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ABSTRACT

In reinforcement learning, off-policy actor-critic approaches like DDPG and TD3
are based on the deterministic policy gradient. Herein, the Q-function is trained
from off-policy environment data and the actor (policy) is trained to maximize the
Q-function via gradient ascent. We observe that in complex tasks like dexterous
manipulation and restricted locomotion, the Q-value is a complex function of
action, having several local optima or discontinuities. This poses a challenge for
gradient ascent to traverse and makes the actor prone to get stuck at local optima.
To address this, we introduce a new actor architecture that combines two simple
insights: (i) use multiple actors and evaluate the Q-value maximizing action, and (ii)
learn surrogates to the Q-function that are simpler to optimize with gradient-based
methods. We evaluate tasks such as restricted locomotion, dexterous manipulation,
and large discrete-action space recommender systems and show that our actor finds
optimal actions more frequently and outperforms alternate actor architectures.

1 INTRODUCTION

Figure 1: An actor µ trained with gradient ascent
on a challenging Q-landscape gets stuck in local op-
tima. Our approach learns a sequence of surrogates
Ψi of the Q-function that successively prune out
the Q-landscape below the current best Q-values,
resulting in fewer local optima. Thus, the actors
νi trained to ascend on these surrogates produce
actions with a more optimal Q-value.

In sequential decision-making, the goal is to
build an optimal agent that maximizes the
expected cumulative returns (Sondik, 1971;
Littman, 1996). Value-based reinforcement
learning (RL) approaches learn each action’s ex-
pected returns with a Q-function and maximize
it (Sutton & Barto, 1998). However, in contin-
uous action spaces, evaluating the Q-value of
every possible action is impractical. This ne-
cessitates an actor to globally maximize the Q-
function and efficiently navigate the vast action
space (Grondman et al., 2012). Yet, this is par-
ticularly challenging in tasks such as restricted
locomotion, with a non-convex Q-function land-
scape with many local optima (Figure 2).

Can we build an actor architecture to find closer to optimal actions in such complex Q-landscapes?
Prior methods perform a search over the action space with evolutionary algorithms like CEM (De Boer
et al., 2005; Kalashnikov et al., 2018; Shao et al., 2022), but this requires numerous costly re-
evaluations of the Q-function. To avoid this, deterministic policy gradient (DPG) algorithms (Silver
et al., 2014), such as DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) train a parameter-
ized actor to output actions with the objective of maximizing the Q-function locally.

A significant challenge arises in environments where the Q-function has many local optima, as shown
in Figure 2. An actor trained via gradient ascent may converge to a local optimum with a much
lower Q-value than the global maximum. This leads to suboptimal decisions during deployment and
sample-inefficient training, as the agent fails to explore high-reward trajectories (Kakade, 2003).

To improve actors’ ability to identify optimal actions in complex, non-convex Q-function landscapes,
we propose the Successive Actors for Value Optimization (SAVO) algorithm. SAVO leverages two
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Figure 2: Complex Q-landscapes. We plot Q-value versus action a for some state. In control of
Inverted-Double-Pendulum-Restricted (left) and Hopper-Restricted (middle), certain action ranges are
unsafe, resulting in various locally optimal action peaks. In a large discrete-action recommendation
system (right), there are local peaks at actions representing real items (black dots).

key insights: (1) combining multiple policies using an argmax on their Q-values to construct a
superior policy (§4.1), and (2) simplifying the Q-landscape by excluding lower Q-value regions based
on high-performing actions, inspired by tabu search (Glover, 1990), thereby reducing local optima
and facilitating gradient-ascent (§4.2). By iteratively applying these strategies through a sequence of
simplified Q-landscapes and corresponding actors, SAVO progressively finds more optimal actions.

We evaluate SAVO in complex Q-landscapes such as (i) continuous control in dexterous manipu-
lation (Rajeswaran et al., 2017) and restricted locomotion (Todorov et al., 2012), and (ii) discrete
decision-making in the large action spaces of simulated (Ie et al., 2019) and real-data recommender
systems (Harper & Konstan, 2015), and gridworld mining expedition (Chevalier-Boisvert et al., 2018).
We use the reframing of large discrete action RL to continuous action RL following Van Hasselt &
Wiering (2009) and Dulac-Arnold et al. (2015), where a policy acts in continuous actions, such as the
feature space of recommender items (Figure 2), and the nearest discrete action is executed.

Our key contribution is SAVO, an actor architecture to find better optimal actions in complex
non-convex Q-landscapes (§4). In experiments, we visualize how SAVO’s successively learned
Q-landscapes have fewer local optima (§6.2), making it more likely to find better action optima with
gradient ascent. This enables SAVO to outperform alternative actor architectures, such as sampling
more action candidates (Dulac-Arnold et al., 2015) and learning an ensemble of actors (Osband et al.,
2016) (§6.1) across continuous and discrete action RL.

2 RELATED WORK

Q-learning (Watkins & Dayan, 1992; Tesauro et al., 1995) is a fundamental value-based RL algorithm
that iteratively updates Q-values to make optimal decisions. Deep Q-learning (Mnih et al., 2015)
has been applied to tasks with manageable discrete action spaces, such as Atari (Mnih et al., 2013;
Espeholt et al., 2018; Hessel et al., 2018), traffic control (Abdoos et al., 2011), and small-scale
recommender systems (Chen et al., 2019). However, scaling Q-learning to continuous or large
discrete action spaces requires specialized techniques to efficiently maximize the Q-function.

Analytical Q-optimization. Analytical optimization of certain Q-functions, such as wire fitting
algorithm (Baird & Klopf, 1993) and normalized advantage functions (Gu et al., 2016; Wang et al.,
2019), allows closed-form action maximization without an actor. Likewise, Amos et al. (2017)
assume that the Q-function is convex in actions and use a convex solver for action selection. In
contrast, the Q-functions considered in this paper are inherently non-convex in action space, making
such an assumption invalid. Generally, analytical Q-functions lack the expressiveness of deep
Q-networks (Hornik et al., 1989), making them unsuitable to model complex tasks like in Figure 2.

Evolutionary Algorithms for Q-optimization. Evolutionary algorithms like simulated anneal-
ing (Kirkpatrick et al., 1983), genetic algorithms (Srinivas & Patnaik, 1994), tabu search (Glover,
1990), and the cross-entropy method (CEM) (De Boer et al., 2005) are employed in RL for global
optimization (Hu et al., 2007). Approaches such as QT-Opt (Kalashnikov et al., 2018; Lee et al.,
2023; Kalashnikov et al., 2021) utilize CEM for action search, while hybrid actor-critic methods
like CEM-RL (Pourchot & Sigaud, 2018), GRAC (Shao et al., 2022), and Cross-Entropy Guided
Policies (Simmons-Edler et al., 2019) combine evolutionary techniques with gradient descent. Despite
their effectiveness, CEM-based methods require numerous Q-function evaluations and struggle with
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high-dimensional actions (Yan et al., 2019). In contrast, SAVO achieves superior performance with
only a few (e.g., three) Q-evaluations, as demonstrated in experiments (§6).

Actor-Critic Methods with Gradient Ascent. Actor-critic methods can be on-policy (Williams,
1992; Schulman et al., 2015; 2017) primarily guided by the policy gradient of expected returns, or
off-policy (Silver et al., 2014; Lillicrap et al., 2015; Fujimoto et al., 2018; Chen et al., 2020) primarily
guided by the Bellman error on the critic. Deterministic Policy Gradient (DPG) (Silver et al., 2014)
and its extensions like DDPG Lillicrap et al. (2015), TD3 (Fujimoto et al., 2018) and REDQ (Chen
et al., 2020) optimize actors by following the critic’s gradient. Soft Actor-Critic (SAC) (Haarnoja
et al., 2018) extends DPG to stochastic actors. However, these methods can get trapped in local
optima within the Q-function landscape. SAVO addresses this limitation by enhancing gradient-based
actor training. This issue also affects stochastic actors, where a local optimum means an action
distribution (instead of a single action) that fails to minimize the KL divergence from the Q-function
density fully, and is a potential area for future research.

Sampling-Augmented Actor-Critic. Sampling multiple actions and evaluating their Q-values is
a common strategy to find optimal actions. Greedy actor-critic (Neumann et al., 2018) samples
high-entropy actions and trains the actor towards the best Q-valued action, yet remains susceptible to
local optima. In large discrete action spaces, methods like Wolpertinger (Dulac-Arnold et al., 2015)
use k-nearest neighbors to propose actions, requiring extensive Q-evaluations on up to 10% of total
actions. In contrast, SAVO efficiently generates high-quality action proposals through successive
actor improvements without being confined to local neighborhoods.

