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Abstract

Large Vision-Language Models (LVLMs) excel at caption-
ing, visual question answering, and robotics by combining
vision and language, yet they often miss obvious objects or
hallucinate nonexistent ones in atypical scenes. We exam-
ine these failures through the lens of uncertainty, focusing
on contextual incongruity, where objects appear unexpect-
edly or fail to appear in expected contexts, and show that
such cases increase recognition difficulty for state-of-the-
art LVLMs. To study this regime, we introduce the Object
Recognition in Incongruous Context (ORIC) framework,
which constructs incongruous object-context pairs through
two complementary strategies: (1) LLM-guided sampling
to identify hard-to-recognize objects present in the image
and (2) CLIP-guided sampling to mine plausible but ab-
sent ones. Applied to MSCOCO, ORIC produces ORIC-
Bench and ORIC-style training data. Evaluating 18 LVLMs
and 2 open-vocabulary detectors reveals substantial perfor-
mance drops and bias patterns under incongruous contexts.
Fine-tuning Qwen3-VL-8B-Instruct with Visual Reinforce-
ment Fine-Tuning on 600 ORIC-style samples improves re-
sults on ORIC-Bench, AMBER, and HallusionBench. Over-
all, we show that contextual incongruity is a key source of
uncertainty and provide tools for more reliable LVLMs.

1. Introduction

Large Vision-Language Models (LVLMs) have achieved
remarkable progress across image captioning [16], visual
question answering (VQA) [60], robotics [22], and embod-
ied Al [73], driven by their ability to integrate visual and
textual modalities. A core skill underlying these advances
is accurate object recognition [12], essential for reliable
perception and high-level reasoning [83]. However, de-
spite strong benchmark scores, LVLMs remain vulnerable
to two key failures: (1) object misidentification, where ex-
isting objects are missed [49]; and (2) object hallucination,
where nonexistent objects are falsely recognized [15, 58],

Original Question Original Question

2 Is there a mouse in the image? Z Is there a car in the image?
@ Yes @ @ now
Incongruous Question Incongruous Question
[ : Is there a train in the image? } [ : Is there a sports ball in the image? }
@ No @ Yes

Figure 1. Contextual Incongruity Leads to Recognition Fail-
ures. This figure illustrates how incongruous contexts cause two
primary errors: misidentification of present objects and hallucina-
tion of absent ones. Left (Misidentification): In an office, GPT-5
identifies the expected “mouse” (purple) but fails to recognize the
out-of-context “train” (red). Right (Hallucination): On a base-
ball court, the model correctly denies an unrelated “car” but hallu-
cinates a plausible yet non-existent “sports ball.”

which undermine downstream reliability [20, 36]. A partic-
ularly challenging regime that amplifies these issues is con-
textual incongruity, where objects appear in unexpected
settings or are absent from expected ones. Under such con-
ditions, LVLMs often misread visual evidence, either over-
looking valid objects or hallucinating contextually plausi-
ble ones. For instance, as shown in the left side of Fig. 1,
GPT-5 [53] correctly identifies a mouse but fails to recog-
nize a prominent train in an office; in the right side of Fig. 1,
it correctly denies a car but hallucinates a sports ball on a
baseball field. These observations echo cognitive findings
that unexpected contexts disrupt recognition [30, 54, 70].
Recent theory attributes language model errors to learn-
ing under uncertainty with binary scoring, which rewards
guessing over abstaining [31]. In our setting, answering a
binary existence question can be formalized as estimating
P(a | ¢,I), where a € {yes,no}, ¢ denotes the question,
and I = (ROI,context) represents the image composed
of a ROI containing the queried object and its surrounding
scene. As illustrated in the left side of Fig. 1, the train area
serves as the ROI, while the office environment represents
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the context. When evidence from the ROI is weak, contex-
tual priors P(a | ¢, context) tend to dominate the inference.
If the context strongly implies that an object should exist
(e.g., a sports ball on a baseball field), the model is biased
toward answering “yes,” resulting in hallucinations. Con-
versely, when the context implies that the object is unlikely
to appear (e.g., a train in an office), the model confidently
predicts “no,” causing misidentification. In both scenarios,
contextual incongruity heightens uncertainty by opposing
weak local evidence with strong scene-level priors, leading
to recognition errors.

From this uncertainty perspective, existing benchmarks
mainly target other sources while keeping object-context
consistency. POPE [35] tests recognition under strong sta-
tistical or textual priors. AMBER [66] evaluates discrim-
inative tasks involving object existence, attributes, and re-
lations. HallusionBench [24] examines visual-dependent
questions that require image context, such as visual illusions
and figures. However, across these benchmarks, queried
objects remain context-consistent with their scenes, leav-
ing the high-uncertainty regime where weak local evidence
opposes strong contextual priors largely unexplored.

Motivated by this gap, we systematically examine how
contextual incongruity affects object recognition in LVLMs.
To analyze this effect under controlled conditions, we in-
troduce the Object Recognition in Incongruous Context
(ORIC) framework, which constructs incongruous object-
context pairs for both evaluation and training. ORIC in-
tegrates two complementary strategies: (1) LLM-guided
sampling, where GPT-5 identifies existing objects that are
difficult to recognize in atypical contexts; and (2) CLIP-
guided sampling, where CLIP [56] mines plausible yet
nonexistent objects. Applied to the MSCOCO validation
set, ORIC produces a balanced binary benchmark, ORIC-
Bench, while applying the same pipeline to the training split
yields ORIC-style samples. Evaluating 18 LVLMs and two
open-vocabulary detectors on ORIC-Bench reveals that
even top-performing models on standard benchmarks fail
under contextual incongruity, exposing persistent recogni-
tion gaps. To mitigate these uncertainty-driven errors, we
fine-tune Qwen3-VL-8B-Instruct [3, 4] using Visual Rein-
forcement Fine-Tuning (Visual-RFT) [44] on 600 ORIC-
style samples, improving performance on not only ORIC,
but also AMBER and HallusionBench, with responses more
aligned with human reasoning. Overall, our main contribu-
tions are:

* Problem Identification. We identify contextual incon-
gruity as an overlooked cause of visual uncertainty in
LVLMs, which degrades recognition performance.

¢ ORIC Framework. We introduce ORIC, which builds
incongruous object-context pairs via LLM- and CLIP-
guided sampling for evaluation and training.

* Model Evaluation. We test 18 LVLMs and 2 detectors on

POPE: Is there a baseball bat in the image?

