
Preference-based Learning of Reward Function Features

Sydney M. Katz∗, Amir Maleki∗, Erdem Bıyık, and Mykel J. Kochenderfer

Abstract— Preference-based learning of reward functions,
where the reward function is learned using comparison data,
has been well studied for complex robotic tasks such as au-
tonomous driving. Existing algorithms have focused on learning
reward functions that are linear in a set of trajectory features.
The features are typically hand-coded, and preference-based
learning is used to determine a particular user’s relative
weighting for each feature. Designing a representative set of
features to encode reward is challenging and can result in
inaccurate models that fail to model the users’ preferences or
perform the task properly. In this paper, we present a method
to learn both the relative weighting among features as well as
additional features that help encode a user’s reward function.
The additional features are modeled as a neural network that
is trained on the data from pairwise comparison queries. We
apply our methods to a driving scenario used in previous
work and compare the predictive power of our method to that
of only hand-coded features. We perform additional analysis
to interpret the learned features and examine the optimal
trajectories. Our results show that adding an additional learned
feature to the reward model enhances both its predictive power
and expressiveness, producing unique results for each user.

I. INTRODUCTION

If designed properly, reward functions provide a means
for humans to convey desired behavior to a robot. However,
creating a reward function that accurately encodes human
intent can be difficult in complicated, high-dimensional prob-
lem settings. Preference-based learning has been proposed
as a way to address this challenge. By querying the human
user with a set of demonstrated trajectories and asking
which demonstration they prefer, the robot learns the reward
function it should optimize. Its motivation is similar to that
of inverse reinforcement learning (IRL) in that it allows
humans to train a policy without explicitly specifying the
values of the reward function parameters [1]. For this reason,
preference-based learning has been successfully applied to
challenging problems in robotics [2]–[16].

While some preference-based learning algorithms focus on
learning a policy directly [3], [4], others focus on learning
a reward or utility function [10]–[19], which typically in-
volves a lower-dimensional parameter space to make results
easier to interpret. Current state-of-the-art algorithms provide
methods to learn reward functions that are linear in a set of
features [12]–[17], [20], [21]. Features are hand-coded func-
tions of a robot trajectory that remain constant throughout the
learning process. Responses to preference queries are used
to learn weights that indicate the relative importance of each
feature. For example, in a driving scenario, preference-based

*Denotes equal contribution
Stanford University, Stanford, CA 94305, {smkatz, amir.maleki, ebiyik,

mykel}@stanford.edu

learning has been used to determine the relative importance
of features such as collision avoidance and keeping speed by
obtaining pairwise preferences over driving trajectories [15].

While there have been studies to relax the linearity as-
sumption by modeling reward as a mixture of linear functions
conditioned on latent states of the user [22] or as a Gaussian
process [11], the features were still hand-designed. Because
reward functions are based entirely on hand-coded features,
the features must be expressive enough to model human
intent and can be difficult to design appropriately [15]–[17].
Feature selection presents three main challenges: selecting
representative features, selecting expressive features, and
selecting the proper functional form. Features must be rep-
resentative enough to accurately model the reward function
for a particular user. Sadigh et al. [15] found that applying
preference-based learning to understand driving behavior
resulted in similar reward functions among study partici-
pants. In order to distinguish between specific users’ personal
driving preferences, a more expressive set of features may
be required [15]. Finally, applying preference-based learning
to a variety of tasks requires complex, hand-tuned, nonlinear
feature functions, and designing them is challenging [12].

In this work, we address some of these challenges by
providing a framework to not only learn the weights of a
linear reward function but also to learn additional nonlinear
features. We represent features as a neural network that is
trained on a user’s responses to queries. We apply the learn-
ing framework to the driving problem originally presented by
Sadigh et al. [15] and compare the results using the learned
features to those using only hand-coded features. Not only
do we evaluate the model’s predictive power, but we also
visualize and interpret the features learned by the neural
network. Our results demonstrate that an additional nonlinear
feature improves the predictive power of the framework and
enables it to better personalize users’ preferences.

