefficient is a sensitive parameter to appropriately balance the ease of re-

ward maximization during training versus the generalizability at evaluation. For each method and en-

vironment, we searched for entropy coefficients in subsets of {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1},

and selected the best parameter based on the performance on the validation set. We found PPO

batch size to be an important parameter affecting the speed of convergence, convergence value, and
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variance across seeds. Thus, we searched for the best value in {1024, 2048, 3072, 4096} for each

environment. Total environment steps are chosen so all the methods and baselines can run until

convergence.

D.3 Network Architectures

D.3.1 Hierarchical VAE

Convolutional Encoder: When the action observation data is in image or video form, a

convolution encoder is applied to encode it into a latent state or state-trajectory. Specifically, for

CREATE video case, each action observation is a 48x48 grayscale video. Thus, each frame of

the video is encoded through a 7-layer convolutional encoder with batch norm (Ioffe and Szegedy,

2015). Similarly, for Shape Stacking, the action observation is an 84x84 image, that is encoded

through 9 convolutional layers with batch norm.

Bi-LSTM Encoder: When the data is in trajectory form (as in CREATE and Grid World), the

sequence of states are encoded through a 2-layer Bi-LSTM encoder. For CREATE video case, the

encoded image frames of the video are passed through this Bi-LSTM encoder in place of the raw

state vector. After this step, each action observation is in the form of a 64-dimensional encoded

vector.

Action Inference Network: The encoded action observations are passed through a 4-layer

MLP with ReLU activation, and then aggregated with mean-pooling. This pooled vector is passed

through a 3-layer MLP with ReLU activation, and then 1D batch-norm is applied. This outputs the

mean and log-variance of a Gaussian distribution qϕ, which represents the entire action observation

set, and thus the action. This is then used to sample an action latent to condition reconstruction of

individual observations.

Observation Inference Network: The action latent and individual encoded observations are

both passed through linear layers and then summed up, and followed by a ReLU nonlinearity. This

combined vector is then passed through two 2-layer MLPs with ReLU followed by a linear layer, to

output the mean and log-variance of a Gaussian distribution, representing the individual observation
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conditioned on the action latent. This is used to sample an observation latent, which is later decoded

back while being conditioned on the action latent.

Observation Decoder: The sampled observation latent and its action latent are passed through

linear layers, summed and then followed by a nonlinearity. For non-trajectory data (as in Shape

Stacking), this vector is then passed through a 3-layer MLP with ReLU activation to output the

decoded observation’s mean and log-variance (i.e. a Gaussian distribution). For trajectory data (as

in CREATE and Grid World), the initial ground truth state of the trajectory is first encoded with

a 3-layer MLP with ReLU. Then an element-wise product is taken with the action-observation

combined vector. The resulting vector is then passed through an LSTM network to produce the

latents of future states of the trajectory. Each future state latent of the trajectory goes through a 3-

layer MLP with ReLU, to result in the mean and log-variance of the decoded trajectory observation

(i.e. a Gaussian distribution).

Convolutional Decoder: If the observation was originally an image or video, then the mean of

the reconstructed observation is converted into pixels through a convolutional decoder consisting

of 2D convolutional and transposed-convolutional layers. For the case of video input, the output

of the convolutional decoder is also channel-wise augmented with with a 2D pixel mask. This

mask is multiplied with the mean component of the image output (i.e. log-variance output stays

the same), and then added to the initial frame of the video. This is the temporal skip connection

technique (Ebert et al., 2017), which eases the learning process with high-dimensional video

observation datasets.

Finally, the reconstruction loss is computed using the Gaussian log-likelihood of the input

observation data with respect to the decoded distribution.

D.3.2 Policy Network

State Encoder fω: When the input state is in image-form (channel-wise stacked frames in

CREATE and Stacking), fω is implemented with a 5-layer convolutional network, followed by a
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linear layer and ReLU activation function. When the input is not an image, we use 2-layer MLP

with tanh activation to encode the state.

Critic Network V : For image-based states, the output of the state encoder fω is passed through

a linear layer to result in the value function of the state. This is done to share the convolutional

layers between the actor and critic. For non-image states, we use 2-layer MLP with tanh activation,

followed by a linear layer to get the state’s value.

Utility Function fν : Each available action’s representation c is passed through a linear layer

and then concatenated with the output of the state encoder. This vector is fed into a 2-layer MLP

with ReLU activation to output a single logit for each action. The logits of all the available actions

are then stacked and input to a Categorical distribution. This acts as the policy’s output and is used

to sample actions, compute log probabilities, and entropy values.

Auxiliary Policy fχ: The output of the state encoder is also separately used to compute auxiliary

action outputs. For CREATE and Shape Stacking, we have a 2D position action in [−1, 1]. For such

constrained action space, we use a Beta distribution whose α and β are computed using linear layers

over the state encoding. Concretely, α = 1 + softplus(fcα(fω(s)) and β = 1 + softplus(fcβ(fω(s)),

to ensure their values lie in [1, ∞]. This in turn ensures that the Beta distribution is unimodal

with values constrained in [0,1] (as done in (Chou et al., 2017)), which we then convert to [-

1,1]. The Shape Stacking environment also has a binary termination action for the agent. This

is implemented by passing the state encoding through a linear layer which outputs two logits

(for continuation/termination) of a Categorical distribution. The auxiliary action distributions are

combined with the main discrete action Categorical distribution from fν . This overall distribution is

used to sample hybrid actions, compute log probabilities, and entropy values. Note, the entropy

value of the Beta distribution is multiplied by a scaling factor of 0.1, for better convergence.
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Figure A.14: Learning curves for all environments and methods showing performance on both the
training and validation sets. Each line shows the performance of 5 random seeds (8 for Grid World)
as average value and the shaded region as the standard deviation.
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Appendix B

Know Your Action Set in Varying Action Spaces via Action

Relations

A Environment Details

A.1 Dig Lava Grid Navigation

The grid world environment, introduced in Sec. 3.5.1, requires an agent to reach a goal by

navigating a 2D maze with two lava rivers using a variable set of skills.

State: The state space is a concatenation of two flattened 9x9 grids:

1. Environment: each grid element is an integer ID representing whether the cell is empty,

orange-lava, pink-lava, goal, or sub-goal

2. Agent: an empty grid except for 1 at agent-coordinates.

Termination: An episode is terminated in success when the agent reaches the goal and in failure

when it stays in lava for two consecutive timesteps or after a total of 50 timesteps. Note that the

agent can leave a lava cell only using the dig lava skill of the corresponding color.

Actions: The base action set is a fixed set of 9 skills and in each episode, a set of 7 skills is

given to the agent. 5 skills are always available: move-right, move-down, move-left, move-up, and

turn-left. The other 2 skills are randomly sampled from a set of 4 skills: turn-right, step-forward,

dig-orange-lava, and dig-pink-lava.
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Reward: The agent receives a large goal reward on reaching the goal. There are two subgoal

rewards for a successful crossing of each lava column (i.e. column 4 and column 8) for the first

time. The goal and subgoal rewards are discounted based on the number of action steps taken to

reach that location, thus rewarding shorter paths. To further encourage shorter paths, successful lava

digging is rewarded. A small exploration reward is added whenever the agent visits a new cell in the

episode. The exploration reward is accumulated and subtracted when the agent reaches a subgoal or

a goal to ensure that the exploration reward does not hinder learning short paths. Thus,

R(s, a) = 1Goal ·
[
RGoal

(
1− λGoal

Ncurrent steps

Nmax steps

)
−RExploration Nsteps from prev subgoal

]
+

1Subgoal ·
[
RSubgoal

(
1− λSubgoal

Ncurrent steps

Nmax steps

)
−RExploration Nsteps from prev subgoal

]
+

1Successful Dig ·RDig + 1New State ·RExploration

(A.1)

where RGoal = 100, RSubgoal = 0.5, RExploration = 0.01, RDig = 0.01,

λGoal = 0.99, λSubgoal = 0.9, Nmax steps = 50

Action Representations: The action representations are 11-dimensional vectors manually

defined using a mix of one-hot vectors, as shown in Table B.1. Dimensions 1-5 identify the category

of skills (movement, elemental, dig-orange, dig-pink), 6-7 distinguish movement skills (right, down,

left, up), 8-9 are always 0 (originally meant for diagonal skills), 10-11 are used to distinguish

elemental skills (turn-left, turn-right, move-forward).

A.2 Chain REAction Tool Environment (CREATE)

The CREATE environment (Sec. 3.5.2) requires an agent to place tools in a physics-based puzzle

to make the target ball reach the goal position. We follow all the base settings of the CREATE Push

Environment from Jain et al. (2020). We add the functionality of new activator tools and reduce the

number of available actions per episode from 50 to 25.
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Category Skill Action Representation

Movement

move-right 0 0 0 0 1 -1 -1 0 0 0 0
move-down 0 0 0 0 1 -1 1 0 0 0 0
move-left 0 0 0 0 1 1 -1 0 0 0 0
move-up 0 0 0 0 1 1 1 0 0 0 0

Elemental
turn-left 0 0 1 0 0 0 0 0 0 -1 1

turn-right 0 0 1 0 0 0 0 0 0 1 -1
move-forward 0 0 1 0 0 0 0 0 0 1 1

Digging
dig-orange 0 1 0 0 0 0 0 0 0 0 0
dig-pink 1 0 0 0 0 0 0 0 0 0 0

Table B.1: Action representations for the skills used in Dig Lava Grid Navigation environment.

State: The agent receives the past three gray-scale frames, which are stacked channel-wise to

make a 84x84x3 input.

Termination: The episode ends in success when the agent accomplishes the goal and in failure

when there is no remaining movement in the game or after 30 timesteps.

Actions: Each original tool from CREATE is now associated with newly added activator tools

as shown in Figure B.1. Thus, we add 5 activator tools to the 2110 general tools, which are variations

in angle, size, friction, or elasticity of the tools shown in Figure B.1. Unlike Jain et al. (2020), we

remove the No-Operation action. Activator tools are pass-through tools and only serve the function

of activating their corresponding general tools when placed in contact.

We split the general tool space into 1098 tools for training, 507 tools for validation, and 507

tools for testing. All 5 activator tools are available for sampling during training, validation, and

testing. In each episode, 23 general tools and 2 activator tools are randomly sampled and made

available to the agent. The agent outputs in a hybrid action space consisting of (1) the discrete tool

selection and (2) (x, y) coordinates of tool position.

Reward: We adopt the reward structure from Jain et al. (2020). CREATE Push is a sparse

reward environment with rewards for reaching the goal and making the target ball move. There is

an additional alive reward to continue the episode. Placements outside the scene are penalized. The

original CREATE environment penalizes overlapping tools. However, since overlapping activators

and general tools is required for solving tasks, we modify the overlap penalty to apply only when
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Cannon (CNN) Hinge or Lever (HNG) Hinge Constrained (HGC) See-Saw (SS)

Trampoline (TRP) Bouncy Ball (BBL) Bouncy Box (BBX) Bouncy Polygons

Ramp (RMP) Fixed Ball (FBL) Fixed Box (FBX) Fixed Polygons

Funnel (FNL) Bucket (BKT)

Fan (FAN) Belt (BLT)

Spring

Magnet

Fire

Water

Electric

Figure B.1: CREATE Activator Mapping: Original CREATE tools (right) are activated by the
respective newly introduced activator tools (left). E.g., a Cannon tool (abbreviated as CNN in
attention maps) placed on the environment will only be functional when a Fire tool is placed in
contact with it. Other objects are not affected by non-functional tools - they simply pass through.

either both are general tools or both are activator tools. Thus, the agent receives the following

reward:

R(s, a) = Ralive + 1Goal ·RGoal + 1target hit ·Rtarget hit + 1invalid ·Rinvalid + 1overlap ·Roverlap

(A.2)

where Ralive = 0.01, RGoal = 10.0, Rtarget hit = 1, and Rinvalid = Roverlap = −0.01.

Action Representations: Each action representation is a 134-dimensional vector, a concatena-

tion of two 128-D and 6-D vectors, as shown in Table B.2. The 128-D vector corresponds to the

learned characteristics of the tool, and the 6-D vector is a binary vector denoting whether the tool is

a general tool, an activator tool, or a no-op tool (no-op is disabled for experiments).
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For general tools, Jain et al. (2020) obtain action representations using a Hierarchical VAE. They

encode a set of tool observations into a latent representation. Each tool is made to interact with a

probing ball launched from various angles, positions, and speeds. The tool characteristics can be

inferred from this collection of tool interactions. We utilize these 128-D learned tool representations

from Jain et al. (2020) for the general tools and pad them with a 6-D zero-vector. Generalization to

unseen tools is possible because a trained agent can utilize the 128-D tool embedding to extract

the relevant characteristics of any given tool. The agent must infer which activator a general tool is

associated with using its tool embedding.

For activator tools, the first 128 dimensions are always zero, and the final 6 dimensions corre-

spond to a one-hot vector, each for {no-op, Fire, Water, Electric, Magnet, Spring}.

Tool Action Representation

General Tools Learned 128-D tool characteristics 0 0 0 0 0 0
No-Op 128-D Zero Vector 1 0 0 0 0 0

Fire 128-D Zero Vector 0 1 0 0 0 0
Water 128-D Zero Vector 0 0 1 0 0 0

Electric 128-D Zero Vector 0 0 0 1 0 0
Magnet 128-D Zero Vector 0 0 0 0 1 0
Spring 128-D Zero Vector 0 0 0 0 0 1

Table B.2: Action representations for the tools in CREATE environment.

A.3 RecSim

The simulated RecSys environment (RecSim in Sec. 3.5.3), requires an agent to select a list of

items that match the user’s interest out of a variety of recommendable items. We simulate users that

have a preference over high-CPR lists (Sec 3.5). The agent’s task is to infer this preference from

user clicks and recommend a list of items to optimize both user interest and CPR.

State: The state is represented by the user interest embedding (eu ∈ Rn where n denotes the

number of categories of items) in categories that transitions over time as the user consumes different
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items upon click. So, when the user clicks an item with the corresponding item embedding(ei ∈ Rn)

then the user interest embedding(eu) will be updated as follows,

∆(eu) = (−y|eu|+ y) · (1− eu), for y ∈ [0, 1]

ei ← eu +∆(eu) with probability[eTu ei + 1]/2

eu ← eu −∆(eu) with probability[1− eTu ei]/2

This essentially pulls the user’s preference towards the item that was clicked.