Ensemble-Augmented Actor-Critic. Ensembles of policies enhance exploration by providing
diverse action proposals through varied initializations (Osband et al., 2016; Chen & Peng, 2019; Song
et al., 2023; Zheng12 et al., 2018; Huang et al., 2017). The best action is selected based on Q-value
evaluations. Unlike ensemble methods, SAVO systematically eliminates local optima, offering a
more reliable optimization process for complex tasks (§6).

3 PROBLEM FORMULATION

Our work tackles the effective optimization of the Q-value landscape in off-policy actor-critic methods
for continuous and large-discrete action RL. We model a task as a Markov Decision Process (MDP),
defined by a tuple {S,A, T , R, γ} of states, actions, transition probabilities, reward function, and a
discount factor. The action space A⊆RD is a D-dimensional continuous vector space. At every step
t in the episode, the agent receives a state observation st ∈ S from the environment and acts with
at ∈ A. Then, it receives the new state after transition st+1 and a reward rt. The objective of the agent
is to learn a policy π(a | s) that maximizes the expected discounted reward, maxπ Eπ [

∑
t γ

trt] .

3.1 DETERMINISTIC POLICY GRADIENTS (DPG)

DPG (Silver et al., 2014) is an off-policy actor-critic algorithm that trains a deterministic actor µϕ to
maximize the Q-function. This happens via two steps of generalized policy iteration, GPI (Sutton &
Barto, 1998): policy evaluation estimates the Q-function (Bellman, 1966) and policy improvement
greedily maximizes the Q-function. To approximate the argmax over continuous actions in Eq. (2),
DPG proposes the policy gradient to update the actor locally in the direction of increasing Q-value,

Qµ(s, a) = r(s, a) + γEs′ [Q
µ(s′, µ(s′))] , (1)

µ(s) = argmax
a

Qµ(s, a), (2)

∇ϕJ(ϕ) = Es∼ρµ

[
∇aQ

µ(s, a)
∣∣
a=µ(s)

∇ϕµϕ(s)
]
. (3)

DDPG (Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018) made DPG compatible with deep
networks via techniques like experience replay and target networks to address non-stationarity of
online RL, twin critics to mitigate overestimation bias, target policy smoothing to prevent exploitation
of errors in the Q-function, and delayed policy updates so critic is reliable to provide actor gradients.

3.2 THE CHALLENGE OF AN ACTOR MAXIMIZING A COMPLEX Q-LANDSCAPE

DPG-based algorithms train the actor following the chain rule in Eq. (3). Specifically, its first term,
∇aQ

µ(s, a) involves gradient ascent in Q-versus-a landscape. This Q-landscape is often highly
non-convex (Figures 2, 3) and non-stationary because of its own training. This makes the actor’s
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output µ(s) get stuck at suboptimal Q-values, thus leading to insufficient policy improvement in
Eq. (2). We can define the suboptimality of the µ w.r.t. Qµ at state s as

∆(Qµ, µ, s) = argmax
a

Qµ(s, a)−Qµ(s, µ(s)) ≥ 0. (4)

Suboptimality in actors is a crucial problem because it leads to (i) poor sample efficiency by slowing
down GPI, and (ii) poor inference performance even with an optimal Q-function, Q∗ as seen
in Figure 3 where a TD3 actor gets stuck at a locally optimum action a0 in the final Q-function.

Figure 3: Non-convex Q-landscape in
Inverted-Pendulum-Restricted leads to
a suboptimally converged actor.

This challenge fundamentally differs from the well-studied
field of non-convex optimization, where non-convexity
arises in the loss function w.r.t. the model parameters (Good-
fellow, 2016). In those cases, stochastic gradient-based
optimization methods like SGD and Adam (Kingma & Ba,
2014) are effective at finding acceptable local minima due
to the smoothness and high dimensionality of the param-
eter space, which often allows for escape from poor local
optima (Choromanska et al., 2015). Moreover, overparame-
terization in deep networks can lead to loss landscapes with
numerous good minima (Neyshabur et al., 2017).

In contrast, our challenge involves non-convexity in the Q-
function w.r.t. the action space. The actor’s task is to find, for
every state s, the action a that maximizes Qµ(s, a). Since
the Q-function can be highly non-convex and multimodal in
a, the gradient ascent step ∇aQ

µ(s, a) used in Eq. (3) may
lead the actor to converge to suboptimal local maxima in
action space. Unlike parameter space optimization, the actor
cannot rely on high dimensionality or overparameterization to smooth out the optimization landscape
in action space because the Q-landscape is determined by the task’s reward. Furthermore, the non-
stationarity of the Q-function during training compounds this challenge. These properties make our
non-convex challenge unique, requiring a specialized actor to navigate the complex Q-landscape.

Tasks with several local optima in the Q-function include restricted inverted pendulum shown
in Figure 3, where certain regions of the action space are invalid or unsafe, leading to a rugged
Q-landscape (Florence et al., 2022). Dexterous manipulation tasks exhibit discontinuous behaviors
like inserting a precise peg in place with a small region of high-valued actions (Rajeswaran et al.,
2017) and surgical robotics have a high variance in Q-values of nearby motions (Barnoy et al., 2021).

3.2.1 LARGE DISCRETE ACTION RL REFRAMED AS CONTINUOUS ACTION RL

We discuss another practical domain where non-convex Q-functions are present. In large discrete
action tasks like recommender systems (Zhao et al., 2018; Zou et al., 2019; Wu et al., 2017), a
common approach (Van Hasselt & Wiering, 2009; Dulac-Arnold et al., 2015) is to use continuous rep-
resentations of actions as a medium of decision-making. Given a set of actions, I = {I1, . . . ,IN}, a
predefined moduleR : I → A assigns each I ∈ I to its representationR(I ), e.g., text embedding
of a given movie (Zhou et al., 2010). A continuous action policy π(a | s) is learned in the action
representation space, with each a ∈ A converted to a discrete action I ∈ I via nearest neighbor,

fNN(a) = arg min
Ii∈I

∥R(Ii)− a∥2.

Importantly, the nearest neighbor operation creates a challenging piece-wise continuous Q-function
with suboptima at various discrete points as shown in Figure 2 (Jain et al., 2021; 2020).

4 APPROACH: SUCCESSIVE ACTORS FOR VALUE OPTIMIZATION (SAVO)
Our objective is to design an actor architecture that efficiently discovers better actions in complex,
non-convex Q-function landscapes. We focus on gradient-based actors and introduce two key ideas:

1. Maximizing Over Multiple Policies: By combining policies using an argmax over their Q-
values, we can construct a policy that performs at least as well as any individual policy (§4.1).

2. Simplifying the Q-Landscape: Drawing inspiration from tabu search (Glover, 1990), we propose
using actions with good Q-values to eliminate or “tabu” the Q-function regions with lower
Q-values, thereby reducing local optima and facilitating gradient-based optimization (§4.2).
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Figure 4: SAVO Architecture. (left) Q-network is unchanged. (center) Instead of a single actor, we
learn a sequence of actors and surrogate networks connected via action predictions. (right) Condition-
ing on previous actions is done with the help of a deep-set summarizer and FiLM modulation.

4.1 MAXIMIZER ACTOR OVER ACTION PROPOSALS

We first show how additional actors can improve DPG’s policy improvement step. Given a policy µ
being trained with DPG over Q, consider k additional arbitrary policies ν1, . . . , νk, where νi : S → A
and let ν0 = µ. We define a maximizer actor µM for ai = νi(s) for i = 0, 1, . . . , k,

µM (s) := argmax
a∈{a0,a1,...,ak}

Q(s, a), (5)

Here, µM is shown to be a better maximizer of Q(s, a) in Eq. (2) than µ ∀s :

Q(s, µM (s)) = max
ai

Q(s, ai) ≥ Q(s, a0) = Q(s, µ(s)).

Therefore, by policy improvement theorem (Sutton & Barto, 1998), V µM (s) ≥ V µ(s), proving that
µM is better than a single µ for a given Q. Appendix A proves the following theorem by showing
that policy evaluation and improvement with µM converge.
Theorem 4.1 (Convergence of Policy Iteration with Maximizer Actor). A modified policy iteration
algorithm where ν0 = µ is the current policy learned with DPG and maximizer actor µM defined in
Eq. (5), converges in the tabular setting to the optimal policy.

This algorithm is valid for arbitrary ν1, . . . νk. We experiment with ν’s obtained by sampling from a
Gaussian centered at µ or ensembling on µ to get diverse actions. However, in high-dimensionality,
randomness around µ is not sufficient to get action proposals to significantly improve µ.