II. APPROACH

Our approach to feature learning requires two phases. The
first involves obtaining expert preferences using an active
querying method. The second is to use the preferences to
learn features. Let φ(xt) be a function that maps the state x
of a robotic system at time t to a set of features. The reward
function takes the form

r(xt) = w>φ(xt) (1)

where w is a vector that specifies the relative weighting
of each feature. Defining a trajectory τ to consist of an
initial state and a set of k subsequent states, we let Φ(τ) =

∑k
t=0 φ(xt). The reward over a particular trajectory is then

R(τ) = w>Φ(τ) (2)

In order to preserve the interpretability of the final model, we
select a mixed feature model in which the feature function
contains both hand-coded and neural network features. Thus,

r(xt) = [whc,wnn]>[φhc(x
t), φnn(xt)] (3)

where φhc(x
t) represents the hand-coded feature function

with corresponding weight vector whc, and φnn(xt) repre-
sents the neural network feature function with corresponding
weight vector wnn.

The methods outlined in our approach discuss techniques
to learn whc, wnn, and the function φnn(xt). We note that
requiring hand-coded features still presents a challenge in
feature design. However, learning additional features using
a neural network can capture important trajectory qualities
that the feature designer may have missed.

A. Preference Model

Preference-based learning is an iterative process between
querying the user for their preference and updating our
model. We keep a distribution p(w) over possible values
of w and perform Bayesian updates to it as we obtain
preferences. Let the nth pairwise comparison query contain
the trajectories τ (n)a and τ (n)b . We define In as the response
to the nth query, where

In =

{
+1, τ

(n)
a � τ (n)b

−1, τ
(n)
a ≺ τ (n)b

(4)

with τa � τb representing the user’s preference of τa to τb.
The Bayesian update can be written as follows:

p(w | In) ∝ p(In | w)p(w) (5)

where p(w) encodes the current distribution over w that
takes into account responses I1:n−1. Before any preferences
have been obtained, we assume a uniform prior over the
search space of possible values.

In order to perform this update, we must specify a likeli-
hood model for p(In | w) keeping in mind that we expect
occasional errors from the user. As in Sadigh et al. [15], we
use a sigmoid likelihood function:

p(In | w) =
1

1 + exp[−In(R(τ
(n)
a)−R(τ

(n)
b))]

(6)

Samples from the posterior p(w | In) can be generated using
Markov Chain Monte Carlo (MCMC) methods. In particular,
we use the adaptive Metropolis algorithm to efficiently
generate samples at each iteration [23].

B. Active Querying

Active querying methods are desirable because they de-
crease the number of required queries by asking questions
based on current model uncertainty inferred from prior user
preferences. Methods for active querying have been proposed
in the literature [12], [14]–[17]. These methods typically rely

on solving an optimization problem over a continuous action
space or control input [12], [15], [16]. One objective is to
select the set of control inputs that maximizes the volume
removed from the current distribution over model parameters
[15], [16]. In later work, better performance was achieved
using an objective that seeks to maximize the information
gained from each query [12].

Although these objectives generate queries that are maxi-
mally informative, they do not provide a direct incentive to
generate query trajectories that are realistic. Figure 1 shows
an example of two possible queries that can be shown to a
user for a driving scenario. The user is presented with two
options and is asked to select their preferred trajectory for
the blue vehicle.

Information Gain Heuristic

Fig. 1. Example queries with information gain objective (left) and heuristic
method (right). Marks are placed at equal time intervals on all trajectories.
The car in the right panel of the information gain query leaves the road and
backs up to the starting latitude.

The query on the left of fig. 1 is generated using the
information gain objective [12]. The user is asked to select
between a scenario in which the blue vehicle repeatedly
crashes into the other vehicle and a scenario in which the
blue vehicle drives off the road and begins to drive backward.
While these trajectories are informative with respect to the
collision avoidance and staying within the lanes on the road,
neither trajectory is realistic. Because we want to learn
features that allow us to express specific user intentions, it
is especially important to show users realistic trajectories
during the active learning process. For this reason, we adopt
an approach that shows users trajectories that have been
optimized for reward functions defined by different vectors
w [17]. By maximizing a reward function for each trajectory,
we ensure that the trajectories will have realistic features. A
query generated using this approach is shown in the right
half of fig. 1.

To choose these w vectors from the samples from p(w),
we formulate a multiobjective optimization problem similar
to prior work [3], [17]. Let M be the number of MCMC
samples generated after each Bayesian update, and let wi be
the ith sample in this set. The optimization problem can be

2

p(w)
sample

w1

w2

w3

...
wM

apply

heuristic

[
wA

wB

]

optimize[
τA
τB

]query

human

update p(w)

Fig. 2. Overview of the iterative learning process.

written as

maximize
i,j s.t. i 6=j

p(wi)p(wj) + µ‖wi −wj‖2 (7)

where µ ≥ 0 controls the balance between the objectives.
The first term incentivizes selecting weights that are likely
based on the current estimate of p(w), and the second
term ensures we select samples that are different enough to
produce a distinguishable query. To calculate the first term,
we use unnormalized posteriors obtained by eq. (5).