Incongruous Context: Is there a vehicle in the image?

Ground Truth: Yes
Incongruous Context: Is there a sheep in the image?

Ground Truth: No
POPE: Is there a truck in the image?

Figure 2. Comparison of POPE and Incongruous Context
Questions. Both examples use the same image but differ in tar-
get objects. Left: In a baseball field, POPE targets a baseball
bat (purple), while ours targets a large vehicle (red), which is less
related to the scene and thus more incongruous. Both labels are
“yes.” Right: In a rural scene with a cow, POPE targets a truck,
while our question targets a sheep—more contextually plausible
but still absent, increasing incongruity. Both labels are “no.”

ORIC, showing that the task is difficult and reveals clear
bias patterns.

¢ ORIC-driven Uncertainty Mitigation. Visual-RFT
of Qwen3-VL-8B-Instruct on ORIC-style data lowers
uncertainty-driven errors and yields more human-aligned
performance across benchmarks.

2. Contextual Incongruity and Uncertainty

This section examines how contextual incongruity affects
object recognition under uncertainty and provides empirical
evidence that it significantly degrades model performance.

2.1. Theoretical Formulation

Mentioned on Sec. 1, answering a binary existence query is
estimating P(a | ¢,I) for a € {yes,no}, with the image
represented as I = (ROI, context). Let o be the queried
object class and c the scene context (e.g., baseball field,
office). Training data induce a joint P(o,c) over object-
context pairs. Existing benchmarks mostly sample head re-
gions of this distribution, where pairs are frequent and con-
sistent; both P(ag | ¢,ROI) and P(ag | g,context) are
high for the ground-truth ay, yielding low uncertainty and
allowing co-occurrence heuristics to perform well.

However, we focus on the high-uncertainty regime in-
duced by contextual incongruity, where ROI evidence and
contextual priors disagree. Typical examples include an un-
usual object in a familiar scene (e.g., a train in an office)
or a missing object that the scene strongly suggests (e.g.,
no ball on a baseball field). In such cases, the posterior
based on the ROI alone is diffuse, with P(yes | ¢,ROI)
and P(no | ¢,ROI) being similar in magnitude, while the
context strongly favors one of them. Theory [31] suggests
that binary supervision rewarding guesses drives models to-
ward contextual priors instead of uncertainty, causing hal-
lucinations of plausible objects or overconfident rejections
in incongruous contexts.
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(a). POPE Subset vs. Incongruous Context Questions

30

(b). POPE Subset vs. Full POPE Questions

(c). Incongruous Context vs. ORIC Questions
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Figure 3. Object—Context Congruity via CLIPScore. CLIPScore quantifies alignment between queried objects and scene context. (a)
For “yes” questions, POPE subset yields higher scores than incongruous variants (23.83 vs. 20.77); for “no” questions, the reverse holds
(22.87 vs. 20.18), indicating stronger misleading cues. (b) The sampled POPE subset shows consistent CLIPScore distribution with the
full dataset, confirming its representativeness. (¢) ORIC questions exhibit even higher incongruity (e.g., 24.26 for “no”), reinforcing the
contextual challenge. Subplots (a) and (c) share images but differ in queried objects. Error bars show 95% confidence intervals.

2.2. Empirical Analysis of Contextual Incongruity

To assess how contextual incongruity affects LVLMs, we
conduct a controlled study based on the POPE bench-
mark [35]. We sample 25 “yes” and 25 “no” context-
consistent questions, then keep each image and label fixed
while replacing the queried object, creating paired context-
incongruous questions. For example, in the left side of
Fig. 2, the baseball-field question “Is there a baseball bat
in the image?” is changed to “Is there a vehicle in the im-
age?’. In the right side of Fig. 2, the rural-scene ques-
tion “Is there a truck in the image?” becomes “Is there a
sheep in the image?” even though the image contains only
a cow. We evaluate four representative LVLMs including
GPT-5-08-07 [28], Janus-Pro-7B [10], InternVL3-9B [85],
and Qwen3-VL-8B-Instruct using macro accuracy, preci-
sion, recall, and F1 (see formulas in Appendix A.4).

Model ‘ POPE Subset ‘ Incongruous Context

‘ Prec. Rec. F1. ‘ Prec.  Rec. F1.
Janus-Pro-7B 96.30  96.00 9599 | 58.01 58.00 57.98
InternVL3-9B 9630  96.00 95.99 | 56.16 56.00 58.00
Qwen3-VL-8B-Instruct | 98.08  98.00 98.00 | 61.90 60.00 58.33
GPT-5-08-07 100.00 100.00 100.0 | 61.27 60.32 60.79

Table 1. Model Performance on POPE vs. Incongruous Con-
text Questions. This table reports macro precision (Prec.), recall
(Rec.), and F1 score (F1) for four LVLMs on the POPE benchmark
and a set of manually curated questions. Although all models per-
form well on the POPE subset, they struggle with incongruous
context questions.

Table | reports results on the original context-consistent
questions and their context-incongruous counterparts. All
four models achieve near-perfect performance on the orig-
inal subset (macro F1 between 96.0 and 100.0), indicating
that these questions are easy for current LVLMs. However,
macro F1 drops dramatically to around 60 on the incon-
gruous questions, despite the images being identical. This
sharp degradation cannot be attributed to low-level visual
difficulty and instead points to failures induced purely by

breaking object—context compatibility.

To quantify how our modifications alter object—
background associations, we further analyze CLIPScores
between each image and the textual description of the
queried object. Given an image [ and a question-related ob-
ject name O, we use CLIP [56] to extract visual and textual
embeddings f7, fo € R?, normalize them as f; = f;/| /1|l

and fo = fo/|foll, and compute

I fo
£l foll

Fig. 3(a) plots CLIPScores for 50 pairs of original and
context-incongruous questions. For “yes” questions, orig-
inal objects show a higher mean score (23.83) than their
incongruous replacements (20.77), indicating weaker con-
textual alignment. For “no” questions, the trend reverses:
context-incongruous objects score higher (22.87 vs. 20.18),
suggesting that the background strongly implies the pres-
ence of objects that are actually absent. The middle subplot
in Fig. 3(b) exhibits the same patterns as the full bench-
mark, confirming that our subset is representative. To-
gether, these results show that contextual incongruity cre-
ates a high-uncertainty regime for LVLMs, where models
that perform reliably on standard questions experience sub-
stantial accuracy drops. This motivates ORIC as a frame-
work that systematically constructs data with incongruous
context for both evaluation and training.