4.2 SUCCESSIVE SURROGATES TO REDUCE LOCAL OPTIMA

To train additional policies νi that can improve upon µM , we introduce surrogate Q-functions with
fewer local optima, inspired by the principles of tabu search (Glover, 1990), which is an optimization
technique that uses memory structures to avoid revisiting previously explored inferior solutions,
thereby enhancing the search for optimal solutions. Similarly, our surrogate functions act as memory
mechanisms that “tabu” certain regions of the Q-function landscape deemed suboptimal based on
previously identified good actions. Given a known action a†, we define a surrogate function that
elevates the Q-values of all inferior actions to Q(s, a†), which serves as a constant threshold:

Ψ(s, a; a†) = max{Q(s, a), Q(s, a†)}. (6)

Extending this idea, we define a sequence of surrogate functions using the actions from previous
policies. Let a<i = {a0, a1, . . . , ai−1}. The i-th surrogate function is:

Ψi(s, a; a<i) = max

{
Q(s, a),max

j<i
Q(s, aj)

}
. (7)

Theorem 4.2. For a state s ∈ S and surrogates Ψi defined as above, the number of local optima
decreases with each successive surrogate:

Nopt(Q(s, ·)) ≥ Nopt(Ψ1(s, ·; a0)) ≥ · · · ≥ Nopt(Ψk(s, ·; a<k)),

where Nopt(f) denotes the number of local optima of function f over A.

Proof Sketch. As Ψi→ Ψi+1, the anchor Q-value in Eq. (7) weakly increases, maxj<i Q(s, aj) ≤
maxj<(i+1) Q(s, aj), thus, eliminating more local minima below it (proof in Appendix B.1).
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4.3 SUCCESSIVE ACTORS FOR SURROGATE OPTIMIZATION

To effectively reduce local optima using the surrogates Ψ1, . . . ,Ψk, we design the policies νi to
optimize their respective surrogates Ψi(s, a; a<i). Each νi focuses on regions where Q(s, a) ≥
maxj<i Q(s, aj), allowing it to find better optima than previous policies. The actor νi is conditioned
on previous actions {a0, . . . , ai−1}, summarized using deep sets (Zaheer et al., 2017) (Figure 4). The
maximizer actor µM (Eq. (5)) selects the best action among all proposals.

We train each actor νi using gradient ascent on its surrogate Ψi, similar to DPG:

∇ϕi
J(ϕi) = Es∼ρµM

[
∇aΨi(s, a; a<i)

∣∣
a
∇ϕi

νi(s; a<i)
]
. (8)

4.4 APPROXIMATE SURROGATE FUNCTIONS

The surrogates Ψi have zero gradients when Q(s, a) < τ , where τ = maxj<i Q(s, aj),

∇aΨi(s, a; a<i) =

{
∇aQ

µM (s, a) if Q(s, a) ≥ τ,

0 if Q(s, a) < τ.

This means the policy gradient only updates νi when Q(s, a) ≥ τ , which may slow down learning.
To address this issue, we ease the gradient flow by learning a smooth lossy approximation Ψ̂i of Ψi.

Figure 5: In restricted inverted pendulum, given an anchor
Q(a0) value, Ψ (left) has some zero-gradient surfaces which
Ψ̂ (right) approximately follows while allowing non-zero
gradients towards high Q-values to flow into its actor ν.

We approximate each surrogate Ψi

with a neural network Ψ̂i. This ap-
proach leverages the universal approx-
imation theorem (Hornik et al., 1989;
Cybenko, 1989) and benefits from em-
pirical evidence that deep networks
can effectively learn non-smooth func-
tions (Imaizumi & Fukumizu, 2019).
The smooth surrogate Ψ̂i enables con-
tinuous gradient propagation, which
is essential for optimizing the actors
νi. We train Ψ̂i to approach Ψi by
minimizing the mean squared error at
two critical points:

1. µ̃M (s) is the action selected by the current maximizer actor µM , having a high Q-value,
2. νi(s; a<i) is the action proposed by the i-th actor conditioned on previous actions a<i,

Lapprox = Es∼ρµM

 ∑
a∈{µ̃M (s),νi(s;a<i)}

∥∥∥Ψ̂i(s, a; a<i)−Ψi(s, a; a<i)
∥∥∥2
2

 . (9)

This design ensures Ψ̂i is updated on high Q-value actions and thus the landscape is biased towards
those values. This makes the gradient flow trend in the direction of high Q-values. So, even when ai
from νi falls in a region of zero gradients for Ψi, in Ψ̂i would provide policy gradient in a higher
Q-value direction, if it exists. Figure 5 shows Ψ1 and Ψ̂1 in restricted inverted pendulum task.

4.5 SAVO-TD3 ALGORITHM AND DESIGN CHOICES

While the SAVO architecture (Figure 4) can be integrated with any off-policy actor-critic algorithm,
we choose to implement it with TD3 (Fujimoto et al., 2018) due to its compatibility with continuous
and large-discrete action RL (Dulac-Arnold et al., 2015). Using the SAVO actor in TD3 enhances
its ability to find better actions in complex Q-function landscapes. Algorithm 1 depicts SAVO
(highlighted) applied to TD3. We discuss design choices in SAVO and validate them in §6.

1. Removing policy smoothing: We eliminate TD3’s policy smoothing, which adds noise
to the target action ã during critic updates. In non-convex landscapes, nearby actions may
have significantly different Q-values and noise addition might obscure important variations.
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Algorithm 1 SAVO-TD3

Initialize Q,Q2, µ, Ψ̂1, . . . , Ψ̂k, ν1, . . . , νk
Initialize target networks Q′ ← Q, Q′

2 ← Qtwin

Initialize replace buffer B.
for timestep t = 1 to T do

Select Action:
Evaluate a0 = µ(s), ai = νi(s; a<i)
Add perturbations with OU Noise âi = ai + ϵi
Evaluate µM (s) = argmaxa∈{â0,...,âk} Q

µ(s, a)

Exploration action a = µ̃M (s) = µM (s) + ϵ
Observe reward r and new state s′

Store (s, a, {âi}Ki=0, r, s
′) in B

Update:
Sample N transitions (s, a, {âi}Ki=0, r, s

′) from B
Compute target action ã = µM (s′)
Update Q,Q2 ← r+ γmin{Q′(s′, ã), Q′

2(s
′, ã)}

Update Ψ̂i with Eq. 9 ∀i = 1, . . . k
Update actor µ with Eq. 3
Update actor νi with Eq. 8 ∀i = 1, . . . k

end for

2. Exploration in Additional Actors:
Added actors νi explore the surrogate land-
scapes for high-reward regions by adding
OU (Lillicrap et al., 2015) or Gaussian (Fu-
jimoto et al., 2018) noise to their actions.

3. Twin Critics for Surrogates:
To prevent overestimation bias in surro-
gates Ψ̂i, we use twin critics to compute the
target of each surrogate, mirroring TD3.

4. Conditioning on Previous Actions:
Actors νi and surrogates Ψ̂i are condi-
tioned on preceding actions via FiLM lay-
ers (Perez et al., 2018) as in Figure 4.

5. Discrete Action Space Tasks:
We apply 1-nearest-neighbor fNN before Q-
value evaluation to ensure the Q-function
is only queried at in-distribution actions.

SAVO-TD3 employs SAVO actor to sys-
tematically reduce the local optima in its
base algorithm TD3. We empirically vali-
date the proposed design improvements.

5 ENVIRONMENTS

We evaluate SAVO on discrete and continuous action space environments with challenging Q-value
landscapes. More environment details are presented in Appendix C and Figure 13.

Locomotion in Mujoco. We evaluate on MuJoCo (Todorov et al., 2012) environments of Hopper-v4,
Walker2D-v4, Inverted Pendulum-v4, and Inverted Double Pendulum-v4.

Valid Action Space

Original Action Space

Figure 6: Hopper’s 3D visual-
ization of Action Space.

Locomotion in Restricted Mujoco. We create a restricted loco-
motion suite of the same environments as in MuJoCo. A hard
Q-landscape is realized via high-dimensional discontinuities that re-
strict the action space. Concretely, a set of predefined hyper-spheres
(as shown in Figure 6) in the action space are sampled and set to
be valid actions, while the other invalid actions have a null effect if
selected. The complete details can be found in Appendix C.3.1.

Adroit Dexterous Manipulation. Rajeswaran et al. (2017) propose
manipulation tasks with a dexterous multi-fingered hand. Door: In
this task, a robotic hand is required to open a door with a latch. The
challenge lies in the precise manipulation needed to unlatch and
swing open the door using the fingers. Hammer: the robotic hand
must use a hammer to drive a nail into a board. This task tests the hand’s ability to grasp the hammer
correctly and apply force accurately to achieve the goal. Pen: This task involves the robotic hand
manipulating a pen to reach a specific goal position and rotation. The objective is to control the pen’s
orientation and position using fingers, which demands fine motor skills and coordination.

Mining Expedition in Grid World. We develop a 2D Mining grid world environment (Chevalier-
Boisvert et al., 2018) where the agent (Figure 13) navigates a 2D maze to reach the goal, removing
mines with correct pick-axe tools to reach the goal in the shortest path. The action space includes
navigation and tool-choice actions, with a procedurally-defined action representation space. The
Q-landscape is non-convex because of the diverse effects of nearby action representations.