Action: The base action set is a set of 500 items (250 for each train and test action set), and in

each episode, a sampled subset of size 20 is given to the agent. To simulate the varying action space

environment, we implemented the most common category sampling method to form the candidate-

set. Here, the majority of items are sampled from one common category, and the remaining items

are sampled from other categories. In this way, identifying the most common category is crucial

to recommend a coherent list of items. Note that if we just sampled items uniformly across all

categories, then CPR maximization would be less interesting as no single category has the potential

to fill the entire list of items (i.e., achieve maximum CPR).

Reward: The base reward is a simulated response (e.g., clicks) from users (the user model (Ie

et al., 2019a) stochastically skips or clicks an item in the list based on the user interest embedding).

To better simulate the realistic scenario of user preference being affected by CPR of a presented list,

we implement additional features in the user model:

scoreitem = αuser ∗ ⟨eu, ei⟩+ αmetric ∗m

pitem =
esitem∑
esitem

R = fclick or skip(pitem)

where, eu, ei ∈ Rn are the user and item embedding, respectively, ⟨·, ·⟩ is the dot product notation

and αuser, αmetric,m ∈ R where m denotes the list-metric (e.g., CPR-score). So, given the score

scoreitem of an item, the user model computes the click likelihood through a softmax function over
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Figure B.2: t-SNE visualization of synthetically generated items in RecSim.

all items and a predefined skip-item followed by a categorical distribution (fclick or skip). It takes the

computed likelihood and outputs either click (reward=1) or skip (reward=0) as user feedback.

Action Representations: Originally, Ie et al. (2019a) use the discrete representation of items

based on the one-hot encoding of item-category. However, this does not support generalization

over items (actions). Therefore, we implement continuous item representations sampled from a

Gaussian Mixture Model (GMM) with centers around each item category. Each item category has

two sub-categories for items, which are also clustered. This ensures that the action representation

contains information about the primary and sub-categories. Fig. B.2 shows the t-SNE visualization

of action representations for the 500 items, based on a GMMs. There are 10 main categories that

each have two sub-categories. Figure B.2a shows item representations labeled according to the

primary category. Figure B.2b shows item representations clustered according to sub-category.

A.4 Real-data recommender system

The real-data RecSys environment (Sec. 3.5.3) requires an agent to select a list of items that

match the user’s interest out of a variety of recommendable items. We experiment with the scenario

in which domain engineers want an RL agent’s list-actions to conform to user preference while

optimizing a listwise metric. Since having a high CPR is correlated with better user response (Hao

et al., 2020), we use CPR as the additional listwise metric. Thus, we reward the agent based on (i)
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Train UM
Test UM

Test F1 Score Train F1 Score

Figure B.3: Real-Data Recommender System: F1 Score for Training/test user models. (Left) The
online user model is trained on online-training data and evaluated on both online-training (green)
and online-held-out (orange) data. (Right) The offine user model is trained on offline-training data
and evaluated on both offline-training (green) and offline-held-out data (orange). Thus, the disparity
between online data training and evaluation curves (left) shows that it is hard to train the online user
model. In contrast, the offline user model generalizes reasonably well (right).

user models trained from real data and (ii) CPR of the recommended list of items. We collected the

dataset from two different periods, two weeks in late August in 2021 as the offline period (used for

training) and the following two weeks from early September in 2021 as the online period (used for

evaluation).

State: The state is a concatenation of a sequence of historical user interactions. Concretely, a

set of item representations (32 dimensional real vectors) of the three most recent clicked items (i.e.,

32×3 matrix) are appended individually to the user attributes (137 dimensional real vectors) such as

age, occupation, and localities. Therefore, the state is in the form of 507 = 169×3 = (32+137)×3.

To act optimally, the agent must extract the useful representation of the user preference through this

historical observation.

Action: The base action set is a set of 85 items, and in each episode, a sampled subset of size

20 is given to the agent. We employed the same sampling methods as in Sec. A.3. So, the agent

needs to select a list of 6 items given the sampled candidate set of 20 items.

Reward: The base reward is a simulated response (click or skip) from the user model trained

from real-world data. We add the CPR metric (between 0 to 1) to this click reward (1 or 0). The

agent’s objective is to optimize user preference and the CPR of the list of items it recommends.
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Figure B.4: (a) t-SNE visualization of split of train and test item representations. This shows that
the train and test items are within the same distribution (b) Visualizations of item representations
clustered according to the main category. This shows that item representations contain information
about the main category, which is necessary to maximize CPR. (c) Item distribution labeled
according to sub category, which is another information necessary for CPR.

Training of User models: We follow the two different periods (offline and online) in the data

extraction procedure. Thus, we trained two different user models (fuser : S × Alist-size → R)

to (i) train the agents offline and (ii) evaluate them with online users. The result of training

those user models can be found in Figure B.3 (a). Thus, the reward is computed as follows;

R = fuser(euser, eitem)+m where fuser is either the offline user model or the online user model that

provides us with the simulated response of users (e.g., click or skip). The user model architectures

are described in Sec. C.3.5.

Action Representation: In the previous work CDQN (Chen et al., 2019a)), the authors

found it useful to characterize the items by wide and deep features. For example, their movie

recommendation task considered the text description as the wide feature and the movie category as

the deep feature. And they utilized the Wide and Deep Network (Cheng et al., 2016) to get useful

representations of items. Following their work, we used the wide and deep network to pretrain

the item embedding given the rich item features in the real-world data. However, we empirically

observed that employing VAEs for each wide and deep feature of items leads to the better-segregated

representation of items. Therefore, given an item instance, we separate the raw item attributes into

the deep attributes (e.g., reward points of campaigns) and the wide attributes (e.g., text description),

which are then fed into the VAE based wide and deep network to get the compressed representation

by combining the wide and the deep features together. See Sec C.3.4 for more details about the

network architecture. Thus, each action representation is a 32-dimensional vector encoded by a
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VAE based Wide and Deep network. The learned representations of items are visualized based on

the train-test split, distribution of the main category, and distribution of sub-category in Figure B.4.

B Further Experimental Results

B.1 Effect of using domain knowledge in action graph edges

To show how to incorporate domain knowledge about action relations into the action graph

(discussed in Section 3.4), we use the Dig Lava Grid World environment. Specifically, we use the

knowledge that directional actions are always available. Thus, the only relevant action relations are

the ones with the variable actions, i.e., 2 out of 4 actions (including both dig-lava skills). So, while

building the action graph, we only keep connections to and from the 2 variable actions instead of

having a fully-connected structure. The rest of the AGILE architecture and algorithm stays the same.

This reduces the number of bidirectional edges from 72 = 49 to 29 by removing 20 edges between

the always available actions. As shown in Figure B.5, the learning speed of AGILE is slightly

accelerated, and the seed variance has reduced. We expect domain knowledge to help efficiency

even more, when the action space is large since the edges scale quadratically.

0 2 4 6 8
Environment steps (1M)

0

16

32

48

64

Re
wa

rd

Dig Lava Grid World

AGILE
AGILE-Pre-Defined-Graph

(a) Training Curve: Slightly faster (b) Attention Map: Fewer edges

Figure B.5: Effect of using domain knowledge to predefine the possible relations via edges in the
action graph of AGILE. We know that in the Grid Navigation task, only the action relations with
respect to variable actions are important. Thus, we remove all the other edges. This makes the
learning slightly faster and more stable as shown by a reduction in seed variance. (5 seeds)
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(b) Design choices

Figure B.6: Results of value-based AGILE on RecSim CPR task (a) hyperparameter testing and (b)
validating architecture design choices, on train actions (left) and test actions (right).

B.2 Validating design choices for value-based AGILE

We conducted an exhaustive search on the architecture of value-based AGILE from two different

perspectives; (a) Hyper-parameters and (b) Architectures. Note that the same hyper-parameter search

procedure of this section was applied to all other methods, and the same trend of the improvement

in AGILE was found for other methods. In this section, AGILE used in the main results (Fig. 3.4,

3.5, 3.7) is called AGILE-Tuned. The barebone version of AGILE-Tuned is called AGILE-Untuned.

We illustrate how each change contributes to an improvement in performance.
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Figure B.7: Comparison against the baselines on train (top) and test (bottom) actions on the Direct
CPR (left) and Pairing (right) RecSim environments. Along with Figure 3.4, these results exhibit
the same trend that AGILE consistently outperforms all the baselines on both train and test actions.

B.2.1 Hyper-parameter Search in AGILE

• AGILE-Tuned without sync-freq-change: In Mnih et al. (2015), the authors used the periodic

syncing between the target and the main networks to alleviate the issue of frequently moving

Q-value targets. In this work, we compare two extreme cases of the sync frequency: 10 depicted

by Sync-freq=10 in Fig. B.6 (a) and 500 depicted by AGILE-Tuned.

• AGILE-Tuned without graph-dim-change: To understand the difficulty in expressing the

action relations through a compact representation, we compare two hidden dimension sizes. The

node-features are encoded in 32 (Graph-dim=32) or 64(AGILE-Tuned) dimensions.

Figure B.6(a) shows the result on both train and test actions. AGILE-Tuned outperformed all

the methods. Graph-dim=32 is slightly worse than AGILE-Tuned and Sync-freq=10 fails to learn

anything meaningful. Thus, frequently moving target network harms the agent’s performance while

sufficient expressiveness in the action graph improves the performance.
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Figure B.8: Comparison against ablations on the Direct CPR (left) and Pairing (right) RecSim
environments. Along with Figure 3.5, these results exhibit the same trend that AGILE slightly
outperforms the various summary ablations, which do not explicitly utilize relational action features
and rely only on the summary vector to encode all the necessary action relations.

B.2.2 Design Choices of AGILE

• AGILE-Tuned with pre-summarizer: In AGILE-Tuned, the concatenation of an action repre-

sentation and the state is a node feature input to the GAT (Sec.C.3.1)). Here, we experiment and

observe that adding a 2-layer MLP with ReLU over the node features does not help performance.

• AGILE-Tuned without target-q-change: Chen et al. (2019a) compute the target q-values for

training CDQN using the list-action at the next time-step. But, there is another potential target

q-value from the next item in the current list-action. Here, we compare these two methods to get

the target q-value: (a) intra-list(AGILE-Tuned): the target q-value is from the next list index. (b)

across-list (No target-q change): the target q-value is from the next timestep.

• AGILE-Tuned without twinGAT-change: In AGILE, the GAT output provides the utility

network with the relational action representation and the action summary. Here, we compared

two options: (a) Sharing GAT (No twin-GAT): there is a single GAT working to provide both of

them. (b) Non-sharing GAT (AGILE-Tuned): this employs two different GATs for each.

• AGILE-Tuned without main/target-encoder-separation-change: In the implementation of

AGILE, we compared two different architectural decisions. (a) No main-target separation:

Separate the list-action encoder in CDQN for main and target Q-networks. (b) AGILE-Tuned:

share the same list-action encoder for main and target Q-networks.
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Figure B.6(b) shows the result on both train and test actions. AGILE-Tuned, With pre-summrizer,

and No twin-GAT showed the similar performance which is better than No target-q-change. The

difference between AGILE-Tuned and No target-q-change is that that the cascaded network in

AGILE-Tuned uses the target q-value from the intermediate list constructed. This is a more accurate

target q-value as compared to the target q-value from another list from a future time-step.

B.3 Effect of direct v/s indirect reward in RecSim

In Fig.3.4, we studied the learning capability of AGILE under the action interdependence on

RecSim in which the CPR itself was not directly visible to the agents. Therefore, agents need to

indirectly understand how well the list-action is through user feedback (i.e., clicks). In this section,

we strengthen our results by examining the consistency of results. The CPR is made directly visible

to all the agents in this setting. So, we implemented an additional environment in RecSim where

the reward is a sum of the click reward and the CPR metric. We call this environment as Direct

CPR. Figure.B.7 shows the comparison of AGILE against the same baseline agents as in Fig.3.4

on the Direct CPR RecSim. And in Fig.B.8 and Fig.B.9, we got the consistent result that AGILE

slightly outperforms the ablations. AGILE outperforming the baselines shows that the knowledge

of dependence on other available actions is crucial for optimal policy. This result is consistent

with the indirect CPR optimization setting in Fig.3.4. So AGILE can perform well in the direct

maximization of CPR.

B.4 Recsim-Pairing Environment

In the experiment of Fig. 3.5, we found that in RecSim, the relation of items is easy to model

such that AGILE could not outperform the ablations. In contrast, AGILE outperformed the ablations

in CREATE and Grid World by correctly utilizing the action relation in decision-making. We

hypothesize that these environments require complex relations between actions (e.g., tools and

activators in CREATE). To this end, we implement the pre-defined pairings among items in RecSim

such that clicks can only happen when the correct pairs of items are recommended. Since action
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Figure B.9: Analyses of (i) GAT v/s GCN and (ii) state-action graph v/s action-only graphs on (left)
RecSim: Direct CPR environment and (right) RecSim: Pairing environment.

relations are complex, AGILE is expected to outperform the ablations. Figure B.7 shows that

AGILE beats the baselines and in Fig.B.8 AGILE slightly but consistently outperforms the ablations.

In Fig.B.9, AGILE outperforming AGILE-GCN shows that a GAT is capable of modeling the action

relations correctly. AGILE converges faster than AGILE Only-Action. This shows that the state

and the partially constructed list are crucial to learning to attend the other half in pairing items

efficiently.

C Approach and Baseline Details

C.1 Details of Baselines and Ablations

Like AGILE, all baselines and ablations receive the state and action representations as input

and output a Q-value or a probability distribution over available actions. Figure B.10 describes the

architectures of all the methods. Here, we discuss how each baseline and ablation is different from

AGILE and why AGILE is expected to outperform them:
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Figure B.10: Architectures of all methods used as baselines (Sec. 3.6.1), ablations (Sec. 3.6.1), and
analyses (Sec. 3.6.3). (a) Following prior work in SAS-MDPs (Boutilier et al., 2018; Chandak et al.,
2020a) and invalid action masking (Huang and Ontañón, 2020; Ye et al., 2020; Kanervisto et al.,
2020), the mask-output baseline masks out the unavailable actions assuming a known action set.
The mask-input-output baseline additionally augments the state with the action availability mask.
(b) Utility-policy (Jain et al., 2020) can generalize over actions by using action representations.
However, it computes each action utility independent of other available actions. (c) Summary
Ablations augment the utility-policy with an extra action-summary input, which is a compressed
version of the list of available action representations. This compression can be done by mean-
pooling over a Bi-LSTM output layer, or a deep set, or a graph network (GAT) processed node
features. (d) AGILE (Ours) uses a GAT’s node features both to compute an action set summary
and as relational action features replacing the original action representations. While the action
set summary is a compact representation of the available actions, it does not sufficiently scale
when there are many actions or the task requires many action relations for each action decision.
(e) AGILE-Only Action is the version of AGILE where the state is not used to compute action
relations in GAT. This is a simpler architecture to learn but is not expected to work for certain tasks
where action relations change depending on the state.
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• Mask-Output (No representations, No input action set): This baseline assumes a fixed-action

space that is known in advance. Since it does not use action representations, it cannot generalize

to unseen actions or exploit the structure in action space. Moreover, it does not take the available

action set as input and thus cannot solve tasks where action decisions require knowledge of other

actions.