CLIPScore(I,0) = f] fo = x 100. (1)

3. The ORIC Framework

This section introduces ORIC, which generates object-
recognition questions under contextual incongruity, each
framed as a binary “yes” or “no” label of object presence.

3.1. ORIC Construction Method

Positive Questions (Existing Objects): Contextual in-
congruity arises when objects appear in unexpected set-
tings, creating high uncertainty. Therefore, our objec-
tive is to generate questions that deliberately minimize
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LLM-Guided Sampling

Find the most similar image

CLIP-Guided Sampling l

Image: 1

Existent ROI Objects
microwave, apple,
Human annotation banana, orange, ...
-

Split objects into ROI Existent Non-ROI

Similar Image: I'

Nonexistent ROI
Objects Human annotation
microwave, oven, car,

-—
Omit existed objects
horse, spoon, cup, fork,

and Non-ROI by 50% Objects
. . q ] person
union area percentile cabinet, refrigerator,
dining table, ...
Select k unpredictable Select the top k
ROI objects via non- objects with the
ROI using LLM Example: k=3 highest CLIP scores
-------------------------- \\ ’ N\
Positive Questions (Label Yes) Y Filtered k Existent Filtered k Nonexistent { Negative Questions (Label No)
! ROI Objects ROI Objects ! H
Q: Is there an apple in the image? ]: I [ Q: Is there a microwave in the image? ]:
1 apple: no, oven: 57.46, -_— i !
Q: Is there a banana in the image? ] ! banana: no, microwave: 21.79, i [ Q: Is there an oven in the image? ]I
1 orange: no, spoon: 16.32, : :
. . i microwaveryes car:3.02 ! . . !
Q: Is there an orange in the image? ]’: o :[ Q: Is there a spoon in the image? ]:
\,
4 N 4

___________________________

Figure 4. ORIC Method Overview. This figure shows two construction methods of the ORIC. LLM-Guided Sampling (Positive
Question Construction): First, given an image I, objects are classified as ROI if their combined bounding box area is under 50%;
otherwise, they are non-ROI. Next, we query the LLM (GPT-5) with textual categories of non-ROI objects to predict the existence of each
ROI object based on common sense and co-occurrence. Finally, we select the top £ unpredictable ROI objects (e.g., & = 3) for which the
LLM predicts “no” (e.g., apple, banana, and orange). CLIP-Guided Sampling (Negative Question Construction): A similar image I’ is
identified using cosine distance from I. We then compute the CLIPScore for each nonexistent ROI object against I’ and select the top k
nonexistent ROI objects based on their scores. For example, the top three are an oven (57.46), a microwave (21.79), and a spoon (16.32).

Category HallusionBench POPE MM-Vetv2 AMBER Hallu-PI ORIC-Bench
Image Count 346 500 517 1k 1.2k 1k
Contextual Incongruity X X X X X 4
Missed / Hallucinated Recognition ~ Hallucinated only Both Both Both Hallucinated only Both

Table 2. Benchmark Comparison. Benchmarks compared by image count, contextual incongruity, and error types.

background-object associations, utilizing LLM-guided
sampling. We define the objects targeted for recogni-
tion as ROI, while background contexts consist of non-
ROI elements. Formally, as illustrated on the left side of
Fig. 4, given an image I containing objects O = {o; =
(ns, {Bij }Tzl)}fvzl, where n; is the object’s name and B;;
denotes the j-th bounding box associated with object o;,
we categorize objects into ROI and non-ROI based on their
bounding box coverage. We then select k£ ROI objects as
positive question candidates, where k is the desired number
of selected objects. The total area covered by each object’s
bounding boxes is calculated as:

A; = area([j Bij), (2)

Jj=1

where the function area(-) computes pixel area, and then we
split O into two disjoint sets based on the 50" percentile:
Orot = {0 | A < Mso(A)} and Ononror = {0 |
Ay = Mso(A)}, where Mso(A) denotes the median area
of the union of bounding boxes (i.e., the 50th-percentile
area of the union of bounding boxes among all objects). We
then use GPT-5 to filter ROI candidates. Specifically, the

LLM is queried to determine whether each ROI object is
logically consistent with the provided non-ROI object cate-
gories. The verification function is defined as:

1, if LLM(0, Ononror) = “no”,
0, otherwise.

flo) = 3)
The function LLM(0, Openror) returns “no” if the ROI ob-
ject is unexpected based on common sense and typical co-
occurrence. Objects receiving a "no” from GPT-5 form the
positive candidate set C. Positive questions are generated
by randomly selecting k objects from C. For detailed pseu-
docode and prompts, refer to Appendix A.1.

Negative Questions (Nonexistent Objects): LVLMs of-
ten hallucinate objects when strong contextual cues make
nonexistent items seem plausible, reflecting the high un-
certainty created by incongruous contexts. Therefore, our
goal is to generate questions that enhance the correlation
between nonexistent ROI objects and non-ROI elements by
leveraging CLIP-guided sampling. As depicted on the
right side of Fig. 4, we first identify the most visually sim-
ilar image I’ to a query image I using the CLIP model’s
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image encoder, which helps curate a more diverse set of re-
trieved images. Formally, given images {[3,...,[,} and a
query image I, visual embeddings are extracted via ViT:
e = ViT(I). The image similarity is measured using co-
sine distance:

€, €

D(I,L)=1—- ——
! leqlllleil

“)
where e, and e; represent embeddings of image I, and I;,
respectively. The most similar image I’ minimizes this dis-
tance. Next, given the most similar image I’ and a set of
nonexistent ROI objects Opon = {n;}},, where n; rep-
resents an individual nonexistent ROI object and M is the
total number of nonexistent ROI objects considered in the
set Opon- For each n;, a text description 7; is generated in
the form of “an image contains n;.” We compute the simi-
larity score for each object as s; = CLIPScore(I’, T;). The
objects are then sorted by s;, and the top k nonexistent ROI
objects are selected to form O, for negative question gen-
eration. See Appendix A.2 for the detailed algorithm.

3.2. ORIC Statistics

Human Evaluation: We sampled 150 “yes” and 150
“no” questions using ORIC framework and manually ver-
ified (1) object labeling accuracy and (2) contextual incon-
gruity. The low 2% error rate confirms the robustness of
our pipeline. Appendix E.l provides six error cases, and
additional correct examples are shown in Appendix E.2.