Simulated and Real-Data Recommender Systems. RecSim (Ie et al., 2019) simulates sequential
user interactions in a recommender system with a large discrete action space. The agent must
recommend the most relevant item from a set of 10,000 items based on user preference information.
The action representations are simulated item characteristic vectors in simulated and movie review
embeddings in the real-data task based on MovieLens (Harper & Konstan, 2015) for items.

7



Preprint.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ( )

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>
SAVO
1-Actor (TD3)
1-Actor, k-Samples (Wolpertinger)
Evolutionary Actor (CEM)
k-Actors (Ensemble)

(a) SAVO versus baseline actor architectures.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ( )

0.00

0.25

0.50

0.75

1.00
Performance Profiles

Fr
ac

tio
n 

of
 ru

ns
 w

ith
 sc

or
e 

>

SAVO (Ours)
SAVO - Approximation
SAVO - Previous Actions
SAVO + Action Smoothing
SAVO + Joint Action

(b) SAVO versus ablations of SAVO

Figure 7: Aggregate performance profiles using normalized scores over 7 tasks and 10 seeds each.
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Figure 8: SAVO against baselines on discrete and continuous tasks. Results averaged over 10 seeds.

6 EXPERIMENTS

6.1 EFFECTIVENESS OF SAVO IN CHALLENGING Q-LANDSCAPES

We compare SAVO against the following baseline actor architectures, where k = 3:

• 1-Actor (TD3): Conventional single actor architecture which is susceptible to local optima.
• 1-Actor, k samples (Wolpertinger): Gaussian sampling centered on actor’s output. For discrete

actions, we select k-NN discrete actions around the continuous action (Dulac-Arnold et al., 2015).
• k-Actors (Ensemble): Best Q-value among diverse actions from ensemble (Osband et al., 2016).
• Evolutionary actor (CEM): Iterative CEM search over the action space (Kalashnikov et al., 2018).
• Greedy-AC: Greedy Actor Critic (Neumann et al., 2018) trains a high-entropy proposal policy and

primary actor trained from best proposals with gradient updates.
• Greedy TD3: Our version of Greedy-AC with TD3 exploration and update improvements.
• SAVO: Our method with k successive actors and surrogate Q-landscapes.

We ablate the crucial components and design decisions in SAVO:

• SAVO - Approximation: removes the approximate surrogates (§4.4), using Ψi instead of Ψ̂i.
• SAVO - Previous Actions: removes conditioning on a<i in SAVO’s actors and surrogates.
• SAVO + Action Smoothing: TD3’s policy smoothing (Fujimoto et al., 2018) compute Q-targets.
• SAVO + Joint Action: trains an actor with a joint action space of 3×D. The k action samples are

obtained by splitting the joint action into D dimensions. Validates successive nature of SAVO.

Aggregate performance. We utilize performance profiles (Agarwal et al., 2021) to aggregate results
across different environments in Figure 7a (evaluation mechanism detailed in Appendix G.1). SAVO
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consistently outperforms baseline actor architectures like single-actor (TD3) and sampling-augmented
actor (Wolpertinger), showing wide robustness across challenging Q-landscapes. In Figure 7b, SAVO
outperforms its ablations, validating each proposed component and design decision.

Per-environment results. In discrete action tasks, the Q-value landscape is only well-defined at
exact action representations and nearby discrete actions might have very different values (§3.2.1).
This makes the Q-value landscape uneven, with multiple peaks and valleys (Figure 2). For example,
actions in Mining Expedition involve both navigation and tool-selection which are quite different,
while RecSim and RecSim-Data have many diverse items to choose from. Methods like Wolpertinger
that sample many actions a local neighborhood perform better than TD3 which considers a single
action (Figure 8). However, SAVO achieves the best performance by directly simplifying the non-
convex Q-landscape. In restricted locomotion, there are several good actions that are far apart. SAVO
actors can search and explore widely to optimize the Q-landscape better than only nearby sampled
actions. Figure 16 ablates SAVO in all 7 environments and shows that the most critical features are
its successive nature, removing policy smoothing, and approximate surrogates.

6.2 Q-LANDSCAPE ANALYSIS: DO SUCCESSIVE SURROGATES REDUCE LOCAL OPTIMA?

Figure 9 visualizes surrogate landscapes in Inverted-Pendulum-Restricted for a given state s. Succes-
sive pruning and approximation smooth the Q-landscapes, reducing local optima. A single actor gets
stuck at a local optimum a0 (left), but surrogate Ψ̂1 uses a0 as an anchor to find a better optimum
a1. The maximizer policy finally selects the highest Q-valued action among a0, a1, a2. Figure 24
extends this visualization to Inverted-Double-Pendulum-Restricted. Figure 23 shows how one actor is
sufficient in the convex Q-landscape of unrestricted Inverted-Pendulum-v4. Figures 25, 26 show how
Hopper-v4 Q-landscape provides a path to global optimum, while Hopper-Restricted is non-convex.

(a) Q(s, a0) (b) Ψ̂1(s, a1; a0) (c) Ψ̂2(s, a2; {a0, a1})

Figure 9: Each successive surrogate learns a Q-landscape with fewer local optima and thus is easier to
optimize by its actor. SAVO helps a single actor escape the local optimum a0 in Inverted Pendulum.

6.3 CHALLENGING DEXTEROUS MANIPULATION (ADROIT)

In Adroit dexterous manipulation tasks (Door, Pen, Hammer) (Rajeswaran et al., 2017), SAVO
improves the sample efficiency of TD3 (Figure 10). The non-convexity in Q-landscape likely arises
from nearby actions having high variance outcomes like grasping, missing, dropping, or no impact.
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Figure 10: SAVO improves the sample-efficiency of TD3 on Adroit dexterous manipulation tasks.

6.4 QUANTITATIVE ANALYSIS: THE EFFECT OF SUCCESSIVE ACTORS AND SURROGATES

We investigate the effect of increasing the number of successive actor-surrogates in SAVO in Pendulum
(Figure 11a) and MineWorld (Figure 11b). Additional actor-surrogates significantly help to reduce
severe local optima initially. However, the improvement saturates as the suboptimality gap reduces.
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Figure 11: (L) More successive actor-surrogates are better, (R) SAVO v/s single-actor on inference.

Next, we show that successive actors are needed because a single actor can get stuck in local optima
even with an optimal Q-function. In Figure 11c, we consider a SAVO agent trained to optimality with
3 actors. When we remove the additional actors, the remaining single-actor agent resembles TD3
trained to maximize an “optimal” Q-function. However, the significant performance gap indicates
that the single actor could not find optimal actions for the given Q-function.

6.5 DOES RL WITH RESETS ADDRESS THE ISSUE OF Q-FUNCTION OPTIMIZATION?

Figure 12: Reset (primacy bias)
does not improve Q-optimization.

Primacy bias (Nikishin et al., 2022; Kim et al., 2024) occurs
when an agent is trapped in suboptimal behaviors from early
training. To mitigate this, methods like resetting parameters
and re-learning from the replay buffer aim to reduce reliance on
initial samples. We run TD3 in MineEnv with either a full-reset
or last-layer reset every 200k, 500k, or 1 million iterations.
None of these versions outperformed the original TD3 algo-
rithm without resets. This is because resetting does not help
an actor to navigate the Q-landscape better and can even cause
an otherwise optimal actor to get stuck in a suboptimal solu-
tion during retraining. In contrast, the SAVO actor architecture
specifically addresses the non-convex Q-landscapes, being a
more robust method to finding closer to optimal actions.

6.6 FURTHER EXPERIMENTS TO VALIDATE SAVO

• Unrestricted locomotion. Figure 15 shows that both SAVO and baselines achieve optimal per-
formance in simple Q-landscapes, confirming effective hyperparameter tuning (§G.4, §G.3) and
indicating that the baselines underperform due to the complexity introduced in Q-landscapes.

• SAVO orthogonal to SAC. Figure 17 shows that SAVO+TD3 > SAC > TD3, indicating that SAC’s
stochastic policy does not address non-convexity, but can itself suffer from local optima (Figure 18)

• Design Choices. Figure 20 shows that LSTM, DeepSet, and Transformers are all valid choices as
summarizers of preceding actions a<i in SAVO. Figure 21 shows that FiLM conditioning on a<i

especially helps for discrete action space tasks but has a smaller effect in continuous action space.
In Figure 22a, we find Ornstein-Uhlenbeck (OU) noise and Gaussian noise to be largely equivalent.

• Massive Discrete Actions. SAVO outperforms in RecSim with 100k and 500k actions (Figure 19).