• Mask-Input-Output (No representations): By augmenting a binary availability mask of given

actions to the state input of Mask-Output, this method can utilize the information about the

available action set as a set. However, the input availability-mask is fed into an MLP, which lacks

the inductive bias of order invariance of action set and cannot learn relations explicitly like graph

networks.

• Utility-Policy (No input action set): By using action representations, this method can use the

structure of action space for efficient training and also generalize to unseen actions. However,

like Mask-Output, it does not utilize the available action set as part of the state and makes each

action decision independent of other actions. Thus, it is expected to be suboptimal in all the tasks

we consider.

• Summary-LSTM: This is an ablation where we do not utilize the per-action relational features

computed by a GAT in AGILE. Instead, we use raw action features as input to the utility network.

However, we utilize the available action set information by summarizing the set of input action

representations into a vector. The summarization based on Bi-LSTM does not use the order

invariance property of the action set, which makes it less efficient to learn than other summarizers.

AGILE is expected to outperform all summary-only ablations in environments where several

different action relations need to be modeled for computing different action utilities. This is true

for complex environments like CREATE, where the agent needs to consider various tools and

activators to make an optimal decision about its action choice. In such environments, learning a

shared summary-vector for all action utility computations is inefficient and possibly prohibitive

for learning. We note that the summary-ablations are sufficient in simple environments such as
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Grid World navigation. The agent just needs to summarize which of the two dig-lava skills are

available. Such a summary is enough to compute the utility of each of the 7 available actions.

• Summary-Deep Set: This ablation utilizes the order invariance of action sets using a deep-set.

While it still suffers from the limitations of lack of per-action relational action features, it is a

low-parameter network and thus easy to train.

• Summary-GAT: This is a variation of AGILE, where raw action features replace the relational

action features. Using a GAT to extract the action set summary exploits order invariance. However,

being a fully-connected graph network, it is can be slow to train while not offering much more

than the deep-set summarizer. This can be useful when certain action relations are predefined

using domain knowledge (Section B.1).

• Agile-Only-Action: This variation of AGILE does not utilize state input in the GAT. Thus, the

summary vector and relational action features are computed independently of state-context. While

this is a simpler architecture to train, it can be insufficient in environments where the action

relations vary depending on the state.

C.2 Details on Listwise AGILE

AGILE is implemented based on the listwise RL architecture, CDQN (Chen et al., 2019a). As

shown in Algorithm 5, CDQN builds a list-action incrementally by selecting N actions in sequence.

For each list-index, a Q-network is used to select the best action. In addition to the usual state input,

the partially built list-action is also an input to the Q-network. Concretely, the state and current list

are encoded into latent embeddings for any list index. These are concatenated with each action

representation in the remaining action set to build a list of nodes to be input into the action graph of

AGILE. Treating it as a fully-connected graph, AGILE outputs a set of relational action features

for all inputs actions. These are mean-pooled into a summary vector representing the entire action

set. The representations of state, current-list, summary, and relational action features are used as

input by a utility network (MLP) which outputs the Q-value of that particular action for the current
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list-index. The action with the maximum Q-value is added to the list, and the algorithm moves to

the next list-index.

For training AGILE-based CDQN, we maintain a target Q-network that is synchronized pe-

riodically with the main Q-network. Suppose a tuple of (s, alist, r, s̃) is sampled from the replay

buffer. For list index n between 1 and N − 1, we compute the target Q-value using the current state

s with partial list-action a1:n as input. However, for the last list index n = N , we compute the target

Q-value using the next state s̃ for its first list index. A mean-squared error loss is used over all the

list indices to train the main Q-network.

Algorithm 5 Cascaded DQN: Listwise Action RL
1: def listwise action():
2: Parameters: Q-network ϕ - Encoders, GAT and Utility network
3: Inputs: State s, actions A, representations C = {ca0 , ..., cak}, list-action length N
4: Initialize: List Action alist = []. Candidate Actions A′ = A
5: for n = 1, . . . , N do:
6: Encode State: es = ϕs(s)
7: Encode Current List: elist = ϕlist(alist)
8: Build Graph Nodes: V = {[es, elist, ca] : a ∈ A′ }
9: Build fully-connected Adjacency Matrix of size |V|: E

10: Relational Action Features: earelational = ϕGAT(V , E) ∀a ∈ A′

11: Action Set Summary: esummary =
1
|V|
∑

a e
a
relational

12: Q-values: Qn(s, a,A′) = ϕutility(es, elist, esummary, e
a
relational) ▷ Ablations: earelational = ca

13: Select action: an = argmaxa∈A′ Qn(s, a,A′)
14: Update: alist = alist ∪ an. A′ = A′ \ an
15: def listwise update():
16: Parameters: Q-network ϕ, Target Q-network ϕT , discount factor γ
17: Inputs: state s, action alist = a1, . . . aN , reward r, next state s̃
18: for n = 1, . . . , N do:
19: Use listwise action(ϕ) to get Q-function: qn = Qn(s, an,A \ a1:n−1)
20: Use listwise action(ϕT ) to get target Q-value :

yn =

{
r + γmaxaQn+1(s, a,A \ a1:n) n < N

r + γmaxaQ1(s̃, a,A) n = N

21: Optimize Loss L =
∑N

n=1 (qn − yn)
2
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C.3 Network Architectures

C.3.1 Action Graph

The action graph takes as input the action representations and the state-information (we also

include the list-embedding for Listwise AGILE; See Sec. C.2). Given the concatenation of the input

components above, an optional 2-layer MLP with ReLU, called pre-summarizer-mlp, transforms

it into the node features for the action graph. Then, the resultant node features are passed on to

two GAT layers followed by a residual connection. The same architecture of GAT is duplicated

with different weights to provide separate pathways to compute the summary vector and relational

action features. Therefore, we have two different sets of node features. The first set of node features

is mean-pooled to produce the action-summary vector, which is put through a 2-layer MLP with

ReLU to post-process before being passed on to the utility network. The other set of node features

(i.e., relational action features) is directly fed into the utility network.

AGILE with GCN: When the GCN is used in the action graph, the same input as above goes

into a linear layer to compress the size. Subsequently, the resultant node-features are used in GCN

message-passing based on the normalized adjacency matrix, with all the diagonal elements made 0.

Otherwise, the GCN reduces to learning the same edge coefficients for all the nodes. The rest of the

following architecture is the same as GAT above.

Summary-GAT: In this ablation, instead of the relational action features being fed into the

utility network, the raw action representations are used. Rest of the architecture remains the same.

C.3.2 Summarizers: Bi-LSTM and Deep Set

Bi-LSTM: The raw action representations of candidate actions are passed on to the 2-layer

MLP followed by ReLU. Then, the output of the MLP is processed by a 2-layer bidirectional

LSTM (Huang et al., 2015). Another 2-layer MLP follows this to create the action set summary to

be used in the following utility network.
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DeepSet: Similar to the Bi-LSTM variant of the summarizer, we employed the 2-layer MLP

with ReLU followed by the mean pooling over all the candidate actions to compress the information.

Finally, the 2-layer MLP with ReLU provides the resultant action summary with the following

utility network described in the next subsection.

C.3.3 Utility Network

We implemented two types of utility networks to show the potential of AGILE architecture

working with different kinds of RL algorithms and environments. Both the utility networks take

as input the same components: the state-information, the relational or raw action representations,

and the action summary of the action graph (See Sec C.3.1). The utility network is a 2-layer MLP

applied parallelly on all these inputs corresponding to each action. It computes a scalar value for

each action.

Policy Gradient(PPO): The action utility values are used as logits of a Categorical distribution,

which is then used to train the AGILE architecture with policy gradient algorithm, PPO.

Value-based(CDQN): List Encoder: An intermediate list that contains the currently selected list

items at each intra-list time-step is passed on to a single layer gated recurrent network (GRU (Cho

et al., 2014)) followed by a 2-layer MLP to extract the compact representation of the intermediate

list. See Algorithm 5 for details on this.

Q-network: As in Sec C.3.1, the input components for the utility network are the raw action

representation, the state-information, the list-embedding, the node-features, and the action set sum-

mary from the action graph — (st, elist, enode, esummary, ak) in Algorithm 5. These are concatenated

into a single vector and passed on to a 2-layer MLP with ReLU to compute the Q-value of an item.

C.3.4 Action Representation Network

Hierarchical VAE (CREATE): The CREATE action representations are borrowed from Jain

et al. (2020) directly. The Hierarchical VAE network takes as input a list of behavioral trajectories
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representing each action (tool) and reconstructs it with a two-layer hierarchy of VAEs. We refer the

reader to Appendix D.3.1 of Jain et al. (2020) for complete details of the Hierarchical VAE network.

VAE in Deep and Wide architecture (Real World recommender system): In a VAE, the

encoder is implemented with a 5-layer MLP with a Batch Normalization layer (Maas et al., 2013)

and LeakyReLU (Maas et al., 2013). On the other hand, the decoder is implemented with a single

MLP to process the input, followed by the same architecture of MLPs used in the encoder. Finally,

a 2-layer MLP with Batch Norm and LeakyReLU and the hyperbolic tangent activation function is

used to reconstruct the input instance.

C.3.5 Reward Inference Network (User Model in Real World RecSys)

The user model takes as input the user information(i.e., a concatenation of user attributes and a

sequence of the user interactions) and a set of item embeddings in the list. The user information

is passed on to a single layer gated recurrent network(GRU (Cho et al., 2014)) followed by a

2-layer MLP to extract the compact representation of the state. The same GRU network architecture

(with different weights) processes the set of item embeddings into a list-embedding. Finally, a

2-layer MLP takes as input the concatenation of those two embeddings(i.e., state-embedding and

list-embedding) and provides the scores of items in the list followed by the sigmoid function to

transform to the individual click likelihood.

D Experiment Details

D.1 Implementation Details

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were

primarily conducted on workstations with either NVIDIA GeForce RTX 2080 Ti, P40, or V100

GPUs on Naver Smart Machine Learning platform (NSML) (Kim et al., 2018). Each experiment seed

takes about 4 hours for Grid Navigation, 60 hours for CREATE, 8 hours for RecSim, and 15 hours for

Real-Data Recommender Systems, to converge. We use the Weights & Biases tool (Biewald, 2020a)
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for logging and tracking experiments. All the environments were developed using the OpenAI Gym

interface (Brockman et al., 2016). For training Grid Navigation and CREATE environments, we use

the PPO (Schulman et al., 2017b) implementation based on Kostrikov (2018). For the recommender

system environments, we use DQN (Mnih et al., 2015). We use the Adam optimizer (Kingma and

Ba, 2014) throughout. We attach the code with details to reproduce all the experiments, except the

real-data recommender system.

D.2 Hyperparameters

We build on hyperparameters used in prior work on CDQN (Chen et al., 2019a) and utility

policy (Jain et al., 2020). The hyperparameters for the additional components introduced in AGILE,

baselines, and ablations are shown in Table B.3. The environment-specific and RL algorithm

hyperparameters are described in Table B.4.

Hyperparameter Value

AGILE

number of GAT layers 2
number of attention heads 1
number of message passing steps 1
leakyReLU alpha 0.2
graph hidden dimension 64
Residual Connection True

Mask-Input-Output

Availability mask MLP hidden size 64

Ablations

Summary-LSTM hidden size 64
Summary-LSTM directions 2
Summary-LSTM number of layers 2
Summary-Deep-Set hidden size 64
Summary-GAT hidden size 64
Summarizer pooling operation mean

Table B.3: AGILE, baseline and ablations: Hyperparameters for additional components
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D.3 Hyperparameter Tuning

Initial hyperparameters are inherited from the prior works (PPO: Jain et al. (2020); CDQN:

Chen et al. (2019a)). To ensure fairness across all baselines and our methods, we use the original

hyperparameters for the RL algorithms, such as learning rate, entropy coefficient, etc. (Table B.4.

We choose a sufficiently large number for total epochs (DQN) and total environment steps (PPO) to

ensure all the methods converge.

Our main contribution is the AGILE architecture. Thus, to correctly validate against baseline

and ablation architectures, we search over shared parameters together and generally observe the

same trend across all methods. This was expected because of the shared underlying implementation

of the RL algorithm. Specifically, we searched over the following shared parameters, usually over 5

seeds and sometimes 3 seeds:

• Hidden dimension in DQN networks: We searched over {32, 64, 128} and found that 64 ≈

128 > 32. We choose 64 as the base hidden dimension across all encoders, summarizers, and

GATs.

• Target network sync frequency: This was a sensitive parameter for DQN training. We searched

over {10, 20, 100, 500, 1000} and found 500 to be the best performing across all methods.

• Weight sharing in CDQN: In Chen et al. (2019a), the authors did not share the weights of Q-nets

in their Cascading architecture, but we empirically observed that sharing the weights of them

improved the performance. This is likely due to the nature of RecSim tasks requiring similar

items to be recommended across the slate to maximize CPR.

• Training batch size (DQN): We searched over {32, 64, 128, 256} on RecSim and chose 128 as,

beyond that, we observed diminishing returns. For Real RecSys, we used the same batch size.

• Training batch size (PPO): We searched over {4096, 8192} for Grid World and {3072, 4608}

for CREATE and observed that larger batch sizes are better. We did not increase the batch size

further due to limits on GPU memory size.
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Below, we detail the hyperparameters and network variations searched specifically for the graph

attention network (GAT) used in AGILE and its variants.

• Skip Connection: Adding skip connection was crucial to making AGILE learn well.

• Number of graph attention layers: We searched over {1, 2, 3} layers and found 2 layers to be

the best performing for both PPO and CDQN based policies.

• Number of attention heads: We compared having {1, 2} attention heads and found no meaningful

learning for 2 attention heads.

• Number of message passing steps: Adding more message-passing steps than 1 did not improve

AGILE performance.