CLIPScore for ROI-Background Analysis: We com-
pared ORIC-generated questions with incongruous con-
text questions in Sec. 2 using a CLIPScore-based method.
Specifically, we generated 50 ORIC questions (25 for each
label, “yes” and “no”) corresponding to the same images
used in the previous incongruous context questions. As
illustrated in Fig. 3(c), CLIP scores for “yes” questions
were nearly identical between ORIC (20.77) and incongru-
ous context questions (20.63), suggesting similar contextual
alignment. However, for “no” questions, ORIC achieved
higher CLIP scores (24.25 vs. 22.87), indicating a stronger
correlation between the nonexistent object and the visual
context, thereby creating a more incongruous context.

4. ORIC-Bench Experiments and Analysis

We evaluate 18 LVLMs and 2 open-vocabulary detectors on
ORIC-Bench under contextual incongruity, analyzing per-
formance, architecture, class bias, and object-size effects.
The 11-LVLM summary is in Table 3, and the full 18-
LVLM results are in Appendix Table 10. Ablations and
POPE comparisons in Appendices B.3.1 and B.3.2 show
that ORIC-Bench is more challenging and discriminative
for LVLMs.

4.1. Experimental Setup

ORIC-Bench Setup and Evaluated Models. We eval-
uate on ORIC-Bench, built with the ORIC using 1,000
MSCOCO [40] validation images (avoiding leakage). Each
image pair yields two present-object and two absent-object
queries, resulting in 1,000 “yes” and 1,000 “no” questions.
As shown in Table 2, ORIC-Bench uniquely introduces
contextual incongruity and jointly tests both missed and
hallucinated recognition. We evaluate 18 LVLMs (vision-
encoder-based, vision-encoder-free, and closed-source) and
2 open-vocabulary detectors (Grounding DINO 1.5 Pro [57]
and OWLv2 [50]). Detailed model specifications are pro-
vided in Appendix B.1.

Evaluation Protocol and Metrics. Ambiguous LVLM
outputs are resolved using MMBench’s two-step match-
ing [43]: we first heuristically extract explicit “yes” or “no”
labels from each output; if none are found, GPT-5-08-07 is
prompted with the question, answer options, and the raw
response to infer the label. All experiments are conducted
on a single NVIDIA H100 with temperature O and a 1,024-
token limit. Each LVLM is tested under four prompts, and
results are averaged. Detectors jointly process present and
absent objects: a detection with confidence > .25 counts
as “yes,” otherwise “no.” We report the yes-predictions pro-
portion (YP), macro precision, recall, and F1, as well as
class-wise precision, recall, and F1 for yes and no. See Ap-
pendix B.2 for prompt details and Appendix A.4 for metric
details.

4.2. ORIC-Bench Results and Analysis

Table 3 presents the results of 11 LVLMs and 2 open-
vocabulary detectors on ORIC-Bench. We analyze over-
all performance, architectural differences, and the impact
of contextual incongruity.

Overall Performance: Qwen3-VL-8B-Instruct achieves
the highest overall F1 of 79.55, surpassing GPT-5 (78.61)
and strong vision-encoder models like InternVL3-9B
(76.87) and Janus-Pro-7B (74.83). Open-vocabulary de-
tectors perform slightly lower but remain competitive, with
Grounding DINO 1.5 Pro at 72.48 and OWLV2 at 72.02.
Most models fall between 60 and 77 F1, highlighting
benchmark difficulty. Llama-3.2-11B-Vision (33.33, YP =
0.00%) shows extreme class bias, while GLM-4v-9B fa-
vors precision (missed objects). Qwen3-VL-8B-Instruct
also leads per-class F1 for Yes (78.51) and No (80.59) with
balanced YP = 44.94%, whereas GPT-5 remains similarly
balanced (Yes 76.92, No 79.35, Y P = 42.12%). Despite
potential data overlap, the 79.55 F1 ceiling shows LVLMs
still struggle with incongruous cases.

Model Architecture Comparison: Vision-encoder-
based LVLMs dominate overall, with Qwen3-VL-
8B-Instruct (79.55 F1), InternVL3-9B (76.87), and
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Model \ Overall \ Label Yes \ Label No
| Pre. Rec. F1  YP(%) | Pree. Rec. F1 | Pre. Rec. F1

Closed-source

GPT-5-2025-08-07 [53] \ 79.50 78.75 78.61 42.12 \ 84.14 70.88 76.92 \ 71.84 88.62 79.35
Vision-encoder-based
Llama-3.2-11B-Vision [13] 25.00 50.00 33.33 0.00 0.00 0.00 0.00 | 50.00 100.00 66.67
VILA1.5-13B [39] 65.19 6240 60.41 28.95 7144 4135 51.86 | 5892 8345 68.96
GLM-4v-9B [23] 71.18 6492 61.99 23.32 8241 3825 5161 | 5994 91.60 72.35
Phi-3.5-Vision-Instruct [1] 68.69 68.06 67.79 40.86 72.12 5892 64.85 | 65.27 7720  70.73
LLaVA-v1.6-Vicuna-13B [42] | 75.29 74.56 74.37 56.94 7176 81.50 76.19 | 7882 67.62 72.55
Janus-Pro-7B [10] 76.60 7522 74.83 56.42 7330 81.65 76.71 | 7990 68.80 72.95
InternVL3-9B [85] 7733 7695 76.87 44.60 80.27 71.55 75.60 | 74.39 82.35 78.13
Qwen3-VL-8B-Instruct [3,4] | 79.93 79.61 79.55 44.94 8296 7455 7851 | 7691 84.68  80.59
Vision-encoder-free
EVE-7B-HD-v1.0 [18] 61.02 5642 51.59 76.53 5482 8295 65.27 | 67.22 29.90 37.90
Emu3-Chat [68] 67.74 6579 64.78 33.41 73.58 4920 5890 | 6191 8238  70.67
Open-vocabulary Detection
OWLV2 [50] 73.02 7225 72.02 40.85 7723  63.10 69.46 | 68.81 81.40 74.58
Grounding DINO 1.5 Pro [57] | 77.02 7340 72.48 68.30 67.13 91.70 77.51 | 8691 55.10 67.44

Table 3. Main Experimental Results on ORIC. Performance is broken down by model category and label type (Yes/No). We report
macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over four
prompts, while detection models use a single prompt. Full metric definitions are in Appendix A.4.