Figure 2 outlines the overall active querying process. First,
samples are drawn from p(w) using MCMC. Next, we apply
our multiobjective optimization heuristic to select two of
these samples to use for the next query. Query trajectories
are generated by maximizing the reward function of each
sample and subsequently shown to the user. The optimization
is nonconvex and is solved using the quasi-Newton method
L-BFGS [18]. We solve the optimization problem 10 times
starting from random initial points and show the query
with the best objective value. After we obtain the user’s
preference, we update the posterior p(w) and the process
resumes with sampling.

C. Feature Learning

We seek to learn neural network features to augment our
feature function Φ(τ) so that there exists a weight vector w
such that the linear function w>Φ(τ) is a good predictor of
reward. More specifically, we want to predict higher reward
for the trajectory that the user selected in each query. Note
that in the mixed feature setting, φ(xt) is influenced not only
by φnn(xt) but also by φhc(xt), and we must take this into
account in our training.

1) Network Structure: Our learned feature function
φnn(xt) is represented by a neural network in which the
input is a function of the state of the system. For a simple
system, this function can be the identity mapping (i.e. the
input to the network is the state of the system). The final layer
of the network contains one neuron per feature and represents
the learned features. Because the hand-coded features are
normalized to have a magnitude less than or equal to 1 when
averaged over the trajectory, we select hyperbolic tangent as
the activation function for the output layer. This activation
ensures that features all have similar magnitude.

2) Loss Function: The feature learning problem can be
thought of as a classification problem in that we would like
to find features that allow us to make binary predictions on

τ
(n)
A

φhc

φnn

ΦA ×

w
RA

τ
(n)
B

φnn

φhc
ΦB ×

RB

P
(n)
A = σ(RA −RB)

Fig. 3. Estimating the probability of selecting trajectory A for a particular
query based on the current feature functions and weights. The σ in the last
step represents a sigmoid function.

queries regarding whether or not a user prefers trajectory A
to trajectory B. Framing the problem in this way allows us to
use a cross entropy loss function that takes in the probability
of the user selecting τA given the current reward function
model:

loss =
1

N

N∑
n=1

[
zn log(P

(n)
A)− (1− zn) log(1− P (n)

A)
]
(8)

where zn = In if In = 1, zn = 0 if In = −1, P (n)
A is the

probability of the user selecting τ (n)A over τ (n)B , and N is the
number of preference queries in the training set. Equation (6)
can be used to calculate P (n)

A , and fig. 3 provides a visual
representation of this process. We allow our model to train
both the neural network parameters and the linear reward
weights w.

III. EXPERIMENTAL SETUP

A. Problem Domain

We tested our approach on the driving simulation1 that
has been used in previous preference-based learning works
[12], [14]–[16]. The right panels in fig. 1 show an example
of a preference query that would be shown to a user. The
red car, which represents the human-driven vehicle, starts
in the rightmost lane and switches to the middle lane. The
human-driven vehicle follows the same trajectory in every
scenario. The user is asked to select the trajectory they would
prefer the blue car, or robot-driven vehicle, to follow. The
state is defined as [xr, yr, θr, vr, xh, yh, θh, vh] where x is the
vehicle’s latitudinal position on the road, y is the vehicle’s
longitudinal position, θ is the vehicle’s heading (θ = 90◦

corresponds to driving straight along the road), and v is the
vehicle’s speed. A subscript r denotes a state corresponding
to the robot car, and a subscript h denotes a state associated
with the human car.

1) Hand-coded Features: The hand-coded features are
simlar to those used in Bıyık et al. [16] In order to narrow
our search space of vectors w, we design our features such
that higher values are preferred and restrict the elements of
w to be nonnegative. The features are summarized in table I.

1Source is at github.com/sisl/FeatureLearningPrefs.