7 LIMITATIONS AND CONCLUSION Method GPU Mem. Return Time

TD3 619MB 1107.795 0.062s
SAVO k=3 640MB 2927.149 0.088s
SAVO k=5 681MB 3517.319 0.122s

Table 1: Compute v/s Performance Gain (Mujoco)

Introducing more actors in SAVO has negligible
influence on GPU memory, but leads to longer
inference time (Table 1). However, even for
3 actor-surrogates, SAVO achieves significant
improvements in all our experiments. Further,
for tasks with a simple convex Q-landscape, a single actor does not get stuck in local optima, making
the gain from SAVO negligible. In conclusion, we improve Q-landscape optimization in deterministic
policy gradient RL with Successive Actors for Value Optimization (SAVO) in both continuous and
large discrete action spaces. We demonstrate with quantitative and qualitative analyses how the
improved optimization of Q-landscape with SAVO leads to better sample efficiency and performance.
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A PROOF OF CONVERGENCE OF MAXIMIZER ACTOR IN TABULAR SETTINGS

Theorem A.1 (Convergence of Policy Iteration with Maximizer Actor). In a finite Markov Decision
Process (MDP) with finite state space S, consider a modified policy iteration algorithm where, at
each iteration n, we have a set of k + 1 policies {ν0, ν1, . . . , νk}, with ν0 = µn being the policy at
the current iteration learned with DPG. We define the maximizer actor µM as:

µM (s) = arg max
a∈{ν0(s),ν1(s),...,νk(s)}

Qµn(s, a), (10)

where Qµn(s, a) is the action-value function for policy µn. Then, the modified policy iteration
algorithm using the maximizer actor is guaranteed to converge to a final policy µN .

Proof. To prove convergence, we will show that the sequence of policies µn yields monotonically
non-decreasing value functions that converge to a stable value function V N .

POLICY EVALUATION CONVERGES

Thus, iteratively applying T π starting from any initial Q0 converges to the unique fixed point Qπ .

Given the current policy µn, the policy evaluation computes the action-value function Qµn , satisfying:

Qµn(s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)V µn(s′),

where V µn(s′) = Qµn(s′, µn(s
′)).

In the tabular setting, the Bellman operator T µn defined by

[T µnQ](s, a) = R(s, a) + γ
∑
s′

P (s, a, s′)Q(s′, µn(s
′))

is a contraction mapping with respect to the max norm ∥ · ∥∞ with contraction factor γ,

∥T µnQ− T µnQ′∥∞ ≤ γ∥Q−Q′∥∞.

Therefore, iteratively applying T µn converges to the unique fixed point Qµn .

POLICY IMPROVEMENT WITH DPG AND MAXIMIZER ACTOR

Step 1: DPG Update

We define µ̃n as the DPG policy that locally updates µn towards maximizing the expected return
based on Qµn . For each state s, we perform a gradient ascent step using the Deep Policy Gradient
(DPG) method to obtain an improved policy µ̃n:

µ̃n(s)← µn(s) + α∇aQ
µn(s, a)

∣∣
a=µn(s)

,

where α > 0 is a suitable step size.

This DPG gradient step leads to local policy improvement following over µn (Silver et al., 2014):

V µ̃n(s) ≥ V µn(s), ∀s ∈ S.

(b) Maximizer Actor

Given additional policies ν1, . . . , νk, define the maximizer actor µn+1 as:

µn+1(s) = arg max
a∈{µ̃n(s),ν1(s),...,νk(s)}

Qµn(s, a).

Since µn+1(s) selects the action maximizing Qµn(s, a) among candidates, we have:

Qµn(s, µn+1(s)) = max
a∈{µ̃n(s),ν1(s),...,νk(s)}

Qµn(s, a) ≥ Qµn(s, µ̃n(s)) ≥ V µn(s).
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By the Policy Improvement Theorem, since Qµn(s, µn+1(s)) ≥ V µn(s) for all s, it follows that:

V µn+1(s) ≥ V µn(s), ∀s ∈ S.

Thus, the sequence {V µn} is monotonically non-decreasing.

CONVERGENCE OF POLICY ITERATION

Since the sequence {V µn} is monotonically non-decreasing and bounded above by V ∗, it converges
to some V ∞ ≤ V ∗. Given the finite number of possible policies, the sequence {µn} must eventually
repeat a policy. Suppose that at some iteration N , the policy repeats, i.e., µN+1 = µN .

At this point, since the policy hasn’t changed, we have:

µN (s) = arg max
a∈{µ̃N (s),ν1(s),...,νk(s)}

QµN (s, a), ∀s ∈ S.

Since µ̃N (s) is obtained by performing a DPG update on µN (s), and we have that µN (s) maximizes
QµN (s, a) among {µ̃N (s), ν1(s), . . . , νk(s)}, it must be that:

QµN (s, µN (s)) ≥ QµN (s, a), ∀a ∈ {µ̃N (s), ν1(s), . . . , νk(s)}.

Moreover, since µ̃N (s) is obtained via gradient ascent from µN (s), and yet does not yield a higher
Q-value, it implies that:

∇aQ
µN (s, a)

∣∣
a=µN (s)

= 0.

This suggests that µN (s) is a local maximum of QµN (s, a). This shows that this modification to the
policy iteration algorithm of DPG is guaranteed to converge.

Since the set {µ̃N (s), ν1(s), . . . , νk(s)} includes more actions fromA, µN (s) is the action that better
maximizes QµN (s, a) than µ̃N . Therefore, µN is a greedier policy with respect to QµN than µ̃N .

B PROOF OF REDUCING NUMBER OF LOCAL OPTIMA IN SUCCESSIVE
SURROGATES

Theorem B.1. Consider a state s ∈ S , the function Q as defined in Eq. 1, and the surrogate functions
Ψi as defined in Eq. 7. Let Nopt(f) denote the number of local optima (assumed countable) of a
function f : A → R, where A is the action space. Then,

Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})) ≥ Nopt(Ψ1(s, a; {a0, a1})) ≥ · · · ≥ Nopt(Ψk(s, a; {a0, . . . , ak})).

Proof. For each i ≥ 0, define the surrogate function Ψi recursively:

Ψi(s, a; {a0, . . . , ai}) = max {Q(s, a), τi} , (11)

where
τi = max

0≤j≤i
Q(s, aj).

Note that τi is non-decreasing with respect to i, i.e., τi+1 ≥ τi.

Our goal is to show that for each i ≥ 0,

Nopt(Ψi(s, a; {a0, . . . , ai})) ≥ Nopt(Ψi+1(s, a; {a0, . . . , ai+1})).

We proceed by considering how the set of local optima changes from Ψi to Ψi+1.

Consider any local optimum a′ of Ψi. There are two cases:

Case 1: Q(s, a′) > τi

In this case, Ψi(s, a
′) = Q(s, a′) and Ψi coincides with Q in a neighborhood of a′. Since a′ is a

local optimum of Ψi, it is also a local optimum of Q. Because τi+1 ≥ τi, there are two subcases:
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Subcase 1a: Q(s, a′) > τi+1

Here, Ψi+1(s, a
′) = Q(s, a′) and, in a neighborhood of a′, Ψi+1 coincides with Q. Thus, a′ remains

a local optimum of Ψi+1.

Subcase 1b: Q(s, a′) ≤ τi+1

Since Q(s, a′) > τi and τi+1 ≥ τi, this implies τi+1 > τi and Q(s, a′) = τi+1. Then,
Ψi+1(s, a

′) = τi+1,

and in a neighborhood around a′, Ψi+1(s, a) ≥ τi+1. Thus, a′ is not a local optimum of Ψi+1

because there is no neighborhood where Ψi+1(s, a) < Ψi+1(s, a
′).

Case 2: Q(s, a′) ≤ τi

In this case, Ψi(s, a
′) = τi, and Ψi is constant at τi in a neighborhood of a′. Thus, a′ may be

considered a local optimum in Ψi if the function does not exceed τi nearby. When moving to Ψi+1,
since τi+1 ≥ τi, we have:

Ψi+1(s, a
′) = τi+1 ≥ τi.

In the neighborhood of a′, Ψi+1 remains at least τi+1, so a′ is not a local optimum in Ψi+1 unless
Q(s, a) < τi+1 in a neighborhood around a′.

However, since Ψi+1(s, a) ≥ τi+1 for all a, the function does not decrease below Ψi+1(s, a
′) in any

neighborhood of a′. Therefore, a′ is not a local optimum of Ψi+1.

Conclusion: From the above cases, we observe that:

• Any local optimum a′ of Ψi where Q(s, a′) > τi+1 remains a local optimum in Ψi+1.

• Any local optimum a′ of Ψi where Q(s, a′) ≤ τi+1 does not remain a local optimum in
Ψi+1.

Since Ψi+1 does not introduce new local optima (because Ψi+1(s, a) ≥ Ψi(s, a) for all a and
coincides with Q only where Q(s, a) > τi+1), the number of local optima does not increase from Ψi

to Ψi+1.