Janus-Pro-7B (74.83) notably outperforming encoder-free
models, whose best, Emu3-Chat, reaches 64.78. The gap
stems from ViT-style encoders providing structured visual
features for fine-grained perception, whereas encoder-
free models using raw pixels remain fragile in complex
scenes. Among closed-source systems, GPT-5 (78.61)
trails Qwen3-VL-8B-Instruct by only 0.94 points, showing
open-source LVLMs can match or surpass proprietary
ones. Open-vocabulary detectors like Grounding DINO
1.5 Pro (72.48) and OWLv2 (72.02) lag further, as their
region—text alignment lacks holistic reasoning and explicit
modeling of object absence, leading to more hallucinations
in incongruous contexts.

Their high “no” recall (84.68, 82.35) and lower “yes” recall
suggest a preference for rejecting uncertainty over halluci-
nating presence. GLM-4v-9B and VILA1.5-13B show the
opposite trend, underdetecting valid objects, while LLaVA-
1.6-Vicuna-13B maintains a more even trade-off. Among
detectors, Grounding DINO 1.5 Pro favors “yes” (recall
= 91.70, “no” recall = 55.10), whereas OWLv2 is more
balanced with the best “no” F1 (74.58). Overall, vision-
encoder LVLMs handle contextual incongruity best, though
a shared “yes”-conservatism bias reduces hallucinations but
limits true-positive sensitivity.

M | POPE-Bench | ORIC
odel
| Small  Medium Large | Small Medium Large Performance Comparison Across Object Sizes: Using
Emu3-Chat 6822 8097 9419 | 3873 5661  71.99 COCO tiers—small (< 24* pt*), medium (24°-96 pt*),
GPT-5-2025-08-07 | 78.24 8848 9430 | 67.85  71.69  84.34 and large (> 962 pt>)—we compare 1,000 “yes’-labeled
InternVL3-9B 8229 9043 9634 | 63.63  77.61 8645

Qwen3-VL-8B-Instruct | 79.96 89.71 96.40 | 69.96 77.67 85.24

Table 4. Recall by Object Size on POPE vs. ORIC. We report the
recall for questions labeled “yes” across small, medium, and large
objects in both the POPE and ORIC datasets for three LVLMs,
illustrating how object scale affects model performance.

Influence of Incongruous Context (Class-Wise): Mod-
els exhibit distinct biases in incongruous contexts. Qwen3-
VL-8B-Instruct and InternVL3-9B maintain balanced per-
formance but lean conservative on “yes” predictions (YP ~
45%), yielding higher “no” F1 scores of 80.59 and 78.13.

questions for POPE and ORIC-Bench. As shown in Table 4,
all four models show lower recall on ORIC-Bench across
sizes. Emu3-Chat drops most on small objects (68.22 —
38.73,—-29.49), while GPT-5 is comparatively stable on
large ones (94.30 — 84.34, —9.96). The large—small gap
widens under incongruity for Emu3-Chat (25.97 — 33.26)
and InternVL3-9B (14.05 — 22.82), remains roughly un-
changed for GPT-5 (16.06 — 16.49), and slightly narrows
for Qwen3-VL-8B-Instruct (16.44 — 15.28). Thus, while
large objects remain easier, the consistent drop across all
sizes shows that contextual incongruity, rather than scale, is
the main source of uncertainty and performance drop.
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Method | Overall \ Label Yes \ Label No
| Precision Recall F1  YP(%) | Precision Recall ~F1 | Precision Recall F1
(a) Standard ORIC-Bench Evaluation
w 0-shot CoT 7869 7850 7846 4623 80.85 7472 7764 | 7653 8228  79.28
w/o 0-shot CoT | 79.93  79.61 7955  44.94 82.96 74.55 7851 | 7691 84.68  80.59
Visual-RFT 83.55  82.88 8279  43.05 88.21 7592 8159 | 78.88 89.83  83.99
(b) Human-Labeled Ground Truth on ORIC-Bench

w/o 0-shot CoT | 7870  78.63 78.63  47.14 79.73 7652 78.08 | 77.69 80.75  79.17
Visual-RFT 84.03  83.64 83.62 4472 87.36 78.54 8271 | 80.70 88.75  84.53

Table 5. Visual-RFT and Human-Referenced Results on ORIC-Bench. (a) Standard evaluation comparing models with and without
0-shot CoT; (b) comparison against human-labeled ground truth. We report macro precision, recall, F1, and the proportion of “yes”
predictions (YP). We find that visual-RFT produces outputs that better align with human thinking.

5. ORIC-driven Uncertainty Mitigation

Models trained on conventional data degrade on ORIC-
Bench (macro-F1 79.55; Table 3). To mitigate these
uncertainty-driven errors, we adopt Visual-RFT [44], which
uses verifiable rewards to enforce evidence-grounded rea-
soning. We choose Visual-RFT over supervised fine-tuning
because it is more data-efficient, more robust in few-sample
regimes, and matches our ORIC setting, where rewards are
naturally verifiable under the incongruous context.

We follow Visual-RFT [44], applying Group Relative
Policy Optimization (GRPO) [59] to vision—-language bi-
nary recognition with verifiable rewards. GRPO removes
the PPO-style critic and compares candidates sampled from
the same prompt, directly optimizing relative quality. Given
a question ¢, we sample a group of G candidate re-
sponses {01,...,06} ~ mo,, (- | ¢). Each sample re-
ceives two automatically checkable binary rewards: 7, €
{0,1} for answer correctness and 7y € {0, 1} for format
compliance (e.g., <REASONING>...<\REASONING>
<SOLUTION>...<\SOLUTION>). Then, we define the
per-sample reward as r; = Tacc; + Tmei. Let {rj}le de-
note the rewards of all candidates in the group. Since raw
rewards may vary in scale across samples, we normalize
them within each group (z-score) with a small constant ¢:

o= mean({rj}jG:l)
r, =
S({r1E) +e

As rewards are one-step, token-level advantages are con-
stant within a sample: A, , = 7;, V¢t. With the per-token

_mol0it]a:0i.<t)  GRPO maximizes the
‘ﬂ'eold(Oi,t |q, 0i,<t)

clipped, KL-regularized objective:

®)

ratio p;¢(0) =

o]

11 _
el Z m Z mln(pi,t(H),
i=1 =1

clip(pi,t(Q), 1—e 1+ e)) fli’t

Jerreo(0) = E,

(6)

— B Dxu(mo(-lq) || mret (-1a))

where ¢ is the clipping parameter and 8 controls a KL
penalty to a frozen reference policy mf. In practice, we
minimize Lgrpo = —Jgrro. We adopt an R1-style, tag-
constrained prompt to elicit explicit reasoning and a verifi-
able “yes” or “no” answer.