Other relevant design choices are described and validated in Section B.2.
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Hyperparameter Grid world CREATE RecSim Real RecSys

Environment

action representation size 11 134 20 32
observation space 162 84× 84× 3 10 507
candidate actions per episode 7 25 20 20
max. episode length 50 30 15 10

RL Training

training batch size 8192 4608 128 128
parallel processes 64 48 16 16
discount factor 0.99 0.99 0.99 0.99
learning rate 1e-3 1e-3 1e-4 1e-4
hidden layer size 64 64 64 64

PPO

entropy coefficient 0.05 0.005
continuous action entropy coefficient - 0.0005
total environment steps 8× 106 108

value loss coefficient 0.5 0.5
PPO epochs 4 4
PPO clip parameter 0.1 0.1

DQN

epochs 10000 5000
target network sync frequency 500 500
Q-network hidden dimension 256× 64 256× 64
list encoder dimension 64 64
action encoder dimension 32 32
list size 6 6
replay buffer size 106 106

initialize replay buffer size 5000 100
epsilon decay 1→ 0.1 1→ 0.1
epsilon decay last epoch 500 250

Table B.4: Environment/Policy-specific Hyperparameters for RL training in AGILE

156



Appendix C

Optimizing Action in Non-Convex Q-functions via Successive

Actors

A Proof of Convergence of Maximizer Actor in Tabular Settings

Theorem A.1 (Convergence of Policy Iteration with Maximizer Actor). In a finite Markov Decision

Process (MDP) with finite state space S, consider a modified policy iteration algorithm where, at

each iteration n, we have a set of k + 1 policies {ν0, ν1, . . . , νk}, with ν0 = µn being the policy at

the current iteration learned with DPG. We define the maximizer actor µM as:

µM(s) = arg max
a∈{ν0(s),ν1(s),...,νk(s)}

Qµn(s, a), (A.1)

where Qµn(s, a) is the action-value function for policy µn. Then, the modified policy iteration

algorithm using the maximizer actor is guaranteed to converge to a final policy µN .

Proof. To prove convergence, we will show that the sequence of policies µn yields monotonically

non-decreasing value functions that converge to a stable value function V N .

Policy Evaluation Converges

Thus, iteratively applying T π starting from any initial Q0 converges to the unique fixed point

Qπ.
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Given the current policy µn, the policy evaluation computes the action-value function Qµn ,

satisfying:

Qµn(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)V µn(s′),

where V µn(s′) = Qµn(s′, µn(s
′)).

In the tabular setting, the Bellman operator T µn defined by

[T µnQ](s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Q(s′, µn(s
′))

is a contraction mapping with respect to the max norm ∥ · ∥∞ with contraction factor γ,

∥T µnQ− T µnQ′∥∞ ≤ γ∥Q−Q′∥∞.

Therefore, iteratively applying T µn converges to the unique fixed point Qµn .

Policy Improvement with DPG and Maximizer Actor

Step 1: DPG Update

We define µ̃n as the DPG policy that locally updates µn towards maximizing the expected return

based on Qµn . For each state s, we perform a gradient ascent step using the Deep Policy Gradient

(DPG) method to obtain an improved policy µ̃n:

µ̃n(s)← µn(s) + α∇aQ
µn(s, a)

∣∣
a=µn(s)

,

where α > 0 is a suitable step size.

This DPG gradient step leads to local policy improvement following over µn (Silver et al.,

2014):

V µ̃n(s) ≥ V µn(s), ∀s ∈ S.
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(b) Maximizer Actor

Given additional policies ν1, . . . , νk, define the maximizer actor µn+1 as:

µn+1(s) = arg max
a∈{µ̃n(s),ν1(s),...,νk(s)}

Qµn(s, a).

Since µn+1(s) selects the action maximizing Qµn(s, a) among candidates, we have:

Qµn(s, µn+1(s)) = max
a∈{µ̃n(s),ν1(s),...,νk(s)}

Qµn(s, a) ≥ Qµn(s, µ̃n(s)) ≥ V µn(s).

By the Policy Improvement Theorem, since Qµn(s, µn+1(s)) ≥ V µn(s) for all s, it follows that:

V µn+1(s) ≥ V µn(s), ∀s ∈ S.

Thus, the sequence {V µn} is monotonically non-decreasing.

Convergence of Policy Iteration

Since the sequence {V µn} is monotonically non-decreasing and bounded above by V ∗, it

converges to some V ∞ ≤ V ∗. Given the finite number of possible policies, the sequence {µn} must

eventually repeat a policy. Suppose that at some iteration N , the policy repeats, i.e., µN+1 = µN .

At this point, since the policy hasn’t changed, we have:

µN(s) = arg max
a∈{µ̃N (s),ν1(s),...,νk(s)}

QµN (s, a), ∀s ∈ S.

Since µ̃N(s) is obtained by performing a DPG update on µN(s), and we have that µN(s)

maximizes QµN (s, a) among {µ̃N(s), ν1(s), . . . , νk(s)}, it must be that:

QµN (s, µN(s)) ≥ QµN (s, a), ∀a ∈ {µ̃N(s), ν1(s), . . . , νk(s)}.
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Moreover, since µ̃N(s) is obtained via gradient ascent from µN(s), and yet does not yield a

higher Q-value, it implies that:

∇aQ
µN (s, a)

∣∣
a=µN (s)

= 0.

This suggests that µN(s) is a local maximum of QµN (s, a). This shows that this modification to the

policy iteration algorithm of DPG is guaranteed to converge.

Since the set {µ̃N(s), ν1(s), . . . , νk(s)} includes more actions from A, µN(s) is the action that

better maximizes QµN (s, a) than µ̃N . Therefore, µN is a greedier policy with respect to QµN than

µ̃N .

B Proof of Reducing Number of Local Optima in Successive Surrogates

Theorem B.1. Consider a state s ∈ S, the function Q as defined in Eq. 4.1, and the surrogate

functions Ψi as defined in Eq. 4.7. Let Nopt(f) denote the number of local optima (assumed

countable) of a function f : A → R, where A is the action space. Then,

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})) ≥ Nopt(Ψ1(s, a; {a0, a1})) ≥ · · · ≥ Nopt(Ψk(s, a; {a0, . . . , ak})).

Proof. For each i ≥ 0, define the surrogate function Ψi recursively:

Ψi(s, a; {a0, . . . , ai}) = max {Q(s, a), τi} , (B.1)

where

τi = max
0≤j≤i

Q(s, aj).

Note that τi is non-decreasing with respect to i, i.e., τi+1 ≥ τi.
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Our goal is to show that for each i ≥ 0,

Nopt(Ψi(s, a; {a0, . . . , ai})) ≥ Nopt(Ψi+1(s, a; {a0, . . . , ai+1})).

We proceed by considering how the set of local optima changes from Ψi to Ψi+1.

Consider any local optimum a′ of Ψi. There are two cases:

Case 1: Q(s, a′) > τi

In this case, Ψi(s, a
′) = Q(s, a′) and Ψi coincides with Q in a neighborhood of a′. Since a′ is a

local optimum of Ψi, it is also a local optimum of Q. Because τi+1 ≥ τi, there are two subcases:

Subcase 1a: Q(s, a′) > τi+1

Here, Ψi+1(s, a
′) = Q(s, a′) and, in a neighborhood of a′, Ψi+1 coincides with Q. Thus, a′

remains a local optimum of Ψi+1.

Subcase 1b: Q(s, a′) ≤ τi+1

Since Q(s, a′) > τi and τi+1 ≥ τi, this implies τi+1 > τi and Q(s, a′) = τi+1. Then,

Ψi+1(s, a
′) = τi+1,

and in a neighborhood around a′, Ψi+1(s, a) ≥ τi+1. Thus, a′ is not a local optimum of Ψi+1

because there is no neighborhood where Ψi+1(s, a) < Ψi+1(s, a
′).

Case 2: Q(s, a′) ≤ τi

In this case, Ψi(s, a
′) = τi, and Ψi is constant at τi in a neighborhood of a′. Thus, a′ may be

considered a local optimum in Ψi if the function does not exceed τi nearby. When moving to Ψi+1,

since τi+1 ≥ τi, we have:

Ψi+1(s, a
′) = τi+1 ≥ τi.

In the neighborhood of a′, Ψi+1 remains at least τi+1, so a′ is not a local optimum in Ψi+1 unless

Q(s, a) < τi+1 in a neighborhood around a′.
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However, since Ψi+1(s, a) ≥ τi+1 for all a, the function does not decrease below Ψi+1(s, a
′) in

any neighborhood of a′. Therefore, a′ is not a local optimum of Ψi+1.

Conclusion: From the above cases, we observe that:

• Any local optimum a′ of Ψi where Q(s, a′) > τi+1 remains a local optimum in Ψi+1.

• Any local optimum a′ of Ψi where Q(s, a′) ≤ τi+1 does not remain a local optimum in Ψi+1.

Since Ψi+1 does not introduce new local optima (because Ψi+1(s, a) ≥ Ψi(s, a) for all a and

coincides with Q only where Q(s, a) > τi+1), the number of local optima does not increase from

Ψi to Ψi+1.

Base Case: For i = 0, we have:

Ψ0(s, a; {a0}) = max {Q(s, a), Q(s, a0)} .

If we consider Q(s, a0) to be less than the minimum value of Q(s, a) (which can be arranged by

choosing a0 appropriately or by defining τ0 to be less than infaQ(s, a)), then Ψ0(s, a) = Q(s, a),

and the base case holds trivially.

Inductive Step: Assuming that

Nopt(Ψi(s, a; {a0, . . . , ai})) ≤ Nopt(Ψi(s, a; {a0, . . . , ai})),

we have shown that

Nopt(Ψi+1(s, a; {a0, . . . , ai+1})) ≤ Nopt(Ψi(s, a; {a0, . . . , ai})).

By induction, it follows that:

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})) ≥ Nopt(Ψ1(s, a; {a0, a1})) ≥ · · · ≥ Nopt(Ψk(s, a; {a0, . . . , ak})).
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Figure C.1: Benchmark Environments involve discrete action space tasks like Mine World and
recommender systems (simulated and MovieLens-Data) and restricted locomotion tasks.
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Figure C.2: Mining Expedition. The red agent must reach the green goal by navigating the grid
and using one or more pick-axes to clear each mine blocking the path.

C.1 MiningEnv

The grid world environment, introduced in Section 4.5, requires an agent to reach a goal by

navigating a 2D maze as soon as possible while breaking the mines blocking the way.

State: The state space is an 8+K dimensional vector, where K equals to mine-category-size.

This vector consists of 4 independent pieces of information: Agent Position, Agent Direction,

Surrounding Path, and Front Cell Type.
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1. Agent Position: A 2D vector representing the agent’s x and y coordinates.

2. Agent Direction: One dimension representing directions (0: right, 1: down, 2: left, 3: up).

3. Surrounding Path: A 4-dimensional vector indicating if the adjacent cells are empty or a goal

(1: empty/goal, 0: otherwise).

4. Front Cell Type: A (K +1)-dimensional one-hot vector with first K dimensions representing

the type of mine and the last dimension representing if the cell is empty (zero) or goal (one).

Finally, we will normalize each dimension to [0, 1] with each dimension’s minimum/maximum

value.

Termination: An episode terminates when the agent reaches the goal or after 100 timesteps.

Upon reset, the grid layout changes while keeping the agent’s start and goal positions fixed.

Actions: Actions include navigation (up, down, left, right) and pick-axe categories. Navigation

changes the agent’s direction and attempts to move forward. The agent cannot step into a mine but

will change direction when trying to step onto a mine or the border of the grid. The pick-axe tool

actions (50 types) have a predefined one-to-one mapping of how they interact with the mines, which

means they can be successfully applied to only one kind of mine, and either transform that kind of

mine into another type of mine or directly break it.

Reward: The agent’s reward comprises a goal-reaching reward, a distance-based step reward,

and rewards for successful tool use or mine-breaking. The goal reward is discounted by steps taken

over the episode, encouraging shorter paths to reach the goal.

R(s, a) = 1Goal ·RGoal

(
1− λGoal

Ncurrent steps

Nmax steps

)
+

RStep (Ddistance before −Ddistance after) +

1correct tool applied ·RTool +

1successfully break mine ·RBonus

(C.1)

where RGoal = 10, RStep = 0.1, RTool = 0.1, RBonus = 0.1, λGoal = 0.9, Nmax steps = 100
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Action Representations Actions are represented as a 4D vector with normalized values [0, 1]

as described in Figure C.2. Dimensions represent skill category (navigation or pick-axe), movement

direction (right, down, left, up), mine type where this action can be applied, and the outcome of

applying the tool to the mine, respectively.

C.2 RecSim

In the simulated recommendation system (RecSys) environment, the agent selects an item from

a large set that aligns with the user’s interests. Users are modeled with dynamically changing

preferences that evolve based on their interactions (clicks). The agent’s objective is to infer these

evolving preferences from user clicks and recommend the most relevant items to maximize the total

number of clicks.

State: The user’s interest is represented by an embedding vector eu ∈ Rn, where n is the number

of item categories. This embedding evolves over time as the user interacts with different items.

When a user clicks on an item with embedding ei ∈ Rn, the user interest embedding eu is updated

as follows:

eu ← eu +∆eu, with probability
e⊤u ei + 1

2

eu ← eu −∆eu, with probability
1− e⊤u ei

2
,

where ∆eu represents an adjustment that depends on the alignment between eu and ei. This update

mechanism adjusts the user’s preference towards the clicked item, reinforcing the connection

between the current action on future recommendations.

Action: The action set consists of all items that can be recommended, and the agent must select

the item most relevant to the user’s long-term preferences over the episode.
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Reward: The reward is based on user feedback: either a click (reward = 1) or skip (reward

= 0). The user model computes a score for each item using the dot product of the user and item

embeddings:

scoreitem = ⟨eu, ei⟩

The click probability is computed with a softmax over the item score and a predefined skip score:

pitem =
escoreitem

escoreitem + escoreskip
, pskip = 1− pitem

The user then stochastically chooses to click or skip based on this distribution.

Action Representations: Following Jain et al. (2021), items are represented as continuous

vectors sampled from a Gaussian Mixture Model (GMM), with centers representing item categories.

C.3 Continuous Control

MuJoCo (Todorov et al., 2012) is a physics engine that provides a suite of standard reinforcement

learning tasks with continuous action spaces, commonly used for benchmarking continuous control

algorithms. We briefly describe some of these tasks below:

Hopper: The agent controls a one-legged robot that must learn to hop forward while maintaining

balance. The objective is to maximize forward velocity without falling.