Base Case: For i = 0, we have:
Ψ0(s, a; {a0}) = max {Q(s, a), Q(s, a0)} .

If we consider Q(s, a0) to be less than the minimum value of Q(s, a) (which can be arranged by
choosing a0 appropriately or by defining τ0 to be less than infa Q(s, a)), then Ψ0(s, a) = Q(s, a),
and the base case holds trivially.

Inductive Step: Assuming that
Nopt(Ψi(s, a; {a0, . . . , ai})) ≤ Nopt(Ψi(s, a; {a0, . . . , ai})),

we have shown that
Nopt(Ψi+1(s, a; {a0, . . . , ai+1})) ≤ Nopt(Ψi(s, a; {a0, . . . , ai})).

By induction, it follows that:
Nopt(Q(s, a)) ≥ Nopt(Ψ0(s, a; {a0})) ≥ Nopt(Ψ1(s, a; {a0, a1})) ≥ · · · ≥ Nopt(Ψk(s, a; {a0, . . . , ak})).

C ENVIRONMENT DETAILS

C.1 MININGENV

The grid world environment, introduced in §5, requires an agent to reach a goal by navigating a 2D
maze as soon as possible while breaking the mines blocking the way.

State: The state space is an 8+K dimensional vector, where K equals to mine-category-size. This
vector consists of 4 independent pieces of information: Agent Position, Agent Direction, Surrounding
Path, and Front Cell Type.
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Figure 13: Benchmark Environments involve discrete action space tasks like Mine World and
recommender systems (simulated and MovieLens-Data) and restricted locomotion tasks.
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Figure 14: Mining Expedition. The red agent must reach the green goal by navigating the grid and
using one or more pick-axes to clear each mine blocking the path.

1. Agent Position: A 2D vector representing the agent’s x and y coordinates.
2. Agent Direction: One dimension representing directions (0: right, 1: down, 2: left, 3: up).
3. Surrounding Path: A 4-dimensional vector indicating if the adjacent cells are empty or a goal (1:

empty/goal, 0: otherwise).
4. Front Cell Type: A (K + 1)-dimensional one-hot vector with first K dimensions representing the

type of mine and the last dimension representing if the cell is empty (zero) or goal (one).

Finally, we will normalize each dimension to [0, 1] with each dimension’s minimum/maximum value.

Termination: An episode terminates when the agent reaches the goal or after 100 timesteps. Upon
reset, the grid layout changes while keeping the agent’s start and goal positions fixed.

Actions: Actions include navigation (up, down, left, right) and pick-axe categories. Navigation
changes the agent’s direction and attempts to move forward. The agent cannot step into a mine but
will change direction when trying to step onto a mine or the border of the grid. The pick-axe tool
actions (50 types) have a predefined one-to-one mapping of how they interact with the mines, which
means they can be successfully applied to only one kind of mine, and either transform that kind of
mine into another type of mine or directly break it.

Reward: The agent’s reward comprises a goal-reaching reward, a distance-based step reward, and
rewards for successful tool use or mine-breaking. The goal reward is discounted by steps taken over
the episode, encouraging shorter paths to reach the goal.

R(s, a) = 1Goal ·RGoal

(
1− λGoal

Ncurrent steps

Nmax steps

)
+

RStep (Ddistance before −Ddistance after) +

1correct tool applied ·RTool +

1successfully break mine ·RBonus

(12)
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where RGoal = 10, RStep = 0.1, RTool = 0.1, RBonus = 0.1, λGoal = 0.9, Nmax steps = 100

Action Representations Actions are represented as a 4D vector with normalized values [0, 1] as
described in Figure 14. Dimensions represent skill category (navigation or pick-axe), movement
direction (right, down, left, up), mine type where this action can be applied, and the outcome of
applying the tool to the mine, respectively.

C.2 RECSIM

In the simulated recommendation system (RecSys) environment, the agent selects an item from a large
set that aligns with the user’s interests. Users are modeled with dynamically changing preferences that
evolve based on their interactions (clicks). The agent’s objective is to infer these evolving preferences
from user clicks and recommend the most relevant items to maximize the total number of clicks.

State: The user’s interest is represented by an embedding vector eu ∈ Rn, where n is the number of
item categories. This embedding evolves over time as the user interacts with different items. When a
user clicks on an item with embedding ei ∈ Rn, the user interest embedding eu is updated as follows:

eu ← eu +∆eu, with probability
e⊤u ei + 1

2

eu ← eu −∆eu, with probability
1− e⊤u ei

2
,

where ∆eu represents an adjustment that depends on the alignment between eu and ei. This update
mechanism adjusts the user’s preference towards the clicked item, reinforcing the connection between
the current action on future recommendations.

Action: The action set consists of all items that can be recommended, and the agent must select the
item most relevant to the user’s long-term preferences over the episode.

Reward: The reward is based on user feedback: either a click (reward = 1) or skip (reward = 0). The
user model computes a score for each item using the dot product of the user and item embeddings:

scoreitem = ⟨eu, ei⟩
The click probability is computed with a softmax over the item score and a predefined skip score:

pitem =
escoreitem

escoreitem + escoreskip
, pskip = 1− pitem

The user then stochastically chooses to click or skip based on this distribution.

Action Representations: Following Jain et al. (2021), items are represented as continuous vectors
sampled from a Gaussian Mixture Model (GMM), with centers representing item categories.

C.3 CONTINUOUS CONTROL

MuJoCo (Todorov et al., 2012) is a physics engine that provides a suite of standard reinforcement
learning tasks with continuous action spaces, commonly used for benchmarking continuous control
algorithms. We briefly describe some of these tasks below:

Hopper: The agent controls a one-legged robot that must learn to hop forward while maintaining
balance. The objective is to maximize forward velocity without falling.

Walker2d: The agent controls a two-legged bipedal robot that must learn to walk forward efficiently
while maintaining balance. The goal is to achieve stable locomotion at high speeds.

HalfCheetah: The agent controls a planar, cheetah-like robot with multiple joints in a 2D environment.
The task requires learning a coordinated gait to propel the robot forward as quickly as possible.

Ant: The agent controls a four-legged, ant-like robot with multiple degrees of freedom. The challenge
is to learn to walk and navigate efficiently while maximizing forward progress.

C.3.1 RESTRICTED LOCOMOTION IN MUJOCO

The restricted locomotion Mujoco tasks are introduced to demonstrate how common DPG-based
approaches get stuck in local optima when the Q-landscape is complex and non-convex. This setting
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limits the range of actions the agent can perform in each dimension, simulating realistic scenarios
such as wear and tear of hardware. For example, action space may be affected as visualized in
Figure 6. A mixture-of-hypersphere action space is used to simulate such asymmetric restrictions,
which affect the range of torques for the Hopper and Walker joints, as well as the forces applied to the
inverted pendulum and double pendulum. The hyperspheres are sampled randomly, and their size and
radius are carefully tuned to ensure that the action space has enough valid actions to solve the task.

Definition of restriction.

• Restricted Hopper & Walker
Invalid action vectors are replaced with 0 by changing the environment’s step function code:

1 def step(action):
2 ...
3 if check_valid(action):
4 self.do_simulation(action)
5 else:
6 self.do_simulation(np.zeros_like(action))
7 ...

The Hopper action space is 3-dimensional, with torque applied to [thigh, leg, foot],
while the Walker action space is 6-dimensional, with torque applied to
[right thigh, right leg, right foot, left thigh, left leg, left foot]. The physical implication of re-
stricted locomotion is that zero torques are exerted for the ∆t duration between two actions, i.e.,
no torques are applied for 0.008 seconds. This effectively slows down the agent’s current velocities
and angular velocities due to friction whenever the agent selects an invalid action.

• Inverted Pendulum & Inverted Double Pendulum
Invalid action vectors are replaced with -1 by changing the environment’s step function code:

1 def step(action):
2 ...
3 if not check_valid(action):
4 action[:] = -1.
5 self.do_simulation(action)
6 ...

The action space is 1-dimensional, with force applied on the cart. The implication is that the cart is
pushed in the left direction for 0.02 (default) seconds. Note that the action vectors are not zeroed
because a 0-action is often the optimal action, particularly when the agent starts upright. This
would make the optimal policy trivially be learning to select invalid actions.