3

https://github.com/sisl/FeatureLearningPrefs

TABLE I
HAND-CODED FEATURES

Description Expression

staying in lane exp
[
min((xr − 0.17)2, x2r, (xr + 0.17)2)

]
keeping speed −(vr − 1)2

heading sin(θr)

collision avoidance − exp
[
−(7(xr − xh)2 + 3(yr − yh)2)

]

In this particular scenario, lane centers are located at
x = −0.17, x = 0, and x = 0.17, so the first feature
represents the minimum distance to a lane center. The
collision avoidance feature was designed for a vehicle with
an aspect ratio of 7/3. These features are expressive enough
to produce a reasonable optimal trajectory given a weight
vector w; however, we hypothesize that this set of features
alone is not expressive enough to fully describe a driver’s
reward function and differentiate driving styles [12], [15].

2) Neural Network Structure and Inputs: For baseline
testing, the input to our neural network is a function of the
robot and human cars’ states. Specifically, we input xr, θr,
and vr from the robot state. However, while xr provides an
indication of whether or not the car is staying in its lane, yr
does not provide relevant information on its own. Instead, we
to provide the network with the distance between the robot
car and human car defined as

d =
√

(xr − xh)2 + (yr − yh)2 (9)

Thus, our neural network input is the vector [xr, d, θr, vr].
After initial testing, we experimented with adding an extra
input to the network as discussed in section IV. In this
experiment, we learn one extra feature to augment the hand-
coded features, so the final layer of the network consists of a
single neuron. The network is a fully connected feedforward
network with one hidden layer containing 100 neurons with
Rectified Linear Unit (ReLU) activation functions. We tested
the effect of using more than one extra feature. However,
we found the learned features to be redundant without a
significant performance improvement. A single neural net-
work feature was complex enough to capture many aspects
of driving (see section IV).

B. Training Details

While the linear reward weight for the neural network
feature wnn and neural network parameters were randomly
initialized, the linear reward weights for the hand-coded
features whc were initialized to the estimates obtained during
the active query process. For each training epoch, the gradi-
ent of the loss function is computed with respect to the neural
network parameters, and the neural network parameters are
updated using the NADAM algorithm with a learning rate of
0.001 and β parameters of (0.9, 0.999) [24].

As the neural network parameters are updated and its
output feature value changes relative to the hand-coded
feature values, the linear reward weights may no longer be
optimal. For this reason, we update the linear reward during
training as well; however, because the linear reward weights

have already been learned from the active querying process,
we found that we could improve learning by only updating
them every 20 epochs via gradient descent. We divide the
data into training, validation, and test sets and repeat the
training process over 40 trials, resetting the linear reward
weights between trials. We select the 5 neural networks out of
the 40 trials that perform best at prediction on the validation
set for our evaluations on the test set.

C. Dependent Measures

We assess the predictive power of the models by eval-
uating the ratio of user comparisons (in the test set) that
are correctly predicted by the learned reward function. We
also qualitatively evaluate the model’s ability to generate
safe, customized optimal trajectories that reflect the different
driving preferences of the users.

D. Hypotheses

We test the following hypotheses with our experiments.
Using the learned neural network features in addition to
the hand-coded features (H1) improves the predictive power
of the reward model and (H2) enables better customized
optimal driving trajectories.

E. User Study Procedure

To test the hypotheses, we conducted a user study with 15
participants, all of whom have a valid driver’s license. Each
participant was shown 100 actively generated queries using
the method described in section II-B and the hand-coded
features. Because the queries are actively generated based
on user responses, each participant was shown a different
set of trajectories during this part of the study. For the next
part of the study, we created a standardized set of 75 queries
as a test set. The queries in the test set were generated by
sampling random pairs of values for whc and solving for the
locally optimal trajectories.

For neural network training, we use the first 70 trajectory
pairs presented to the user as the training data with the
preferences obtained from the user as the training labels.
We use the remaining 30 as the validation set. The 75
standardized trajectory pairs from the second part of the
study and corresponding user responses serve as the test data
and labels. We compared our method, which involves both
the hand-coded and the learned features, with the method in
prior works that uses only hand-coded features.

IV. RESULTS

We analyzed the neural network features from the user
study for both their predictive power and interpretability.