Walker2d: The agent controls a two-legged bipedal robot that must learn to walk forward

efficiently while maintaining balance. The goal is to achieve stable locomotion at high speeds.

HalfCheetah: The agent controls a planar, cheetah-like robot with multiple joints in a 2D

environment. The task requires learning a coordinated gait to propel the robot forward as quickly as

possible.

Ant: The agent controls a four-legged, ant-like robot with multiple degrees of freedom. The

challenge is to learn to walk and navigate efficiently while maximizing forward progress.
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C.3.1 Restricted Locomotion in Mujoco

The restricted locomotion Mujoco tasks are introduced to demonstrate how common DPG-based

approaches get stuck in local optima when the Q-landscape is complex and non-convex. This setting

limits the range of actions the agent can perform in each dimension, simulating realistic scenarios

such as wear and tear of hardware. For example, action space may be affected as visualized in

Figure 4.6. A mixture-of-hypersphere action space is used to simulate such asymmetric restrictions,

which affect the range of torques for the Hopper and Walker joints, as well as the forces applied to

the inverted pendulum and double pendulum. The hyperspheres are sampled randomly, and their

size and radius are carefully tuned to ensure that the action space has enough valid actions to solve

the task.

Definition of restriction.

• Restricted Hopper & Walker

Invalid action vectors are replaced with 0 by changing the environment’s step function code:

1 def step(action):

2 ...

3 if check_valid(action):

4 self.do_simulation(action)

5 else:

6 self.do_simulation(np.zeros_like(action))

7 ...

The Hopper action space is 3-dimensional, with torque applied to [thigh, leg, foot], while the

Walker action space is 6-dimensional, with torque applied to [right thigh, right leg, right foot, left thigh, left leg, left foot].

The physical implication of restricted locomotion is that zero torques are exerted for the ∆t

duration between two actions, i.e., no torques are applied for 0.008 seconds. This effectively

slows down the agent’s current velocities and angular velocities due to friction whenever the

agent selects an invalid action.

• Inverted Pendulum & Inverted Double Pendulum
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Invalid action vectors are replaced with -1 by changing the environment’s step function code:

1 def step(action):

2 ...

3 if not check_valid(action):

4 action[:] = -1.

5 self.do_simulation(action)

6 ...

The action space is 1-dimensional, with force applied on the cart. The implication is that the

cart is pushed in the left direction for 0.02 (default) seconds. Note that the action vectors are

not zeroed because a 0-action is often the optimal action, particularly when the agent starts

upright. This would make the optimal policy trivially be learning to select invalid actions.

D Additional Results

D.1 Experiments on Continuous Control (Unrestricted Mujoco)

In standard MuJoCo tasks, the Q-landscape is likely easier to optimize compared to MuJoCo-

Restricted tasks. In Figure C.3, we find that baseline models consistently perform well in all

standard tasks, unlike in MuJoCo-Restricted tasks. Thus, we can infer the following:

1. Baselines have sufficient capacity, are well-tuned, and can navigate simple Q-landscapes

optimally.

2. SAVO performs on par with other methods in MuJoCo tasks where the Q-landscape is easier

to optimize, showing that SAVO is a robust, widely applicable actor architecture.

3. Baselines performing well in unrestricted locomotion but suboptimally in restricted locomo-

tion delineates the cause of suboptimality to be the complexity of the underlying Q-landscapes,

such as those shown in Figure 4.2. SAVO is closer to optimal in both settings because it can

navigate both simple and complex Q-functions better than alternate actor architectures.
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Figure C.3: Unrestricted Locomotion (Section D.1). SAVO and most baselines perform optimally
in standard MuJoCo continuous control tasks, where the Q-landscape is easy to navigate.
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Figure C.4: Ablations of SAVO variations (Section D.2) shows the importance of (i) the approxi-
mation of surrogates, (ii) removing TD3’s action smoothing, (iii) conditioning on preceding actions
in the successive actor and surrogate networks, and (iv) individual actors that separate the action
candidate prediction instead of a joint high-dimensional learning task.

D.2 Per-Environment Ablation Results

Figure C.4 shows the per-environment performance of SAVO ablations, compiled into aggregate

performance profiles in Figure 4.7b. The SAVO - Approximation variant underperforms signif-

icantly in discrete action space tasks, where traversing between local optima is complex due to

nearby actions having diverse Q-values (see the right panel of Figure 4.2). Similarly, adding TD3’s

target action smoothing to SAVO results in inaccurate learned Q-values when several differently

valued actions exist near the target action, as in the complex landscapes of all tasks considered.
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Figure C.5: SAC is orthogonal to the effect of SAVO (Section D.3). SAC is a different algorithm
than TD3, whereas SAVO is a plug-in actor architecture for TD3. Thus, tasks where SAC out-
performs TD3 differ from tasks where SAVO outperforms TD3. Also, TD3 outperforms SAC in
Restricted Hopper and Inverted-Double-Pendulum. However, SAVO+TD3 guarantees improvement
over TD3.

Removing information about preceding actions does not significantly degrade SAVO’s perfor-

mance since preceding actions’ Q-values are indirectly incorporated into the surrogates’ training

objective (see Eq. (4.9)), except for MineWorld where this information helps improve efficiency.

The SAVO + Joint ablation learns a single actor that outputs a joint action composed of k

constituents, aiming to cover the action space so that multiple coordinated actions can better

maximize the Q-function compared to a single action. However, this increases the complexity of the

architecture and only works in low-dimensional tasks like Inverted-Pendulum and Inverted-Double-

Pendulum. SAVO simplifies action candidate generation by using several successive actors with

specialized objectives, enabling easier training without exploding the action space.

D.3 SAC is Orthogonal to SAVO

We compare Soft Actor-Critic (SAC), TD3, and TD3 + SAVO across various Mujoco-Restricted

tasks. Figure C.5 shows that SAC sometimes outperforms and sometimes underperforms TD3.

Therefore, SAC’s stochastic policy does not address the challenge of non-convexity in the Q-

function. In contrast, SAVO+TD3 consistently outperforms TD3 and SAC, demonstrating the

effectiveness of SAVO in complex Q-landscapes. While SAC can be better than TD3 in certain

environments, its algorithmic modifications are orthogonal to the architectural improvements due to

the SAVO actor.
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Figure C.6: SAC is suboptimal in complex Q-landscape (Section D.3) of Restricted Inverted
Double Pendulum, but SAVO helps.

In the Restricted Inverted Double Pendulum task (Figure C.6), SAC underperforms even TD3.

Analogous to TD3, the suboptimality is due to the non-convexity in the soft Q-function landscape,

where small changes in nearby actions can lead to significantly different environment returns. We

combine SAC with SAVO’s successive actors and surrogates to better maximize the soft Q-function,

naively considering action candidates for µM as the mean action of the stochastic actors. We observe

that this preliminary version of SAC + SAVO shows significant improvements over SAC in complex

Q-landscapes. In future work, we aim to formalize a SAVO-like objective that effectively enables

SAC’s stochastic actors to navigate the non-convexity of its soft Q-function.

D.4 Increasing Size of Discrete Action Space in RecSim

We test the robustness of our method to more challenging Q-value landscapes in Figure C.7,

especially in discrete action space tasks with massive action spaces. In RecSim, we increase the

number of actual discrete actions from 10, 000 to 100, 000 and 500, 000. The experiments show that

SAVO outperforms the best-performing baseline of TD3 + Sampling (Wolpertinger) and the best-

performing ablation of SAVO + Joint Action. This shows that SAVO maintains robust performance

even as the action space size increases and the Q-function landscape becomes more intricate. In

contrast, the baselines experienced performance deterioration as action sizes grew larger.
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Figure C.7: Increasing RecSim action set size (Section D.4). (Left) 100, 000 items, (Right)
500, 000 items (6 seeds) maintains the performance trends of SAVO and the best-performing
baseline (TD3 + Sampling) and the best-performing ablation (SAVO with Joint-Action).
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Figure C.8: Action summarizer comparison (Section E.1). The effect is not significant The results
are averaged over 5 random seeds, and the seed variance is shown with shading.

E Validating SAVO Design Choices

E.1 Design Choices: Action summarizers

Three key architectures were considered for the design of the action summarizer: DeepSets,

LSTM, and Transformer models, represented by SAVO, SAVO-LSTM, and SAVO-Transformer in

Figure C.8, respectively. In general, the effect of the action summarizer is not significant, and we

choose DeepSet for its simplicity for most experiments.
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Figure C.9: FiLM to condition on preceding actions (Section E.2). FiLM ensures layerwise
dependence on the preceding actions for acting in actors νi and for predicting value in surrogates
Ψ̂i, which generally results in better performance across tasks.

E.2 Conditioning on Previous Actions: FiLM vs. MLP

We examined two approaches for conditioning on the previous action list summary: Feature-wise

Linear Modulation (FiLM) and concatenation with input, represented by the FiLM and non-film

variants in Figure C.9. Across tasks, FiLM outperformed the non-FiLM version, showing the

effectiveness of layerwise conditioning in leveraging prior action information for action selection

and surrogate value prediction. This shows that the successive actors are appropriately utilizing

the actions from the preceding actors to tailor their search for optimal actions, and the successive

surrogates can better evaluate Q-values, knowing where they can be thresholded by the loss function.

E.3 Exploration Noise comparison: OUNoise vs Gaussian

We compare Ornstein-Uhlenbeck (OU) noise with Gaussian noise across our environments and

find that OU noise was generally better, with the difference being minimal. We chose to use OU

for our experiments and a comparison on Hopper-Restricted is shown in Figure C.10a. We note

that TD3 (Fujimoto et al., 2018) also suggests no significant difference between OU and Gaussian

noise and favored Gaussian for simplicity. All our baselines use the same exploration backbone,
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Figure C.10: OU versus Gaussian Noise (Section E.3). We do not see a significant difference due
to this choice, and select OU noise due to better overall performance in experiments.

and we confirm that using OU noise is consistent with the available state-of-the-art results with TD3

+ Gaussian noise on common environments like Ant, HalfCheetah, Hopper, and Walker2D.

F Network Architectures

F.1 Successive Actors

The entire actor is built as a successive architecture (see Figure 4.4), where each successive

actor receives two pieces of information: the current state and the action list generated by preceding

actors. Each action is concatenated with the state to contextualize it and then summarized using a

list-summarizer, described in Section F.3. This list summary is concatenated with the state again

and passed into an MLP with ReLU (3 layers for MuJoCo tasks and 4 layers for MineWorld and

RecSim) as described in Table C.1. This MLP generates one action for each successive actor, which

is subsequently used as an input action to the succeeding action lists. For discrete action space tasks,

this generated action is processed with a 1-NN to find the nearest exact discrete action. Finally, the

actions generated by each individual successive actor are accumulated, and the maximizer actor µM

step from Eq. (4.5) selects the highest-valued action according to Critic Q-network in Section F.2.
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F.2 Successive Surrogates

As Figure 4.4 illustrates, there is a surrogate network for each actor in the successive actor-

architecture. Each successive critic receives three pieces of information: the current state, the action

list generated by preceding actors, and the action generated by the actor corresponding to the current

surrogate. Each action is concatenated with the state to contextualize it and then summarized using

a list-summarizer, described in Section F.3. This list summary is concatenated with the state and the

current action, and passed into a 2-layer MLP with ReLU (See Table C.1). This MLP generates the

surrogate value Ψ̂i(s, a; a<i) used as an objective to ascend over by its corresponding actor νi.

F.3 List Summarizers

To extract meaningful information from the list of candidate actions, we employed several list

summarization methods following Jain et al. (2021). These methods are described below:

Bi-LSTM: The action representations of the preceding actors’ actions are first passed through a

two-layer multilayer perceptron (MLP) with ReLU activation functions. The output of this MLP

is then processed by a two-layer bidirectional LSTM network (Huang et al., 2015). The resulting

output is fed into another two-layer MLP to create an action set summary, which serves as an input

for the actor-network (Section F.1) and the surrogate network (Section F.2).

DeepSet: The action representations of the preceding actors’ actions are initially processed by a

two-layer MLP with ReLU activations. The outputs are then aggregated using mean pooling over all

candidate actions to compress the information into a fixed-size summary. This summary is passed

through another two-layer MLP with ReLU activation to produce the action set summary, which

serves as an input for the actor-network (Section F.1) and the surrogate network (Section F.2).

Transformer: Similar to Bi-LSTM, the action representations of the preceding actors’ actions

are first processed by a two-layer MLP with ReLU activations. The outputs are then input into a

Transformer network with self-attention and feed-forward layers to summarize the information. The

resulting summary is used as part of the input to the actor-network (Section F.1) and the surrogate

network (Section F.2).
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F.4 Feature-wise Linear Modulation (FiLM)

Feature-wise Linear Modulation (Perez et al., 2018b) is a technique used in neural networks

to condition intermediate feature representations based on external information, enhancing the

network’s adaptability and performance across various tasks. FiLM modulates the features of a

layer by applying learned, feature-wise affine transformations. Specifically, given a set of features

F, FiLM applies a scaling and shifting operation,

FiLM(F) = γ ⊙ F+ β,

where γ and β are modulation parameters learned from another source (e.g., a separate network or

input), and ⊙ denotes element-wise multiplication. This approach allows the network to selectively

emphasize or de-emphasize aspects of the input data, effectively capturing complex and context-

specific relationships. FiLM has been successfully applied in tasks such as visual question answering

and image captioning, where conditioning visual features on textual input is essential. We apply

FiLM while conditioning the actor and surrogate networks on the summary of preceding actions.

G Experiment and Evaluation Setup

G.1 Aggregated Results: Performance Profiles

To rigorously validate the aggregate efficacy of our approach, we adopt the robust evaluation

methodology proposed by Agarwal et al. (2021). By incorporating their suggested performance

profiles, we conduct a comprehensive comparison between our method and baseline approaches,

providing a thorough understanding of the statistical uncertainties inherent in our results. Figure 4.7a

shows the performance profiles across all tasks. The x-axis represents normalized scores, calculated

using min-max scaling based on the initial performance of untrained agents aggregated across

random seeds (i.e., Min) and the final performance from Figure 4.8 (i.e., Max). The results show that

our method consistently outperforms the baselines across various random seeds and environments.
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Our performance curve remains at the top as the x-axis progresses, while the baseline curves decline

earlier. This highlights the reliability of SAVO over different environments and 10 seeds.