D ADDITIONAL RESULTS

D.1 EXPERIMENTS ON CONTINUOUS CONTROL (UNRESTRICTED MUJOCO)

In standard MuJoCo tasks, the Q-landscape is likely easier to optimize compared to MuJoCo-
Restricted tasks. In Figure 15, we find that baseline models consistently perform well in all standard
tasks, unlike in MuJoCo-Restricted tasks. Thus, we can infer the following:

1. Baselines have sufficient capacity, are well-tuned, and can navigate simple Q-landscapes optimally.
2. SAVO performs on par with other methods in MuJoCo tasks where the Q-landscape is easier to

optimize, showing that SAVO is a robust, widely applicable actor architecture.
3. Baselines performing well in unrestricted locomotion but suboptimally in restricted locomotion

delineates the cause of suboptimality to be the complexity of the underlying Q-landscapes, such
as those shown in Figure 2. SAVO is closer to optimal in both settings because it can navigate
both simple and complex Q-functions better than alternate actor architectures.

D.2 PER-ENVIRONMENT ABLATION RESULTS

Figure 16 shows the per-environment performance of SAVO ablations, compiled into aggregate
performance profiles in Figure 7b. The SAVO - Approximation variant underperforms significantly
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Figure 15: Unrestricted Locomotion (§D.1). SAVO and most baselines perform optimally in
standard MuJoCo continuous control tasks, where the Q-landscape is easy to navigate.
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Figure 16: Ablations of SAVO variations (§D.2) shows the importance of (i) the approximation
of surrogates, (ii) removing TD3’s action smoothing, (iii) conditioning on preceding actions in the
successive actor and surrogate networks, and (iv) individual actors that separate the action candidate
prediction instead of a joint high-dimensional learning task.

in discrete action space tasks, where traversing between local optima is complex due to nearby actions
having diverse Q-values (see the right panel of Figure 2). Similarly, adding TD3’s target action
smoothing to SAVO results in inaccurate learned Q-values when several differently valued actions
exist near the target action, as in the complex landscapes of all tasks considered.

Removing information about preceding actions does not significantly degrade SAVO’s performance
since preceding actions’ Q-values are indirectly incorporated into the surrogates’ training objective
(see Eq. (9)), except for MineWorld where this information helps improve efficiency.

The SAVO + Joint ablation learns a single actor that outputs a joint action composed of k constituents,
aiming to cover the action space so that multiple coordinated actions can better maximize the Q-
function compared to a single action. However, this increases the complexity of the architecture and
only works in low-dimensional tasks like Inverted-Pendulum and Inverted-Double-Pendulum. SAVO
simplifies action candidate generation by using several successive actors with specialized objectives,
enabling easier training without exploding the action space.

D.3 SAC IS ORTHOGONAL TO SAVO

We compare Soft Actor-Critic (SAC), TD3, and TD3 + SAVO across various Mujoco-Restricted tasks.
Figure 17 shows that SAC sometimes outperforms and sometimes underperforms TD3. Therefore,
SAC’s stochastic policy does not address the challenge of non-convexity in the Q-function. In contrast,
SAVO+TD3 consistently outperforms TD3 and SAC, demonstrating the effectiveness of SAVO in
complex Q-landscapes. While SAC can be better than TD3 in certain environments, its algorithmic
modifications are orthogonal to the architectural improvements due to the SAVO actor.
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Figure 17: SAC is orthogonal to the effect of SAVO (§D.3). SAC is a different algorithm than TD3,
whereas SAVO is a plug-in actor architecture for TD3. Thus, tasks where SAC outperforms TD3
differ from tasks where SAVO outperforms TD3. Also, TD3 outperforms SAC in Restricted Hopper
and Inverted-Double-Pendulum. However, SAVO+TD3 guarantees improvement over TD3.
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Figure 18: SAC is suboptimal in complex
Q-landscape (§D.3) of Restricted Inverted
Double Pendulum, but SAVO helps.

In the Restricted Inverted Double Pendulum task (Fig-
ure 18), SAC underperforms even TD3. Analogous to
TD3, the suboptimality is due to the non-convexity in
the soft Q-function landscape, where small changes
in nearby actions can lead to significantly different
environment returns. We combine SAC with SAVO’s
successive actors and surrogates to better maximize
the soft Q-function, naively considering action can-
didates for µM as the mean action of the stochastic
actors. We observe that this preliminary version of
SAC + SAVO shows significant improvements over
SAC in complex Q-landscapes. In future work, we
aim to formalize a SAVO-like objective that effec-
tively enables SAC’s stochastic actors to navigate the
non-convexity of its soft Q-function.

D.4 INCREASING SIZE OF DISCRETE ACTION SPACE IN RECSIM

We test the robustness of our method to more challenging Q-value landscapes in Figure 19, especially
in discrete action space tasks with massive action spaces. In RecSim, we increase the number of
actual discrete actions from 10, 000 to 100, 000 and 500, 000. The experiments show that SAVO
outperforms the best-performing baseline of TD3 + Sampling (Wolpertinger) and the best-performing
ablation of SAVO + Joint Action. This shows that SAVO maintains robust performance even as the
action space size increases and the Q-function landscape becomes more intricate. In contrast, the
baselines experienced performance deterioration as action sizes grew larger.
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Figure 19: Increasing RecSim action set size (§D.4). (Left) 100, 000 items, (Right) 500, 000
items (6 seeds) maintains the performance trends of SAVO and the best-performing baseline (TD3 +
Sampling) and the best-performing ablation (SAVO with Joint-Action).
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Figure 20: Action summarizer comparison (§E.1). The effect is not significant The results are
averaged over 5 random seeds, and the seed variance is shown with shading.
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Figure 21: FiLM to condition on preceding actions (§E.2). FiLM ensures layerwise dependence on
the preceding actions for acting in actors νi and for predicting value in surrogates Ψ̂i, which generally
results in better performance across tasks.

E VALIDATING SAVO DESIGN CHOICES

E.1 DESIGN CHOICES: ACTION SUMMARIZERS

Three key architectures were considered for the design of the action summarizer: DeepSets, LSTM,
and Transformer models, represented by SAVO, SAVO-LSTM, and SAVO-Transformer in Figure 20,
respectively. In general, the effect of the action summarizer is not significant, and we choose DeepSet
for its simplicity for most experiments.

E.2 CONDITIONING ON PREVIOUS ACTIONS: FILM VS. MLP

We examined two approaches for conditioning on the previous action list summary: Feature-wise Lin-
ear Modulation (FiLM) and concatenation with input, represented by the FiLM and non-film variants
in Figure 21. Across tasks, FiLM outperformed the non-FiLM version, showing the effectiveness
of layerwise conditioning in leveraging prior action information for action selection and surrogate
value prediction. This shows that the successive actors are appropriately utilizing the actions from
the preceding actors to tailor their search for optimal actions, and the successive surrogates can better
evaluate Q-values, knowing where they could be thresholded by the loss function.

E.3 EXPLORATION NOISE COMPARISON: OUNOISE VS GAUSSIAN

We compare Ornstein-Uhlenbeck (OU) noise with Gaussian noise across our environments and find
that OU noise was generally better, with the difference being minimal. We chose to use OU for
our experiments and a comparison on Hopper-Restricted is shown in Figure 22a. We note that TD3
(Fujimoto et al., 2018) also suggests no significant difference between OU and Gaussian noise and
favored Gaussian for simplicity. All our baselines use the same exploration backbone, and we confirm
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Figure 22: OU versus Gaussian Noise (§E.3). We do not see a significant difference due to this
choice, and select OU noise due to better overall performance in experiments.

that using OU noise is consistent with the available state-of-the-art results with TD3 + Gaussian noise
on common environments like Ant, HalfCheetah, Hopper, and Walker2D.

F NETWORK ARCHITECTURES

F.1 SUCCESSIVE ACTORS

The entire actor is built as a successive architecture (see Figure 4), where each successive actor
receives two pieces of information: the current state and the action list generated by preceding
actors. Each action is concatenated with the state to contextualize it and then summarized using a
list-summarizer, described in §F.3. This list summary is concatenated with the state again and passed
into an MLP with ReLU (3 layers for MuJoCo tasks and 4 layers for MineWorld and RecSim) as
described in Table 2. This MLP generates one action for each successive actor, which is subsequently
used as an input action to the succeeding action lists. For discrete action space tasks, this generated
action is processed with a 1-NN to find the nearest exact discrete action. Finally, the actions generated
by each individual successive actor are accumulated, and the maximizer actor µM step from Eq. (5)
selects the highest-valued action according to the Critic Q-network, described in §F.2.

F.2 SUCCESSIVE SURROGATES

As Figure 4 illustrates, there is a surrogate network for each actor in the successive actor-architecture.
Each successive critic receives three pieces of information: the current state, the action list generated
by preceding actors, and the action generated by the actor corresponding to the current surrogate. Each
action is concatenated with the state to contextualize it and then summarized using a list-summarizer,
described in §F.3. This list summary is concatenated with the state and the current action, and passed
into a 2-layer MLP with ReLU (See Table 2). This MLP generates the surrogate value Ψ̂i(s, a; a<i)
and is used as an objective to ascend over by its corresponding actor νi.