A. Predictive Power

We analyzed the prediction accuracy of both the hand-
coded and mixed feature sets for each user on the stan-
dardized test set. Figure 4 shows the results for each user.
For all users except user 3, the mixed feature set shows an
improvement over the hand-coded only accuracy. Improve-
ments range from 2% to 21%. This result strongly supports
H1. Users with small improvements tended to have high

4

test accuracy using the hand-coded only features. A high
test accuracy with the hand-coded features indicates that the
hand-coded features alone provide an adequate encoding of
the user’s reward function, and further learning may not be
necessary. For instance, user 3 had the highest hand-coded
test accuracy of all users in the study, which may explain
the inability to learn a feature that improves the predictive
power of their reward function. On the other hand, the mixed
feature set showed significant increases in performance for
users whose preferences could not be fully described by the
hand-coded features.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

User number

Te
st

ac
cu

ra
cy

hand-coded
mixed

Fig. 4. Test accuracy of hand-coded and mixed feature sets for each user.
While obtaining the hand-coded test accuracy (blue bars) is a deterministic
process, the red bar heights represent the mean of the test accuracy of the
neural networks that had the top 5 validation accuracy values. Error bars
show standard deviation among the 5 neural network trials.

B. Feature Interpretation

Because the input to the neural network is four dimen-
sional, we can only visualize the feature values for slices of
the input space. Figure 5 shows the change in the neural
network feature value for changes in heading for user 1
and compares it with the hand-coded feature for maintaining
heading. The vehicle is located in the center lane at a distance
d = 0.5 from the other vehicle and is traveling at 80% of
maximum speed.

It is clear that the neural network feature for user 1 is influ-
enced by vehicle heading. The feature value has a sharp peak
around 90◦, which corresponds to driving straight down the
road. Because reward weights are positive, a higher neural
network feature value indicates a greater positive contribution
to the total reward. Therefore, the neural network feature will
contribute to a higher reward for trajectories with vehicle
headings near 90◦. While the hand-coded heading feature
penalizes facing backward (heading of 270 degrees) more
than it penalizes facing left and right (heading of 0 or 180
degrees), the neural network feature does not show the same
trend. Instead, it has a sharp peak around 90◦ but then
quickly decreases to the minimum value.

Figure 6 shows the variation in the neural network feature
value for user 1 for various locations of the human-driven
vehicle on the road. Speed is held constant at the maximum
speed, and heading is held constant at 90◦. This visualization

0 100 200 300
−1

−0.5

0

0.5

1

θr

Fe
at

ur
e

V
al

ue

neural network
hand-coded

Fig. 5. Variation in neural network feature value and hand-coded heading
feature value with heading for user 1. The blue line shows the output of
the neural network when xr = 0.0, d = 0.5, and vr = 0.8 and θr is
varied from 0 to 360 degrees. The red line represents sin θr , the hand-coded
feature for heading. The dashed line shows a heading of 90◦, corresponding
to driving straight down the road.

Fig. 6. Heat map of neural network feature value for various locations of
the human-driven vehicle (represented by the red car) for user 1. The speed
is held constant at vr = 1, and heading is held constant at θr = 90◦.
Brighter colors indicate higher feature values.

demonstrates that the neural network feature has a form of
collision avoidance built into it. The feature value decreases
in close proximity to the other vehicle on the road. Addi-
tionally, the value drops off outside the lanes of the road.
The value is highest in the region of the road just to the
left of the other vehicle. This trend can be interpreted as a
preference to maintain speed and keep up with traffic.

The heat map in fig. 6 is symmetric across the front and
back of the red vehicle. This symmetry is due to the fact
that we are using the distance between the two cars as
input to the neural network; the neural network does not
have access to the y−position of the vehicle. The network
therefore has no notion of whether or not the human-driven
vehicle on the road is in front of or behind the robot-driven
vehicle. To confirm this, we trained a new neural network
with an additional input defined by (yr − yh)/(vr − vh).
Positive values mean the longitudinal distance between the
two vehicles is increasing, while negative values indicate it
is decreasing. Figure 7 shows that when we add this fifth
input to the network, we are able to break the symmetry.

5

Fig. 7. Heat map of neural network feature value with augmented input
space for various locations of the other vehicle (represented by the red car)
for user 1. The speed is held constant at vr = 1, and heading is held
constant at θr = 90◦. Brighter colors indicate higher feature values.

While the user still prefers to be in the region of the
road to the left of the other vehicle, it is now evident that
the user would prefer being in front of the other vehicle to
being behind it. The collision avoidance and staying on the
road characteristics are preserved with the augmented input
space. Adding the extra input did not have the same effect
for all users, and future work should investigate the effect of
changing the input space of the neural network.