G.2 Implementation Details

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were

primarily conducted on workstations with either NVIDIA GeForce RTX 2080 Ti, P40, or V32

GPUs on. Each experiment seed takes about 4-6 hours for Mine World, 12-72 hours for Mujoco,

and 6-72 hours for RecSim, to converge. We use the Weights & Biases tool (Biewald, 2020a)

for plotting and logging experiments. All the environments were interfaced using OpenAI Gym

wrappers (Brockman et al., 2016). We use the Adam optimizer (Kingma and Ba, 2014) throughout

for training.

G.3 Common Hyperparameter Tuning

To ensure fairness across all baselines and our methods, we performed hyperparameter tuning

over parameters that are common across methods:

• Learning Rates of Actor and Critic: (Actor) We searched over learning rates {0.01, 0.001, 0.0001, 0.0003}

and found that 0.0003 was the most stable for the actor’s learning across all tasks. (Critic)

Similar to the actor, we searched over the same set of learning rates and found the same value

of 0.0003 was the most stable for the critic’s learning across all tasks.

• Network Sizes of Actor and Critic: For each task, we searched over simple 3 or 4 MLP

layers to determine the network size that performed best but did not observe major differences.

(Critic) To ensure a fair comparison, we used the same network size for the critic (Q-network)

and surrogates across all methods within each task. (Actor) Similar to the critic, we used the

same network size for the various actors in all the baselines and successive actors in SAVO

within a particular task.
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G.4 Hyperparameters

The environment and RL algorithm hyperparameters are described in Table C.1.

Hyperparameter Mine World MuJoCo & Adroit RecSim

Environment

Total Timesteps 107 3× 106 107

Number of epochs 5,000 8,000 10,000
# Envs in Parallel 20 10 16
Episode Horizon 100 1000 20
Number of Actions 104 N/A 10000
True Action Dim 4 5 30
Extra Action Dim 5 N/A 15

RL Training

Batch size 256 256 256
Buffer size 5× 105 5× 105 106

Actor: LR 3× 10−4 3× 10−4 3× 10−4

Actor: ϵstart 1 1 1
Actor: ϵend 0.01 0.01 0.01
Actor: ϵ decay steps 5× 106 5× 105 107

Actor: ϵ in Eval 0 0 0
Actor: MLP Layers 128 64 64 32 256 256 64 32 32 16
Critic: LR 3× 10−4 3× 10−4 3× 10−4

Critic: γ 0.99 0.99 0.99
Critic: MLP Layers 128 128 256 256 64 32
# updates per epoch 20 50 20
List Length 3 3 3
Type of List Encoder DeepSet DeepSet DeepSet
List Encoder LR 3× 10−4 3× 10−4 3× 10−4

Table C.1: Environment/Policy-specific Hyperparameters for SAVO

H Q-Value Landscape Visualizations

H.1 1-Dimensional Action Space Environments

We analyzed the Q-value landscapes in Mujoco environments to show how successive critics

help actors find better actions by reducing local optima. Figure C.11 illustrates a typically smooth
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and easy-to-optimize Q-value landscape in unrestricted Inverted-Pendulum. Figure C.12 illustrates

that in restricted locomotion, the Q-value landscape (leftmost and rightmost figures) is uneven with

many local optima. However, the Q-value landscapes learned by successive surrogates Ψ̂i become

successively smoother by removing local peaks below the Q-values of previously selected actions.

This helps actors find closer to optimal actions than with a single critic.

Finally, when we plot the actions a0, a1, a2 selected by the learned successive actors on the

original Q-landscape (rightmost figure), we see they often achieve higher Q-values than a0, the

action a single actor has learned. Thus, the maximizer actor µM often finds closer to optimal actions

than a single actor, resulting in better performance as shown in the return comparison between µM

and single actor (Figure 4.11c) and the performance against baselines (Figure 4.8).

(a) Q0(s, a0) (b) Q1(s, a1|a0) (c) Q2(s, a2|{a0, a1}) (d) Q(s, ai)∀i = 0, 1, 2

Figure C.11: Successive surrogate landscapes and the Q-landscape of Inverted Pendulum-v4.

H.2 High-Dimensional Action Space Environments

Figure C.13 visualize Q-value landscapes for a TD3 agent in Hopper-v4. We project actions

from the 3D action space of Hopper-v4 onto a 2D plane using Uniform Manifold Approximation

and Projection (UMAP) and sample 10,000 actions evenly to ensure thorough coverage. The

Q-values are plotted using trisurf, which may introduce some artificial roughness but offers

more reliable visuals than grid-surface plotting. Despite limitations of dimensionality reduction —

such as distortion of distances — the Q-landscape for Hopper-v4 reveals a large globally optimal
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Figure C.12: Successive surrogate landscapes and Q landscape for Restricted Inverted-Pendulum
and Restricted Inverted-Double-Pendulum environments.

region (shown in yellow), offering a clear gradient path that prevents the gradient-based actor from

getting stuck in local optima.

In contrast, Hopper-Restricted (Figure C.14) has more complex Q-landscapes due to valid

actions being restricted in one of the hyperspheres shown in Figure 4.6. Consequently, these

Q-landscapes appear to have more locally optimal regions than Hopper-v4. This creates many peaks

where gradient-based actors might get trapped, degrading the resultant agent performance.

The curse of dimensionality limits conclusive analyses on higher dimensional environments like

Walker2D-v4 (6D) and Ant-v4 (8D) because projecting to 2D causes significant information loss,

making it difficult to assess convexity in their Q-landscapes.
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Figure C.13: Hopper-v4: Q landscape visualization at different states show a path to optimum.
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Figure C.14: Hopper-restricted: Q landscape visualization at different states show several local
optima.
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Appendix D

Sharing Actions in Multi-Task Reinforcement Learning via

Q-switch Mixture of Policies

A Qualitative Results

The qualitative result videos are provided at https://qmp-mtrl.github.io/

B QMP Derivation

Following Section 5.4.2, we aim to derive the mixture-switch function fi such that the mixture

policy πmix
i is guaranteed to be better than the current task’s policy πi. We use the generalized

policy iteration procedure (Sutton and Barto, 2018) underlying single-task SAC (Haarnoja et al.,

2018): policy evaluation learns Q by minimizing the bellman error on the collected data, and

policy improvement follows Q by minimizing the KL divergence between the new policy and the

exponential of the current Q-function, Qπold , shown in Eq. 5.1.

In practice, the gradient updates in SAC are gradual and do not instantly achieve this optimization

in Eq. 5.1, leaving a suboptimality gap to catch up to the Q-function. We observe that due to the

potential similarity of some tasks in MTRL, this suboptimality gap can be bridged using other

policies. Concretely, a mixture policy πmix
i that selects the best policy from a set of all given policy

candidates, including the current policy, ensures that πmix
i is an improvement over πi for the current

state s:
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Given a set of policies {π1 . . . πN} including the current task policy πi and a given state s,

consider the following mixture policy:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp( 1αQπi(s, ·))
Zπi(s)

)
(B.1)

This πmix
i is a better policy improvement solution to Eq. 5.1 than πi, because:

min
π′∈{πi,...πN}

DKL

(
π′(· | s)

∥∥∥∥∥exp( 1αQπi(s, ·))
Zπi(s)

)
≤ DKL

(
πi(· | st)

∥∥∥∥∥exp( 1αQπi(st, ·))
Zπi(st)

)

Now, we can simplify Eq. B.1 to obtain Definition 5.4.2:

πmix
i = arg min

π′∈{πi,...πN}
DKL

(
π′(· | s)

∥∥∥∥∥exp( 1αQπi(s, ·))
Zπi(s)

)

= arg min
π′∈{πi,...πN}

Ea∼π′(·|s)

[
log π′(a|s)− log

{
exp( 1

α
Qπi(s, a))

Zπi(s)

}]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s)

[
− log π′(a|s) + 1

α
Qπi(s, a)− logZπi(s)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [− log π′(a|s)] + Ea∼π′(·|s)

[
1

α
Qπi(s, a)

]
= arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

Thus, the following mixture policy guarantees improvement over πi

πmix
i = arg max

π′∈{πi,...πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)]

C QMP Convergence Guarantees

We derive the convergence guarantees for mixture soft policy iteration used in the QMP Algo-

rithm 4. We augment the derivation of soft policy iteration in SAC (Haarnoja et al., 2018), which

184



is our base algorithm, with our proposed QMP’s mixture policy. Soft policy iteration follows

generalized policy iteration (Sutton and Barto, 2018) which refers to the general idea of repeated

application of (1) policy evaluation to update the critics and (2) policy improvement based on the

updated critics, until convergence. Like SAC, we consider the tabular setting and show that QMP’s

modification to soft policy iteration converges to the optimal policy. Further, QMP can lead to an

improved policy improvement step when there are shareable behaviors between tasks, consequently

improving the sample efficiency. The derivation sketch follows:

1. Soft Policy Evaluation: QMP modifies the off-policy data collection pipeline by replacing

the primary task policy πi with the mixture policy πmix
i . However, it does not affect the soft

Bellman backup operator of SAC, as shown in Haarnoja et al. (2018), and therefore the Q

function still converges as in SAC.

2. Mixture Soft Policy Improvement: QMP performs policy improvement in two steps: SAC’s

policy update from πold
i → πi and applying the mixture of policies from πi→ πmix

i .

• Soft Policy Improvement: Since QMP does not modify the SAC update procedure πold
i → πi ,

we directly use SAC’s guarantees of policy improvement following Lemma 2 from

Haarnoja et al. (2018).

• Mixture Policy Improvement: We demonstrate QMP’s mixture policy πmix
i guarantees

a better policy improvement over the per-task policies πi that compose the mixture.

In Theorem C.1, we show convergence guarantee by proving that the expected return

following πmix
i is better than following πold

i .

3. Mixture Soft Policy Iteration: In Theorem C.2, we show that the repeated application of

the above steps in QMP converges to an optimal policy for each task. Furthermore, the

convergence rate is faster because of a greedier policy improvement due to Mixture Policy

Improvement.
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For a given stochastic policy π and task Ti ∈ {T1 . . .TN}, define V π
i as the expected return of

acting with π. Given another stochastic policy π′, define Qπ
i (s, π

′(s)) = Ea∼π′(s)Q
π
i (s, a) as the

expected return of acting with π′ only in s and thereafter with π.

Theorem C.1 (Mixture Soft Policy Improvement). Consider πold
i and its associated Q-function Qi.

Apply SAC’s policy improvement πold
i → πi and then πi → πmix

i from Eq. 5.3. Then, Qπmix
i (st, at) ≥

Qπi(st, at) ≥ Qπold
i (st, at) for all tasks Ti and for all (st, at) ∈ S ×A with |A| <∞.

Proof. From Soft Policy Improvement, Lemma 2 of Haarnoja et al. (2018), we have

Eat∼πi

[
Qπold

i (st, at)− log πi(at|st)
]
≥ V πold

i (st).

Rewrite the difference as δ(st),

δ(st) = Eat∼πi

[
Qπold

i (st, at)− log πi(at|st)
]
− V πold

i (st) ≥ 0.

From Eq. 5.3,

πmix
i = arg max

π′∈{π1,...,πN}
Ea∼π′(·|s) [Q

πi(s, a)] + αH [π′(· | s)] .

Therefore, we have a positive difference ω(st),

ω(st) = Eat∼πmix
i

[
Qπold

i (st, at)− log πmix
i (at|st)

]
− Eat∼πi

[
Qπold

i (st, at)− log πi(at|st)
]
≥ 0.
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We use δ to expand the soft Bellman equation to derive the relationship between Qπold
i and Qπi ,

Qπold
i (st, at) = r(st, at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st, at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1, at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
...

=
∞∑
k=0

γk Est+k∼p,at+k∼πi [r(st+k, at+k)− log πi(at+k|st+k)]︸ ︷︷ ︸
Qπi (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆1

= Qπi(st, at)−∆1

Likewise, we use δ and ω to derive the relationship between Qπold
i and Qπmix

i ,

Qπold
i (st, at) = r(st, at) + γ Est+1∼p

[
V πold

i (st+1)
]

= r(st, at) + γ Est+1∼p

[
Eat+1∼πi

(
Qπold

i (st+1, at+1)− log πi(at+1|st+1)
)
− δ(st+1)

]
= r(st, at) + γ Est+1∼p

[
Eat+1∼πmix

i

(
Qπold

i (st+1, at+1)− log πmix
i (at+1|st+1)

)
− δ(st+1)− ω(st+1)

]
...

=
∞∑
k=0

γk Est+k∼p,at+k∼πmix
i

[
r(st+k, at+k)− log πmix

i (at+k|st+k)
]

︸ ︷︷ ︸
Qπ

mix
i (st,at)

−
∞∑
k=1

γk Est+k∼p [δ(st+k)]︸ ︷︷ ︸
∆2

−
∞∑
k=1

γk Est+k∼p [ω(st+k)]︸ ︷︷ ︸
Ω

= Qπmix
i (st, at)−∆2 − Ω,

We assume that the effect of the difference ∆2 −∆1 due to different state coverage is lower

compared to the effect of Ω because ω is accumulated at every state, i.e., ∆2 + Ω = ∆1 + (∆2 −

∆1) + Ω ≥ ∆1
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Since ∆1,∆2 ≥ 0 and Ω ≥ 0, we have

Qπmix
i (st, at) ≥ Qπi(st, at) ≥ Qπold

i (st, at)

Theorem C.2 (Mixture Soft Policy Iteration). Repeated application of (i) soft policy evaluation and

(ii) mixture soft policy improvement (Theorem C.1) to any πi ∈ Π converges to an optimal policy π∗
i

such that Qπ∗
i
i (st, at) ≥ Qπi

i (st, at) for all πi ∈ Π and (st, at) ∈ S×A with |A| <∞. Furthermore,

the sample efficiency and rate of convergence is at least as good as SAC in the presence of mixture

policy improvement.

Proof. Let πki be the policy at iteration k. By SAC’s soft policy iteration, the sequence Q
πki
i is

monotonically increasing, because πmix
i only modifies the online data collected and SAC is an

off-policy algorithm. Thus, Theorem 1 (Soft Policy Iteration) from Haarnoja et al. (2018) Appendix

B.3 directly applies here and proves that repeated application of soft policy evaluation and soft

policy improvement converges to an optimal policy π∗
i .

Mixture soft policy improvement (Theorem C.1) shows that πmix
i is a greedier policy improve-

ment over πiwith respect to each estimate of Qπki
i . Thus, the expected returns in the data collected

by QMP policy, Qπmix; k
i
i , is greater than or equal to that collected by the individual task policy, Qπki

i .