6. Uncertainty Mitigation Experiments and
Analysis

6.1. Experimental Setup

To mitigate uncertainty-driven misjudgment and to
strengthen evidence-grounded reasoning through verifiable
reward optimization, we employ Visual-RFT. Specifi-
cally, we fine-tune Qwen3-VL-8B-Instruct [3, 4] on 600
ORIC-style binary questions (300 “yes”-label and 300
“no”-label questions) generated from the COCO-2014
training split, while ORIC-Bench uses disjoint validation
images. We perform full-parameter Visual-RFT for 15
epochs with a group size G =8 on 4 xNVIDIA H100 GPUs
using an Rl-style tag-constrained prompt, which elicits
explicit step-by-step reasoning and enforces verifiable
yes/no outputs. Full hyper-parameters and prompts are
provided in Appendix C. This setup enables reward signals
based on reasoning correctness rather than label matching
alone, reducing overreliance on uncertainty-driven errors.
Inference follows the standard ORIC-Bench protocol,
averaging predictions over four prompt variants.

Our baselines include the base model without 0-shot
Chain-of-Thought (CoT) [69] and a 0-shot CoT variant us-
ing the prompt shown in Appendix Fig. 12. We further
assess how Visual-RFT shifts predictions toward human-
like behavior using a small human-labeled subset of ORIC-
Bench, and additionally report results on HallusionBench
and AMBER to show that its benefits generalize beyond
ORIC-style data.

6.2. Results and Analysis on ORIC-Bench

Standard ORIC-Bench Evaluation. Table 5(a) shows
that Visual-RFT consistently improves Qwen3-VL-8B-
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Instruct, with or without 0-shot CoT. Macro F1 rises to
82.79 (from 78.46/79.55), with clear F1 and recall gains
for both “yes” (78.51 — 81.59; 74.55 — 75.92) and
“no” (80.59 — 83.99; 84.68 — 89.83) questions. The
slight drop in YP further suggests fewer spurious positives.
Overall, training on ORIC-style data with Visual-RFT miti-
gates uncertainty-driven errors and strengthens LVLM per-
formance under contextual incongruity.

Comparison with Human Preferences. To evaluate
alignment with human reasoning, we annotate 200 ORIC-
Bench questions (100 “yes”-label and 100 “no”-label ques-
tions) as the alternative ground truth. As shown in
Tab. 5(b), Visual-RFT improves macro F1 from 78.63 to
83.62, indicating closer agreement with human judgments
under ambiguous contexts. F1 increases for both labels
(78.08—82.71 for “yes” and 79.17—84.53 for “no”), with
particularly strong gains on “no” questions, where recall
rises from 80.75 to 88.75. This shows that training on
ORIC-style data with Visual-RFT reduces missed negatives
and better aligns model predictions with human patterns.

HaullusionBench ! AMBER

7 !

n [ 90.49
— 69.37 6981 i
L & ! “
0w P
8 o : o 87.48
=“| 6491 | ol 8650 .

o ! )

Base (w 0-shot CoT)  ===== Base (w/o 0-shot CoT) Visual-RFT

Figure 5. Performance across Benchmarks. Macro F1 on Hallu-
sionBench and AMBER under three settings: with/without zero-
shot CoT and Visual-RFT fine-tuning.

Cross-benchmark Evaluation. We further assess gener-
alization on HallusionBench and AMBER (Fig. 5). Visual-
RFT improves robustness on both benchmarks. On Hallu-
sionBench, which contains visual illusions and abstract fig-
ures, performance remains stable (69.37 — 69.81), show-
ing that RFT does not overfit to ORIC-style data. On AM-
BER, which requires compositional reasoning over exis-
tence, attributes, and relations, the gains are substantial
(87.48 — 90.49). These results show that training on
ORIC-style data with Visual-RFT improves generalization
beyond ORIC-Bench and enhances robustness to both vi-
sual and semantic distribution shifts.

7. Related Work

Large Vision-Language Models: Recent advances in
large vision-language models (LVLMs) have greatly en-
hanced text-image processing for visual understanding [1,
28, 67, 84]. These models fall into two categories:
vision-encoder-based approaches [2, 3, 23, 34, 41], which
use pretrained visual encoders like Vision Transformer

(ViT) [19], and vision-encoder-free methods [6, 18, 68],
which tokenize image patches for joint text-image process-
ing. LVLMs are widely used in tasks such as image cap-
tioning [16], visual question answering [60], robotics [22,
27, 511, and embodied Al [73, 82]. Despite progress, they
still struggle with fine-grained perception [55].

Benchmarking Large Vision-Language Models: As
LVLM:s evolve, benchmarking is crucial for guiding their
development [8, 37, 38]. Many benchmarks focus on fine-
grained perception, including counting, relations, attributes,
and reasoning [9, 21, 33, 43, 47, 71, 75, 78], or on com-
monsense and knowledge-intensive tasks [7, 79]. Others
target object hallucination and recognition [26, 35, 58, 66],
with some emphasizing textual influences or visual seman-
tics [24, 64, 65]. However, these benchmarks largely pre-
serve object—context compatibility and rarely test recogni-
tion under incongruous contexts. ORIC-Bench fills this gap
by explicitly evaluating object existence in such settings.

Reinforcement Learning: Recent RL-based post-
training methods directly optimize verifiable reasoning
outcomes. OpenAl ol and DeepSeek-R1 demonstrate that
large-scale RL and GRPO can strengthen chain-of-thought
reasoning in both closed- and open-source models [25, 52],
while subsequent work improves GRPO stability and effi-
ciency [11, 14, 46, 76]. In multimodal settings, RL reduces
hallucinations through fine-grained visual feedback, as in
RLHF-V [77], and enables efficient visual reinforcement
tuning via Visual-RFT [45]. Building on this line of work,
we attach verifiable rewards directly to object existence
under contextual incongruity using a Visual-RFT—style
GRPO scheme that enforces evidence-grounded decisions.