While similarities exist among the learned features, the
features are unique to each particular user. Figure 8 shows
the variation in the learned feature for each user with heading
and speed. The neural network feature favors driving straight

0 100 200 300
−1

−0.5

0

0.5

1

θ

φ
n
n

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

v

φ
n
n

Fig. 8. Variation in neural network feature value and hand-coded heading
feature value with heading for all users. The vertical dashed line shows a
heading of 90◦, which corresponds to driving straight down the road. The
remaining neural network inputs are held constant at xr = 0.0, d = 0.5,
θr = 90◦ (right), and vr = 0.8 (left).

down the road for most users, but it is less pronounced for
some users and represents a trend that favors turning right,
in which case the weight for the hand-coded heading feature
is high enough to null out this trend. Similarly, most users
have a negative feature value when driving backward, but
the trend is more pronounced for some users.

C. Customized Optimal Trajectories

Using the hand-coded driving features in previous work
resulted in users converging to similar reward functions.

Fig. 9. Optimized trajectories for all users when reward function is encoded
with the hand-coded feature set (left) and with the mixed feature set (right).
Marks indicate equal time intervals. The arrow points to user 3 for whom
the training was unsuccessful.

While these reward functions resulted in safe driving, their
optimal trajectories were almost indistinguishable from each
other [15]. Figure 9 shows the optimal trajectories for the
users in our study selected using only the hand-coded feature
set and using the mixed feature set. Optimal trajectories were
generated by selecting the trajectory that had the highest
reward out of 10,000 trajectories.

Consistent with the results of Sadigh et al. [15], the
optimal trajectories using the hand-coded feature set are
almost identical among all users, except for user 13 (our
further inspection shows that this user has chosen a large
number of backward trajectories, hence their optimal trajec-
tory obtained by the hand-coded features starts by moving
backward). In contrast, there is some variation among the
optimal trajectories using the mixed feature set. Furthermore,
with the exception of user 3 (in which the mixed feature
set did not improve predictive accuracy over the hand-coded
features), all users have safe trajectories that stay on the road
and avoid collisions. These observations qualitatively support
H2.

V. CONCLUSION

In this work, we developed a method for learning extra
features for a linear reward function based on user responses
to preference queries. We applied our methods to a driving
scenario used in previous work and found improvements
in predictive power. Upon interpreting the neural network
features of the users, we found that the neural network is
able to represent a complex feature that is fine-tuned to
user preferences. While different features were learned for
different users, most users converged on features with some
notion of speed, heading, and collision avoidance.

By providing a method for feature learning, we have taken
a step towards overcoming the challenges of feature design.
By learning an extra feature directly from users’ preferences,
we ensure that our features are representative enough to
adequately model user reward. This benefit is reflected in
the improvement in prediction accuracies over hand-coded
only features on the test set. Moreover, the neural network

6

feature is able to create a more expressive model that better
distinguishes between the preferences of different users as
evidenced by fig. 9. Finally, our method relieves some of the
burden of feature design by allowing the hand-coded features
to be augmented with an additional learned feature.

This research provides multiple avenues for future work.
In this work, queries shown to the users were based entirely
on the hand-coded features, and the feature learning was
performed offline after the data was collected. Future studies
will explore an online approach, in which feature learning
is interleaved with active querying of the user. In terms
of interpretability, further analysis of the learned features
and optimal trajectories could help to better understand and
distinguish driving styles among users. While this study
focused on learning features for individual users, future work
will focus on collating the data to learn a universal feature
that improves the prediction accuracy for all users. Finally,
we note that the neural network learned a complex feature
from the data that combined a number of aspects of driving
such as maintaining heading and avoiding other vehicles. In
this work, we used a mixed set of features to preserve some
interpretability in the final reward function; however, we note
based on the results presented here that a feature function of
only neural network features may perform well and should
be a subject of future work. Even though such an approach
might be too data-hungry to avoid overfitting, it could be
further extended beyond feature learning to the learning of
nonlinear reward functions.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dorsa Sadigh for
her helpful input throughout the progression of this work.
A. Maleki acknowledges the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] A. Y. Ng and S. Russell, “Algorithms for inverse reinforce-
ment learning.,” in International Conference on Machine
Learning (ICML), 2000.

[2] C. Wirth, R. Akrour, G. Neumann, and J. Fürnkranz, “A
survey of preference-based reinforcement learning meth-
ods,” Journal of Machine Learning Research, vol. 18, no. 1,
pp. 4945–4990, 2017.