Therefore, every mixture soft policy improvement step constitutes a larger policy improvement

step than SAC’s soft policy improvement step. This makes the convergence of mixture soft policy

iteration (repeated application of soft policy evaluation and Theorem C.1) an improvement over soft

policy iteration.
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D Environment Details

D.1 Multistage Reacher

We implement our multistage reacher tasks on top of the Open AI Gym (Brockman et al., 2016)

Reacher environment simulated in the MuJoCo physics engine (Todorov et al., 2012) by defining

a sequence of 3 subgoals per task which are specified in Table D.1. For all tasks, the reacher is

initialized at the same start position with a small random perturbation sampled uniformly from

[−0.01, 0.01] for each coordinate. The observation includes the agent’s proprioceptive state and

how many sub-goals have been reached but not subgoal locations, as they must be inferred from

the respective task’s reward function. We set up the tasks to ensure that we can evaluate behavior

sharing when the task rewards are qualitatively different (see Figure 5.6a):

• For every task except Task 3, the reward function is the default gym reward function based on

the distance to the goal, plus an additional bonus for every subgoal completed.

• For Task 1, the reward is shifted by -2 at every timestep.

• Task 3 receives only a sparse reward of 1 for every subgoal reached.

• Task 4 has one fixed goal set at its initial position.

Subgoal 1 Subgoal 2 Subgoal 3
T0 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, -0.3, 0.4)
T1 (0.2, 0.3, 0.5) (0.3, 0, 0.3) (0.4, 0.3, 0.2)
T2 (0.3, 0, 0.3) (0.4, 0.3, 0.2) (0.4, -0.3, 0.4)
T3 (0.3, 0, 0.3) (0.4, -0.3, 0.4) (0.2, 0.3, 0.5)
T4 initial initial initial

Table D.1: Coordinates of subgoal locations for each task in Multistage Reacher. Shared subgoals
are highlighted in the same color. For Task 4, the only goal is to stay in the initial position.

QMP-Domain: Section 5.7.4 ablates the importance of an adaptive and state-dependent Q-

switch by replacing it with a domain-dependent distribution over other tasks based on apparent

task similarity. Specifically, to define the mixture probabilities for QMP-Domain in Multistage
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Reacher, we use the domain knowledge of the subgoal locations of the tasks to determine the

mixture probabilities. We use the ratio of shared sub-goal sequences between each pair of tasks (not

necessarily the shared subgoals) over the total number of sub-goal sequences, 3, to calculate how

much behavior must be shared between two tasks. For that ratio of shared behavior, we distribute

the probability mass uniformly between all task policies that share that behavior. For Task 4, the

conflicting task, we do not do any behavior sharing and only use π4 to gather data.

Each Task Ti consists of 3 sub-goal sequences {S0, S1, S2} (e.g. [initial→ Subgoal 1], [Subgoal

1→ Subgoal 2], and [Subgoal 2→ Subgoal 3]). For each sequence s ∈ {S0, S1, S2}, we divide

equally the contribution of each task Tj’s policy πj that shares the sequence s (i.e. if T0 and T1 both

contain sequence s, where we use the notation 1(s ∈ Ti) as the indicator function for whether Task

Ti contains sequence s, then π0 and π1 both have 1
2

contribution for s). Each sequence contributes

equally to the overall mixture probabilities for Task i (i.e. all policies that shares sequence Si

contributes in total 1
3

to the mixture probability for the behavior policy of Task Ti). Thus, the

contribution probability of Policy πj to Task Ti is:

pj→i =
∑

s∈{S0,S1,S2}

1

3
· 1(s ∈ Tj)∑

k 1(s ∈ Tk)

πmix
i =

∑
j

pj→i πj

Reusing notation for mixture probabilities, we have,

πmix0 =
2

3
π0 +

1

3
π1

πmix1 =
1

3
π0 +

2

3
π1

πmix2 =
5

6
π2 +

1

6
π3

πmix3 =
1

6
π2 +

5

6
π3

πmix4 = π4
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Figure D.12: Ten tasks defined for the Maze Navigation. The start and goal locations in each task
are shown in green and red spots, respectively, and an example path is shown in green.

D.2 Maze Navigation

The maze layout and dynamics follow Fu et al. (2020), but since their original design aims

to train a single agent to reach a fixed goal from multiple start locations, we modified it to have

start-goal locations fixed in each task, as in Nam et al. (2022). The start location is still perturbed

with a small noise to avoid memorizing the task. The observation consists of the agent’s current

position and velocity. It lacks the goal location, which should be inferred from the dense reward

based on the distance to the goal. The action space is the target 2D velocity of the point mass agent.

The layout we used is LARGE MAZE which is an 8×11 maze with paths blocked by walls.

The complete set of 10 tasks is visualized in Figure D.12, where green and red spots correspond

to the start and goal locations, respectively. The environment provides an agent a dense reward

of exp(−dist) where dist is a linear distance between the agent’s current position and the goal

location. It also gives a penalty of 1 at each timestep to prevent the agent from exploiting the reward

by staying near the goal. The episode terminates either as soon as the goal is reached by having

dist < 0.5 or when 600 timesteps have passed.

D.3 Meta-World Manipulation

For Meta-World CDS, we reproduce the Meta-world environment proposed by Yu et al. (2021)

using the Meta-world codebase (Yu et al., 2019), where the door and drawer are both placed
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side-by-side on the tabletop for all tasks (see Figure 5.6c). The observation space consists of the

robot’s proprioceptive state, the drawer handle state, the door handle state, and the goal location,

which varies based on the task.

Unlike Yu et al. (2021), we additionally remove the previous state from the observation space so

the policies cannot easily infer the current task, making it a challenging multi-task environment. The

environment also uses the default Meta-World reward functions which is composed of two distance-

based rewards: distance between the agent end effector and the object, and distance between the

object and its goal location. We use this modified environment instead of the Meta-world benchmark

because our problem formulation of simultaneous multi-task RL requires a consistent environment

across tasks. For Meta-World MT10, we directly use the implementation provided in (Yu et al.,

2019) without changes.

In both cases, the observation space consists of the robot’s proprioceptive state, locations for

objects present in the environment (ie. door and drawer handle for CDS, the single target object

location for MT10) and the goal location. In Meta-World CDS, due to the shared environment, there

are no directly conflicting task behaviors, since the policies either go to the door or the drawer, they

should ignore the irrelevant behaviors of policies interacting with the other object. In Meta-World

MT10, each task interacts with a different object but in an overlapping state space so there is a mix

of shared and conflicting behaviors.

D.4 Walker2D

Walker2D is a 9 DoF bipedal walker agent with the multi-task set of 4 tasks proposed and

implemented by Lee et al. (2019): walking forward at a target velocity, walking backward at a

target velocity, balancing under random external forces, and crawling under a ceiling. Each of these

tasks involves different gaits or body positions to accomplish successfully without any obviously

identifiable shared behavior in the optimal policies. Behavior sharing can still be effective during

training to aid exploration and share helpful intermediate behaviors, like balancing. However, there

is no obviously identifiable conflicting behavior either in this task set. Because each task requires
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a different gait, it is unlikely for states to recur between tasks and even less likely for states that

are shared to require conflicting behaviors. For instance, it is common for all policies to struggle

and fall at the beginning of training, but all tasks would require similar stabilizing and correcting

behavior over these states.

D.5 Kitchen

We modify the Franka Kitchen environment proposed by Gupta et al. (2019) and based on the

implementation from Fu et al. (2020). Since this environment is typically used for long horizon or

offline RL, we chose shorter tasks that are learnable with online RL. Furthermore, we added a dense

reward based on the Meta-World reward function. We formed our 10 task MTRL set by choosing

10 available tasks in the kitchen environment that interacted with the same objects: turning the

top burner on or off, turning the bottom burner on or off, turning the light switch on and off, open

or closing the sliding cabinet, and opening and closing the hinge cabinet. The observation space

consists of the robot’s state, the location of the target object, and the goal location for that object.

Similar to the Meta-World CDS environment, these tasks may share behaviors navigating around

the kitchen to the target object but have plenty of irrelevant behavior between tasks that interact

with different objects and conflicting behaviors when opening or closing the same object.

E Additional Results

E.1 Multistage Reacher Per Task Results

Additional results and analysis on Multistage Reacher are shown in Figure D.8. QMP outper-

forms all the baselines in this task set, as shown in Figure 5.8. Task 3 receives only a sparse reward

and, thus, can benefit the most from shared exploration. We observe that QMP gains the most

performance boost due to selective behavior-sharing in Task 3. The No-Shared-Behavior baseline

is unable to solve Task 3 at all due to its sparse reward nature. The other baselines which share
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Figure D.8: Success rates for individual tasks in Multistage Reacher. Our method especially helps
in learning Task 3, which requires extra exploration because it only receives a sparse reward.

uniformly suffer at Task 3, likely because they also share behaviors from other conflicting tasks,

especially Task 4. We explore this further in the following Section F.

For all tasks, QMP outperforms or is comparable to No-Shared-Behavior, which shows that

selective behavior-sharing can help accelerate learning when task behaviors are shareable and is

robust when tasks conflict. Fully-Shared-Behavior especially underperforms in Tasks 2 and 3, which

require conflicting behaviors upon reaching Subgoal 1, as defined in Table D.1. In contrast, it excels

at the beginning of Task 0 and Task 1 as their required behaviors are completely shared. However, it

suffers after Subgoal 2, as the task objectives diverge.

E.2 Data Sharing Results

In Figure D.10c, we report multiple sharing percentiles for UDS and for CDS (Yu et al., 2021),

which assumes access to ground truth task reward functions, which it uses to re-label the shared data.
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Figure D.9: Combining QMP with PCGrad yields complementary improvement in 3 out of the 4
environments we tested on. Dashed lines are PCGrad only and solid lines are QMP + PCGrad.
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(b) Maze Navigation 10 Tasks
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(c) Data Sharing Comparison

Figure D.10: QMP scales well from (a) 3 tasks to (b) 10 tasks in Maze Navigation, especially in
comparison to other behavior sharing methods. (c) Online data sharing is very efficient when given
task reward functions (all CDS versions), but suffers without (all UDS versions).

When the shared data is relabeled with task reward functions, thereby bypassing the conflicting

behavior problem, online data sharing approaches can work very well. But when unsupervised, we

see that online data sharing can actually harm performance in environments with conflicting tasks,

with the more conservative data sharing approach (UDS k=80) out-performing sharing all data. k

is the percentile above with we share a transition between tasks, with higher k representing more

conservative data sharing. Details on our online UDS and CDS implementation are in Section H.6

E.3 PCGrad Results

We evaluate whether QMP combined with PCGrad (Yu et al., 2020) results in complementary

benefits. PCGrad is a popular MTRL algorithm that learns a policy with shared parameters and

alleviates negative interference between tasks by modifying the multi-task gradients. We see
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Figure D.11: Combining our method with another parameter sharing method, MCAL, shows
complementary benefits in (a). Our method outperforms DECAF in Multistage Reacher (b) and
Meta-World CDS(c), demonstrating that learning to directly use Q-functions from other tasks is
more challenging and sample inefficient than using the current task’s Q-function to evaluate other
tasks’ policies.

in Figure D.9 that QMP + PCGrad significantly improves PCGrad performance in 3 out of 4

environments.

E.4 QMP Scales with Task Set Size in Maze Navigation

We look at the behavior sharing methods in the Maze Navigation task for a task set with 3 tasks

(Figure D.10a) and 10 tasks (Figure D.10b) and see that QMP scales well from 3 to 10 tasks,

even compared to other behavior sharing methods. Similar to Meta-World, we hypothesize QMP

scales better with a larger task set size of similar tasks due to there being more shareable behaviors

between tasks. We see that by selectively sharing behaviors, QMP is able to identify and share

helpful behaviors in the larger tasks sets whereas other behavior sharing methods struggle.

E.5 Additional Comparisons

Multi-Critic Actor Learning (MCAL) (Mysore et al., 2022) is a parameter sharing MTRL

method that aims to tackle potential negative interference between tasks by learning separate critics

for each task while training a single multi-task actor. We add QMP to two variants of MCAL,

Multi-Critic AL-MN which maintains separate networks for each critic and Multi-Critic AL-MH
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Figure D.12: In each case above, QMP with H-step rollouts of the behavioral policy (blue) performs
no worse than QMP with 1-step rollouts (red), with the H-step rollouts helping significantly in some
tasks. Additionally both versions of QMP outperform the No-QMP baseline.

which uses a single multi-head network for the critic, in Multistage Reacher in Figure D.11a. We

see that adding QMP provides around a 20% final success rate gain in both variants and is more

sample efficient.

We also compare our method with DECAF (Glatt et al., 2020), a MTRL method which shared

Q-functions between tasks instead of behavioral policies. DECAF learns task specific weights to

linearly combine the task Q-functions which is used to train the task policy. In contrast, our method

uses the task Q-function to evaluate different tasks’ policies to incorporate into the task’s behavioral

policy. Our method only modifies the data collection process, not the RL objective, and does not
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Figure D.13: QMP consistently improves performance as H increases in Maze.

have a learned component. In Multistage Reacher (Figure D.11b) and Meta-World CDS (Figure

D.11c), we see that QMP outperforms DECAF by more that 20% final success rate.

E.6 Temporally-Extended Behavior Sharing

Motivated by prior work in heirarchical RL (Machado et al., 2017; Jinnai et al., 2019b;a; Hansen

et al., 2019; Zhang et al., 2020) and skill learning (Pertsch et al., 2021) , we explore temporally

extended behavior sharing by simply following the actions of the policy πj selected by πimix for H

steps before re-evaluating πimix. Furthermore, a recent work Xu et al. (2024) provides theoretical

results that shows myopic (ϵ-greedy) policy sharing can be sample efficient in sufficiently diverse

multi-task settings, providing theoretical support for temporally extended multi-task behavior

sharing in some settings.

We study the effect of sharing temporally extended behaviors of length H in Maze Navigation

in Figure D.13, by rolling out the chosen task policy for 1, 5, 10, 25, and 50 timesteps. We see

that performance improves when sharing longer behaviors (25 and 50 timesteps) which are more

coherent and temporally extended. This is true even though we choose the behavioral policy greedily,

only evaluating the current state s every H steps. Importantly, the guarantees from Theorem C.1

do not extend to H-step policy roll-outs and increasing H does not help in all environments. We

compare the performance of No-QMP, QMP, and QMP with temporally extended behavior sharing
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where we choose the best performance out of H = 10 and H = 25 in Table D.2 and Figure D.12.