8. Conclusion and Limitations

This paper presents the first systematic study of how
contextual incongruity, viewed through the lens of un-
certainty, affects LVLM object recognition, showing that
state-of-the-art models still struggle in such settings. To
investigate this gap, we introduce ORIC, a framework
built with LLM-guided and CLIP-guided sampling to
generate challenging, context-aware recognition tasks
for both evaluation and training. Experiments across
20 models reveal that handling incongruous contexts
remains a substantial weakness. We further fine-tune the
LVLM with reinforcement learning under the Visual-RFT
framework using ORIC-style data, which improves ro-
bustness to incongruity, boosts both in-distribution and
out-of-distribution performance, and yields outputs more
aligned with human reasoning. While our study establishes
a foundation, it is limited to a single dataset. Future
work should explore more diverse contexts and develop
stronger methods for reliable recognition under incongruity.
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ORIC: Benchmarking Object Recognition under
Contextual Incongruity in Large Vision-Language Models

Supplementary Material

A. ORIC Method, Analysis, and ORIC-Bench
Evaluation Metrics

A.1l. LLM-Guided Sampling Method (Positive
Question Construction)

Algorithm 1 Positive Question Construction

Require: Image I, objects O = {(n;, B;;)}, integer k
Ensure: Positive question Q
1: fori =1to N do
2 Al <— area(Uj B”)
3: end for
4: Sort O by A; (descend.)
5: Oror < bottom 50%, Ononror — top 50% > Note: Objects
exactly at the 50% boundary are classified as non ROI.
6: C<+ 10
7: for o € Ogor do
8:  if LLM says “no” for o given Ononror then
9

: C«+ CU{o}
10:  end if
11: end for

12: Randomly pick k objects from C as () return )

Figure 6 presents the prompt used in LLM-guided rejec-
tion sampling for constructing positive questions in the
ORIC. Specifically, {background_objects} serves as
a placeholder for all non-ROI objects. For example, if
there are three non-ROI objects, they could be represented
as ["car", "person", "bottle"]. Meanwhile,
{target_object} represents a placeholder for a specific
ROI object, such as "vase™".

LLM-Guided Rejection Sampling

Given the following background objects:
{background objects}, can you de-
termine whether the following target object
{target_object} is present in the image
without relying on textual priors, common-sense
knowledge, or general assumptions about object
co-occurrences?

Please respond with yes or no.

Figure 6. Prompt for LLM-guided rejection sampling.
{background.-objects} is a placeholder for all non-ROI ob-
jects, and {target_object} denotes a specific ROI object.

A.2. CLIP-Guided Sampling Method (Negative
Question Construction)

Algorithm 2 Negative Question Construction

Require: Query image I,, candidate images {1, ..., I},
non-existent objects Opon = {ni}gl, integer k
Ensure: Negative question )
1: Select the most similar image:

I' = arg min (1 - M)
Liez lleq]llle:]]

for i = 1to M do
Construct text: T; < “an image contains { n;}”
Compute CLIP score: s; + CLIPScore(I’, T5)
end for
Sort {n;} by s; (descending)
Select top k objects: S < {n;,, ..
Construct () using S return

.,mk}

A.3. Image Similarity Analysis via Minimum Dis-
tance

To further characterize the ORIC, we analyzed the visual re-
lationships between positive and negative questions through
image similarity measurements. Specifically, for each ob-
ject class appearing in positive (“yes”) questions, we com-
puted its minimum visual distance to negative (“no”) ques-
tions containing the same object class. Given an object o;,
let the set of positive images be Z;7 = {I:_p e ,I:m} and
the set of negative imagesbe Z;” = {I; , ..., [; , }. Weex-
tracted visual feature vectors using a ViT encoder and com-
puted pairwise cosine distances as follows:

B e(Ij,k) ) e(lijz)
le(TFll el

where e(-) = ViT(-) denotes the ViT feature extractor.
The minimum distance between positive and negative sets is
defined as D, = miny ; D(I f o 1, ;l). To ensure thorough
evaluation, we calculated these minimum distances using
three widely used vision encoders commonly employed
in encoder-based LVLMs: CLIP-ViT-BigG-P14, SigLIP-
SO400M-P14-384 [81], and EVA02-CLIP-BigE-P14 [61].
These analyses highlight the distinctiveness of ORIC in cap-
turing contextually challenging object recognition scenarios
compared to existing benchmarks. In Tab. 6, questions gen-
erated from ORIC shows consistently smaller minimum co-
sine distances between “yes” and “no” samples than POPE

DI, 1) = 1 M
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across all three vision encoders. This suggests greater visual
similarity between positive and negative examples, making
object recognition more challenging and realistic.

Vision Encoder POPE ORIC
CLIP-ViT-BigG-P14 0.37 0.14
SigLIP-SO400M-P14-384 0.28 0.11
EVAO02-CLIP-BigE-P14 0.40 0.13

Table 6. Comparison of Minimum Cosine Distances. This ta-
ble compares the minimum cosine distances between positive and
negative questions across three vision encoders. A smaller dis-
tance indicates greater semantic similarity between images, mean-
ing “yes” and “no” questions are linked to finer image details and
higher representational clutter, making object recognition more
challenging and realistic.

A.4. Evaluation Metric Formulas

For a binary classification problem with labels yes and no,

we define the following terms:

e TP (True Positive): Number of samples correctly pre-
dicted as yes (Ground Truth: yes).

* TN (True Negative): Number of samples correctly pre-
dicted as no (Ground Truth: no).

* FP (False Positive): Number of samples incorrectly pre-
dicted as yes (Ground Truth: no).

* FN (False Negative): Number of samples incorrectly pre-
dicted as no (Ground Truth: yes).

The performance metrics include accuracy, the propor-
tion of yes predictions, macro precision, recall, and F1
score. These are defined as follows:

Class-wise Metrics:

Precisi TP ®)
reCisSionyey = —————
1Ofyes = Tp | Fp
TP
Recallyes = ————
ecallye, TP - EN ©))
Flyes =2 x PICC%S%OnyeS x Recallyes (10)
Precisionyes + Recallye
TN
Precision,y = ———— (11
TN + FN
TN
Recall,y = ——— 12
et = IN T FP (12)
Fl,, =2 x Prec%s%onno x Recall,, (13)
Precision,, + Recall,,
Macro-averaged Metrics:
Precisi Precisi
Precision, ., = re0151onyes; recisiony, (14)
Recallyes + Recall
Recallyaero = ecallyes + Recalho _ Accuracy (15)

2

Since our experimental datasets are all balanced, the
number of positive and negative samples is equal. In this

case, Accuracy = Recally,ro because accuracy measures
the overall proportion of correctly classified samples, and
macro recall, being the unweighted average of recall for
both classes, reflects the same value.