[3] A. Wilson, A. Fern, and P. Tadepalli, “A Bayesian approach
for policy learning from trajectory preference queries,” in
Advances in Neural Information Processing Systems (NIPS),
2012.

[4] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg,
and D. Amodei, “Deep reinforcement learning from human
preferences,” in Advances in Neural Information Processing
Systems, 2017, pp. 4299–4307.

[5] R. Akrour, M. Schoenauer, and M. Sebag, “Preference-based
policy learning,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer,
2011, pp. 12–27.

[6] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and
S. Kiesler, “Human preferences for robot-human hand-over
configurations,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2011, pp. 1986–
1993.

[7] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and
D. Amodei, “Reward learning from human preferences and
demonstrations in Atari,” in Advances in Neural Information
Processing Systems (NeurIPS), 2018, pp. 8011–8023.

[8] D. S. Brown and S. Niekum, “Deep Bayesian reward learn-
ing from preferences,” in Workshop on Safety and Robust-
ness in Decision Making, Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[9] N. Wilde, D. Kulić, and S. L. Smith, “Bayesian active learn-
ing for collaborative task specification using equivalence
regions,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1691–1698, 2019.

[10] M. Tucker, E. Novoseller, C. Kann, Y. Sui, Y. Yue, J. W.
Burdick, and A. D. Ames, “Preference-based learning for
exoskeleton gait optimization,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), IEEE,
2020, pp. 2351–2357.

[11] E. Biyik, N. Huynh, M. J. Kochenderfer, and D. Sadigh,
“Active preference-based gaussian process regression for
reward learning,” in Proceedings of Robotics: Science and
Systems (RSS), 2020.

[12] E. Bıyık, M. Palan, N. C. Landolfi, D. P. Losey, and D.
Sadigh, “Asking easy questions: A user-friendly approach
to active reward learning,” in Conference on Robot Learning
(CoRL), 2019.

[13] M. Palan, N. C. Landolfi, G. Shevchuk, and D. Sadigh,
“Learning reward functions by integrating human demon-
strations and preferences,” in Robotics: Science and Systems
(RSS), 2019.

[14] N. Wilde, D. Kulic, and S. L. Smith, “Active preference
learning using maximum regret,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020.

[15] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active
preference-based learning of reward functions,” in Robotics:
Science and Systems (RSS), 2017.

[16] E. Bıyık and D. Sadigh, “Batch active preference-based
learning of reward functions,” in Conference on Robot
Learning (CoRL), 2018.

[17] S. M. Katz, A.-C. L. Bihan, and M. J. Kochenderfer,
“Learning an urban air mobility encounter model from
expert preferences,” in Digital Avionics Systems Conference
(DASC), 2019.

[18] M. J. Kochenderfer and T. A. Wheeler, Algorithms for
Optimization. MIT Press, 2019.

[19] J. R. Lepird, M. P. Owen, and M. J. Kochenderfer, “Bayesian
preference elicitation for multiobjective engineering design
optimization,” Journal of Aerospace Information Systems,
vol. 12, no. 10, pp. 634–645, 2015.

[20] R. Shah, D. Krasheninnikov, J. Alexander, P. Abbeel, and
A. Dragan, “Preferences implicit in the state of the world,”
in International Conference on Learning Representations,
2019.

[21] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan,
“Learning robot objectives from physical human interac-
tion,” in Conference on Robot Learning, 2017, pp. 217–226.

[22] C. Basu, E. Bıyık, Z. He, M. Singhal, and D. Sadigh, “Active
learning of reward dynamics from hierarchical queries,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019.

[23] H. Haario, E. Saksman, and J. Tamminen, “An adaptive
Metropolis algorithm,” Bernoulli, vol. 7, no. 2, pp. 223–242,
2001.

[24] T. Dozat, “Incorporating Nesterov momentum into ADAM,”
in International Conference on Learning Representations
(ICLR) Workshop, 2016.

7

	Introduction
	Approach
	Preference Model
	Active Querying
	Feature Learning
	Network Structure
	Loss Function

	Experimental Setup
	Problem Domain
	Hand-coded Features
	Neural Network Structure and Inputs

	Training Details
	Dependent Measures
	Hypotheses
	User Study Procedure

	Results
	Predictive Power
	Feature Interpretation
	Customized Optimal Trajectories

	Conclusion