Nevertheless, the impressive results in Maze suggest that multi-task temporally extended behavior

sharing is worth exploring in future work.

Environment H-value No-QMP QMP QMP (H¿1)

Reacher 10 80 ± 0 100 ± 0 100 ± 0
Maze 25 57.9 ± 0.09 72.9 ± 0.1 99.9 ± 0.0
MT-CDS 10 97.5 ± 4.5 93.7 ± 8.5 98.8 ± 2.0
MT10 10 79.1 ± 5.97 89.0 ± 0.01 82. ± 4.48
Kitchen 10 65.5 ± 11.0 77.3 ± 5.3 84.5 ± 8.7
Walker 10 3110 ± 220 3205 ± 218 3310 ± 203

Table D.2: Temporally Extended Behavior Sharing

F QMP Behavior Sharing Analysis

QMP learns to not share from conflicting tasks: We visualize the mixture probabilities per

task of other policies in Figure D.14 for Multistage Reacher, highlighting the conflicting Task 4 in

red. Throughout training, we see that QMP learns to share less behavior from Policy 4 than other

policies in Tasks 0-3 and shares the least total cross-task behavior in Task 4. This supports our

claim that the Q-switch can identify conflicting behaviors that should not be shared. We note that

Task 3 has a relatively larger amount of sharing than other tasks. Since Task 3 has sparse rewards, it

benefits the most from exploration via selective behavior-sharing from other tasks.

Figure D.15 analyzes the effectiveness of the Q-switch in identifying shareable behaviors by

visualizing the average proportion that each task policy is selected for another task over the course

of training in the Multistage Reacher environment. This average mixture composition statistic

intuitively analyzes whether QMP identifies shareable behaviors between similar tasks and avoids

behavior sharing between conflicting or irrelevant tasks. As we expect, the Q-switch for Task 4

utilizes the least behavior from other policies (bottom row), and Policy 4 shares the least with other

tasks (rightmost column). Since the agent at Task 4 is rewarded to stay at its initial position, this

behavior conflicts with all the other goal-reaching tasks. Of the remaining tasks, Task 0 and 1 share

199



0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y 
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 0

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y 
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 1

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y 
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 2

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y 
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 3

0.0 0.5 1.0 1.5 2.0
Environment steps (1M)

0

6

12

18

24

30

Po
lic

y 
Pe

rc
en

ta
ge

 in
 M

ix
tu

re Task 4

Multistage Reacher % Behavior Shared from Other Tasks in Mixture Policy

Policies 0-3
Policy 4

We highlight policy 4 because Task 4 requires different behaviors than the other tasks.  Throughout learning, we see that QMP generally shares 
less behavior from Policy 4 than other policies in Tasks 0-3 and shares the least total behavior in Task 4.  Furthermore, total behavior sharing 
decreases throughout training in all tasks.

Figure D.14: Mixture probabilities per task of other policies over the course of training for Multistage
Reacher. The conflicting task Policy 4, which requires staying stationary, is highlighted in red.

the most similar goal sequence, so it is intuitive why they benefit from shared exploration and are

often selected by their respective Q-switches. Finally, unlike the other tasks, Task 3 receives only a

sparse reward and therefore relies heavily on shared exploration. In fact, QMP demonstrates the

greatest advantage in this task (Appendix Figure D.8).

Behavior-sharing reduces over training: Figure D.14 shows that the total amount of behavior-

sharing decreases over the course of training in all tasks, which demonstrates a naturally arising

preference in the Q-switch for the task-specific policy as it becomes more proficient at its own task.

F.1 Qualitative Visualization of Behavior-Sharing

We qualitatively analyze behavior sharing by visualizing a rollout of QMP during training for

the Drawer Open task in Meta-World Manipulation (Figure 5.9b). To generate this visualization, we

use a QMP rollout during training before the policy converges to see how behaviors are shared and

aid learning. For clarity, we first subsample the episodes timesteps by 10 and only report timesteps

when the activated policy changes to a new one (ie. from timestep 80 to 110, QMP chose the Drawer

Open policy). We qualitatively break down the episode into when the agent is approaching the
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Figure D.15: Average contribution of each Policy j (col j) in each Task i’s (row i) data collection
on Reacher Multistage (diagonal zeroed for contrast).

drawer (top row; Steps 1-60), grasping the handle (top row; Steps 61-80), and pulling the drawer

open (bottom row). This allows us to see that it switches between all task policies as it approaches

the drawer, uses drawer-specific policies as it grasps the handle, and opening-specific policies as

it pulls the drawer open. This suggests that in addition to ignoring conflicting behaviors, QMP is

able to identify helpful behaviors to share. We note that QMP is not perfect at policy selection

throughout the entire rollout, and it is also hard to interpret these shared behaviors exactly because

the policies themselves are only partially trained, as this rollout is from the middle of training.

However, in conjunction with the overall results and analysis, this supports our claim that QMP can

effectively identify shareable behaviors between tasks.

G Additional Ablations and Analysis

G.1 Probabilistic Mixture v/s Arg-Max

A probabilistic mixture of policies is a design choice of our approach where arg-max is replaced

with softmax. However, in our initial experiments, we found no significant improvement in

performance and it came with an additional hyperparameter of tuning the temperature coefficient.

As we see in Figure D.16a, QMP actually outperforms a probabilistic mixture over a range of
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Figure D.16: (a) Using probabilistic mixtures with QMP by using a softmax over Q values with
temperature T, which determines the spread of the distribution. (b)Across different QMP versions,
evaluating mean policy actions (solid lines) vs. sampling 10 actions to estimate expected Q-values
(dashed lines) result in similar performance. (c) Single-task exploration by varying SAC target
entropy. QMP reaches a higher success rate because it shares exploratory behavior across tasks.

softmax temperatures, justifying the design choice of argmax over softmax due to its reliable

performance and simplicity.

G.2 Approximation Expected Q-value Over Policy Action Distribution

QMP’s behavior policy is defined as πmix
i = argmax

πj∈{π1,...,πN}
Ea∼πj(s)Qi(s, a), which picks the

task policy with the best expected Q value over its action distribution. We approximate the

expectation by evaluating the Q-value of only the mean of each policy’s action distribution which

is computationally cheaper πmix
i ≈ argmax

πj∈{π1,...,πN}
Qi(s,Ea∼πj(s)[a]). We compare this to a empirical

estimate that samples 10 actions from the policy distribution and picks the policy with highest

average Q-value in Figure D.16b, and find no significant performance difference between the two

approximations. This validates that our simple approximation works well in practice, which we

hypothesize is due to the low variance of the task policies.

G.3 QMP v/s Increasing Single Task Exploration

Since QMP seeks to gather more informative training data for the task by modifying the

behavioral policy, it can be viewed as a form of multi-task exploration. We briefly investigate
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how single task exploration differs from multi-task exploration by tuning the target entropy in

SAC in Figure D.16c which influences the policy entropy and therefore exploration. We see that

while tuning this exploration parameter affects the sample efficiency by more quickly learning each

individual task, QMP achieves a higher final success rate by incorporating behaviors form other

tasks, and therefore doing multi-task exploration. The benefit of exploration or behavior sharing

algorithms specialized for multi-task RL is precisely this ability to transfer and share information

between tasks.

G.4 QMP Runtime

While QMP does require more policy and q-function evaluations to sample from πimix in

comparison to the base RL method, these evaluations can be greatly parallelized and do not

significantly increase runtime (see Figure D.3) for average runtimes for our experiments). Each

sample from πimix requires querying N policy proposals and N Q-values. In QMP + Parameter-

Sharing, thanks to the multihead architectures of the policy and Q-networks, all N evaluations

are done in one single pass. Thus, with two passes through neural networks, we can get N action

candidates and their N Q-values. Therefore, the increase in time is negligible. Even without

parameter-sharing, Qi(s, aj) evaluations can be batched ∀j and the policy evaluations πj(aj|s) are

all independent, and can be obtained in parallel. In our implementation, we batch the Q evaluations,

but do not parallelize the policy evaluations.

Table D.3: Runtime Comparison of MTRL frameworks with and without QMP

Environment
No-Sharing QMP + Parameter-Sharing QMP +

No-Sharing Parameter-Sharing

Reacher Multistage 12.5 hr 14.2 hr 14 hr 16.2 hr
MT50 – – 7 days, 3hr 7 days, 6 hr
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H Implementation Details

The SAC implementation we used in all our experiments is based on the open-source imple-

mentation from Garage (garage contributors, 2019). We used fully connected layers for the policies

and Q-functions with the default hyperparameters listed in Table D.4. For DnC baselines, we

reproduced the method in Garage to the best of our ability with minimal modifications.

We used PyTorch (Paszke et al., 2019) for our implementation. We run the experiments primarily

on machines with either NVIDIA GeForce RTX 2080 Ti or RTX 3090. Most experiments take

around one day or less on an RTX 3090 to run. We use the Weights & Biases tool (Biewald, 2020b)

for logging and tracking experiments. All the environments were developed using the OpenAI Gym

interface (Brockman et al., 2016).

H.1 Hyperparameters

Table D.4 details the list of important hyperparameters on all the 3 environments. For all

environments, we used a 2 layer fully connected network with hidden dimension 256 and a tanh

activation function for the policies and Q functions. We use a target network for the Q function with

target update τ = 0.995 and trained with an RL discount of γ = 0.99.

H.2 No-Shared-Behaviors

All N networks have the same architecture with the hyperparameters presented in Table D.4.

H.3 Fully-Shared-Behaviors

Since it is the only model with a single policy, we increased the number of parameters in the

network to match others and tuned the learning rate. The hidden dimension of each layer is 600 in

Multistage Reacher, 834 in Maze Navigation, and 512 in Meta-World Manipulation, and we kept

the number of layers at 2. The number of environment steps as well as the number of gradient steps

per update were increased by N times so that the total number of steps could match those in other
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Hyperparameter
Multistage Maze Meta-World

Reacher Navigation CDS

Minimum buffer size (per task) 10000 3000 10000
# Environment steps per update (per task) 1000 600 500
# Gradient steps per update (per task) 100 100 50
Batch size 32 256 256
Learning rates for π, Q and α 0.0003 0.0003 0.0015

Hyperparameter
Meta-World Walker Kitchen

MT10

Minimum buffer size (per task) 500 2500 200
# Environment steps per update (per task) 500 1000 200
# Gradient steps per update (per task) 50 1500 50
Batch size 2560 256 1280
Learning rates for π, Q and α 0.0015 0.0003 0.0003

Table D.4: Hyperparameters for QMP and baselines.

models. For the learning rate, we tried 4 different values (0.0003, 0.0005, 0.001, 0.0015) and chose

the most performant one. The actual learning rate used for each experiment is 0.0003 in Multistage

Reacher and Maze Navigation, and 0.001 in Meta-World Manipulation.

This modification also applies to the Shared Multihead baseline, but with separate tuning for the

network size and learning rates. In Multistage Reacher, we used layers with hidden dimensions of

512 and 0.001 as the final learning rate. In Maze Navigation, we used 834 for hidden dimensions

and 0.0003 for the learning rate.

H.4 DnC

We used the same hyperparameters as in Separated, while the policy distillation parameters and

the regularization coefficients were manually tuned. Following the settings in the original DnC

(Ghosh et al., 2018), we adjusted the period of policy distillation to have 10 distillations over the

course of training. The number of distillation epochs was set to 500 to ensure that the distillation

is completed. The regularization coefficients were searched among 5 values (0.0001, 0.001, 0.01,

0.1, 1), and we chose the best one. Note that this search was done separately for DnC and DnC
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with regularization only. For DnC, the coefficients we used are: 0.001 in Multistage Reacher and

Maze Navigation, and 0.001 in Meta-World Manipulation. For Dnc with regularization only, the

values are: 0.001 in Multistage Reacher, 0.0001 in Maze Navigation, and 0.001 in Meta-World

Manipulation.

H.5 QMP (Ours)

Our method also uses the default hyperparameters. QMP does not require any task specific

hyperparameters. The exception is Meta-World MT10, where we found it helpful to have more

conservative behavior sharing by choosing the task-specific policy 70% of the time. The remaining

30% we use the Q-filter to select a policy as usual.

Like in Baseline Multihead (Parameters-Only), the QMP Multihead architecture (Parame-

ters+Behaviors) also required a separate tuning. Since QMP Multihead effectively has one network,

we increased the network size in accordance with Baseline Multihead and tuned the learning rate in

addition to the mixture warmup period. The best-performing combinations of these parameters we

found are 0 and 0.001 in Multistage Reacher, and 100 and 0.0003 in Maze Navigation, respectively.

H.6 Online UDS

Yu et al. (2022) proposes an offline multi-task RL method (UDS) that shares data between tasks

if their conservative Q value falls above the kth percentile of the task data. Specifically, before

training, you would go through all the tasks’ data and share some data from Task j to Task i if the

Task i Q value of that data is greater than k% of the Q values of Task i’s data. UDS does not require

access to task reward functions like other data-sharing approaches. It simply re-labels any shared

data with the minimum task reward, making it applicable to our problem setting as we also do not

assume that reward relabeling is possible.

In order to adapt UDS to online RL, instead of doing data sharing once on the given multi-task

dataset, we apply UDS data sharing before every training iteration to the data in the multi-task replay

buffers. Concretely, we implement this on-the-fly for every batch of sampled data by sampling one
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batch of data from Task i’s replay buffer, βi, and one batch of data from the other task’s replay

buffers βj ̸=i. Then following UDS, we would form the effective batch βeff
i by sharing data from

βj ̸=i if it falls above the kth percentile of Q values for βi:

UDSonline : (s, a, ri, s
′) ∼ βj ̸=i ∈ βeff

i

if ∆π(s, a) := Q̂π(s, a, i)− Pkth [Q̂π(s′, a′, i) : s′, a′ ∼ βi] ≥ 0

Note the differences here: (i) the ‘data’ used for data-sharing is the sampled replay buffer batch

instead of the offline dataset, and (ii) we use the standard Q-function to evaluate data instead of the

conservative Q-function since we are doing online (not offline) RL. We implement it this way as a

practical approximation to avoid having to process the entire replay buffer every training iteration.

We use the same default hyperparameters as the other baseline methods. Additionally, we need

to tune the sharing percentile k. For this, we tried 0th percentile (sharing all data) and 80th percentile,

and chose the best-performing one.
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