F.3 LIST SUMMARIZERS

To extract meaningful information from the list of candidate actions, we employed several list
summarization methods following Jain et al. (2021). These methods are described below:

Bi-LSTM: The action representations of the preceding actors’ actions are first passed through a
two-layer multilayer perceptron (MLP) with ReLU activation functions. The output of this MLP is
then processed by a two-layer bidirectional LSTM network (Huang et al., 2015). The resulting output
is fed into another two-layer MLP to create an action set summary, which serves as an input for the
actor-network (§F.1) and the surrogate network (§F.2).
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DeepSet: The action representations of the preceding actors’ actions are initially processed by a
two-layer MLP with ReLU activations. The outputs are then aggregated using mean pooling over all
candidate actions to compress the information into a fixed-size summary. This summary is passed
through another two-layer MLP with ReLU activation to produce the action set summary, which
serves as an input for the actor-network (§F.1) and the surrogate network (§F.2).

Transformer: Similar to Bi-LSTM, the action representations of the preceding actors’ actions are first
processed by a two-layer MLP with ReLU activations. The outputs are then input into a Transformer
network with self-attention and feed-forward layers to summarize the information. The resulting
summary is used as part of the input to the actor-network (§F.1) and the surrogate network (§F.2).

F.4 FEATURE-WISE LINEAR MODULATION (FILM)

Feature-wise Linear Modulation (Perez et al., 2018) is a technique used in neural networks to
condition intermediate feature representations based on external information, enhancing the network’s
adaptability and performance across various tasks. FiLM modulates the features of a layer by applying
learned, feature-wise affine transformations. Specifically, given a set of features F, FiLM applies a
scaling and shifting operation,

FiLM(F) = γ ⊙ F+ β,

where γ and β are modulation parameters learned from another source (e.g., a separate network or
input), and ⊙ denotes element-wise multiplication. This approach allows the network to selectively
emphasize or de-emphasize aspects of the input data, effectively capturing complex and context-
specific relationships. FiLM has been successfully applied in tasks such as visual question answering
and image captioning, where conditioning visual features on textual input is essential. We apply
FiLM while conditioning the actor and surrogate networks on the summary of preceding actions.

G EXPERIMENT AND EVALUATION SETUP

G.1 AGGREGATED RESULTS: PERFORMANCE PROFILES

To rigorously validate the aggregate efficacy of our approach, we adopt the robust evaluation method-
ology proposed by Agarwal et al. (2021). By incorporating their suggested performance profiles,
we conduct a comprehensive comparison between our method and baseline approaches, providing
a thorough understanding of the statistical uncertainties inherent in our results. Figure 7a shows
the performance profiles across all tasks. The x-axis represents normalized scores, calculated using
min-max scaling based on the initial performance of untrained agents aggregated across random
seeds (i.e., Min) and the final performance from Figure 8 (i.e., Max). The results show that our
method consistently outperforms the baselines across various random seeds and environments. Our
performance curve remains at the top as the x-axis progresses, while the baseline curves decline
earlier. This highlights the reliability of SAVO over different environments and 10 seeds.

G.2 IMPLEMENTATION DETAILS

We used PyTorch (Paszke et al., 2019) for our implementation, and the experiments were primarily
conducted on workstations with either NVIDIA GeForce RTX 2080 Ti, P40, or V32 GPUs on. Each
experiment seed takes about 4-6 hours for Mine World, 12-72 hours for Mujoco, and 6-72 hours for
RecSim, to converge. We use the Weights & Biases tool (Biewald, 2020) for plotting and logging
experiments. All the environments were interfaced using OpenAI Gym wrappers (Brockman et al.,
2016). We use the Adam optimizer (Kingma & Ba, 2014) throughout for training.

G.3 COMMON HYPERPARAMETER TUNING

To ensure fairness across all baselines and our methods, we performed hyperparameter tuning over
parameters that are common across methods:

• Learning Rates of Actor and Critic: (Actor) We searched over learning rates
{0.01, 0.001, 0.0001, 0.0003} and found that 0.0003 was the most stable for the actor’s learn-
ing across all tasks. (Critic) Similar to the actor, we searched over the same set of learning rates
and found the same value of 0.0003 was the most stable for the critic’s learning across all tasks.
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• Network Sizes of Actor and Critic: For each task, we searched over simple 3 or 4 MLP layers to
determine the network size that performed best but did not observe major differences. (Critic) To
ensure a fair comparison, we used the same network size for the critic (Q-network) and surrogates
across all methods within each task. (Actor) Similar to the critic, we used the same network size
for the various actors in all the baselines and successive actors in SAVO within a particular task.

G.4 HYPERPARAMETERS

The environment and RL algorithm hyperparameters are described in Table 2.

Hyperparameter Mine World MuJoCo & Adroit RecSim

Environment

Total Timesteps 107 3× 106 107

Number of epochs 5,000 8,000 10,000
# Envs in Parallel 20 10 16
Episode Horizon 100 1000 20
Number of Actions 104 N/A 10000
True Action Dim 4 5 30
Extra Action Dim 5 N/A 15

RL Training

Batch size 256 256 256
Buffer size 5× 105 5× 105 106

Actor: LR 3× 10−4 3× 10−4 3× 10−4

Actor: ϵstart 1 1 1
Actor: ϵend 0.01 0.01 0.01
Actor: ϵ decay steps 5× 106 5× 105 107

Actor: ϵ in Eval 0 0 0
Actor: MLP Layers 128_64_64_32 256_256 64_32_32_16
Critic: LR 3× 10−4 3× 10−4 3× 10−4

Critic: γ 0.99 0.99 0.99
Critic: MLP Layers 128_128 256_256 64_32
# updates per epoch 20 50 20
List Length 3 3 3
Type of List Encoder DeepSet DeepSet DeepSet
List Encoder LR 3× 10−4 3× 10−4 3× 10−4

Table 2: Environment/Policy-specific Hyperparameters

H Q-VALUE LANDSCAPE VISUALIZATIONS

H.1 1-DIMENSIONAL ACTION SPACE ENVIRONMENTS

We analyzed the Q-value landscapes in Mujoco environments to show how successive critics help
actors find better actions by reducing local optima. Figure 23 illustrates a typically smooth and
easy-to-optimize Q-value landscape in unrestricted Inverted-Pendulum. Figure 24 illustrates that
in restricted locomotion, the Q-value landscape (leftmost and rightmost figures) is uneven with
many local optima. However, the Q-value landscapes learned by successive surrogates Ψ̂i become
successively smoother by removing local peaks below the Q-values of previously selected actions.
This helps actors find closer to optimal actions than with a single critic.

Finally, when we plot the actions a0, a1, a2 selected by the learned successive actors on the original
Q-landscape (rightmost figure), we see they often achieve higher Q-values than a0, the action a single
actor has learned. Thus, the maximizer actor µM often finds closer to optimal actions than a single
actor, resulting in better performance as shown in the return comparison between µM and single actor
(Figure 11c) and the performance against baselines (Figure 8).
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(a) Q0(s, a0) (b) Q1(s, a1|a0) (c) Q2(s, a2|{a0, a1}) (d) Q(s, ai)∀i = 0, 1, 2

Figure 23: Successive surrogate landscapes and the Q-landscape of Inverted Pendulum-v4.

Figure 24: Successive surrogate landscapes and Q landscape for Restricted Inverted-Pendulum and
Restricted Inverted-Double-Pendulum environments.

H.2 HIGH-DIMENSIONAL ACTION SPACE ENVIRONMENTS

Figure 25 visualize Q-value landscapes for a TD3 agent in Hopper-v4. We project actions from the 3D
action space of Hopper-v4 onto a 2D plane using Uniform Manifold Approximation and Projection
(UMAP) and sample 10,000 actions evenly to ensure thorough coverage. The Q-values are plotted
using trisurf, which may introduce some artificial roughness but offers more reliable visuals
than grid-surface plotting. Despite limitations of dimensionality reduction — such as distortion of
distances — the Q-landscape for Hopper-v4 reveals a large globally optimal region (shown in yellow),
offering a clear gradient path that prevents the gradient-based actor from getting stuck in local optima.

In contrast, Hopper-Restricted (Figure 26) has more complex Q-landscapes due to valid actions being
restricted in one of the hyperspheres shown in Figure 6. Consequently, these Q-landscapes appear to
have more locally optimal regions than Hopper-v4. This creates many peaks where gradient-based
actors might get trapped, degrading the resultant agent performance.

The curse of dimensionality limits conclusive analyses on higher dimensional environments like
Walker2D-v4 (6D) and Ant-v4 (8D) because projecting to 2D causes significant information loss,
making it difficult to assess convexity in their Q-landscapes.
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Figure 25: Hopper-v4: Q landscape visualization at different states show a path to optimum.

Figure 26: Hopper-restricted: Q landscape visualization at different states show several local optima.
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