Flyes + Fly

F Lmacro = D)

(16)
Proportion of Yes Predictions: The proportion of “yes”
predictions (i.e., the percentage of all predictions that are
classified as “yes”) is given by:

TP + FP

Yes Proportion = 17
es Proportion = Zp— b IN T EN (7

B. ORIC-Bench Experiment and Analysis

B.1. Evaluated Models

We evaluate 18 widely used LVLMs spanning both encoder-
based and encoder-free architectures. The encoder-
based models include Qwen3-VL-8B-Instruct [3, 4],
SmolVLM2-2.2B-Instruct [48], InternVL3-9B [85], Kimi-
VL-A3B-Instruct [63], Janus-Pro-7B [10], Llama-3.2-
11B-Vision [13], LLaVa-v1.6-7B [42], Phi-3.5-Vision-
Instruct [1], Molmo-7B-D-0924 [17], GLM-4V-9B [23],
Chameleon-7B [62], VILA-1.5-13B [39], and BLIP3 [72].
Encoder-free models include Fuyu-8B [5], EVE-7B-HD-
v1.0 [18], Emu3-Chat [68], and the closed-source GPT-
5 [53]. What’s more, we benchmark against 2 open-
vocabulary detection models: Grounding DINO 1.5
Pro [57] and OWLv2 [50].

B.2. Prompt Templates of Experiments

Large Vision-Language Models (LVLMs) Fig. 7 illus-
trates the prompt used for LVLMs in both the POPE and
LOPE-3 benchmarks. An example of a specific question is:
”Is there a person in the image?”.

LVLMs

<image>

Question: {question}

Please answer the question based on the given im-
age.

Figure 7. The Prompt of LVLMs. The prompt of a bi-
nary classification task for LVLMs is used in all experiments,
where {question} serves as a placeholder for a specific query and
<image> is the placeholder for a specific image.

We use four distinct prompts in our experiments, detailed
below:
* Is there {object} in the image?
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* Does the image contain {object}?
* Have you noticed {object} in the image?
* Can you see {object} in the image?
The {object} is the placeholder for a detail object.

Grounding DINO 1.5 Pro Prompt: Figure 8 shows the
prompt for Grounding DINO 1.5 Pro. For example, if an
image contains four unique objects—sports ball, person,
car, and traffic light—the corresponding prompt would be:
”sports ball.person.car.traffic light”.

Grounding DINO 1.5 Pro

{objectl}.{objects}. - - .{object,}

Figure 8. The Prompt of Grounding DINO 1.5 Pro.
The prompt used for the binary classification task in all
experiments with Grounding DINO 1.5 Pro follows a dot-
separated notation to specify multiple objects. Placeholders
{objectl}, {objecta}, - - -{object,} represent unique objects in
the image, where n denotes the total number of distinct objects.

OWLvV2 Prompt: Figure 9 shows the prompt for OWLv2.
An example of a specific object is: “an image of truck”.

OWLv2
an image of {object}
Figure 9. The Prompt of OWLv2. The prompt of a binary classi-

fication task for OWLv2 used in all experiments, where {object}
serves as a placeholder for a specific object.

Model Random Pos Only Neg Only

DINO 1.5 Pro 95.50/85.50  91.60 (-3.90)  53.05 (-32.45)
GPT-5-2025-08-07 81.53/96.12  71.92(-9.61)  84.45(-11.67)
Emu3 67.25/97.30 48.75(-18.50) 81.17 (-16.13)
InternVL3-9B 80.88/97.83 68.83(-12.05) 81.75 (-16.08)
Qwen3-VL-8B-Instruct  82.95/97.15  74.28 (-8.67)  83.90 (-13.25)

Table 7. Ablation study of ORIC-Bench. The table evaluates
three sampling setups: Random: A baseline using randomly se-
lected positive and negative objects. Pos Only: Employs LLM-
guided sampling for positives and random negatives. Neg Only:
Uses CLIP-guided sampling for negatives and random positives.
All values are reported as (yes-recall / no-recall), with parentheses
indicating the performance drop relative to the Random baseline.

B.3. Supplementary Experiments and Analysis

B.3.1. ORIC-Bench Ablation Study:

We follow the ORIC-Bench experiment settings, averag-
ing LVLM metrics over four prompts and using a default

prompt for detection models. Tab. 7 shows that both LLM-
guided and CLIP-guided sampling increase question diffi-
culty across four LVLMs and Grounding DINO Pro 1.5.
LLM-guided sampling reduces yes-recall across all models,
with Emu3 experiencing the largest drop (-18.50). Mean-
while, CLIP-guided sampling significantly lowers no-recall,
with the most notable decline observed in DINO 1.5 Pro (-
32.45). These results suggest that both positive and neg-
ative question constructions introduce challenges, though
their effects differ. Notably, no-recall declines more sharply
in most models. This discrepancy arises because positive
questions reference real objects, aiding recognition even in
incongruous backgrounds, whereas negative questions in-
volve absent objects, leading models to over-rely on back-
ground context and hallucinate in congruous settings.

B.3.2. Full Results of Comparison between POPE and
ORIC

Tab. 8 presents a comparative analysis of POPE and ORIC-
Bench across 19 LVLMs and 2 open-vocabulary detection
models. Notably, the macro F1 scores of Llama-3.2-11B-
Vision, Chameleon-7B, BLIP-3, and VILA1.5-3B in POPE
are comparable to or even exceed those in ORIC-Bench.
A potential explanation is that these models exhibit a high
proportion of “yes” responses in both benchmarks, suggest-
ing a tendency to answer affirmatively regardless of con-
text. This behavior indicates limited object recognition ca-
pabilities, as their responses remain consistent across differ-
ent evaluation settings. Furthermore, the macro precision
and recall of other models in ORIC-Bench are significantly
lower than in POPE, leading to a sharp decline in macro F1
scores. This suggests that ORIC-Bench presents a greater
challenge for all tested LVLMs, highlighting their struggles
with object recognition, particularly when considering con-
textual incongruity.
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Figure 10. Object Size Distribution across POPE, ORIC-
Bench, and COCO. Percentage distribution of small (< 24 x 24
pt?), medium (24 x 24-96 x 96 pt?), and large (> 96 x 96 pt?) ob-
jects in the POPE, ORIC-Bench, and COCO datasets, highlighting
ORIC-Bench’s deliberate shift toward smaller and medium object
scales.
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Model | POPE | ORIC-Bench
‘ Precision Recall F1 Score YP (%) ‘ Precision Recall F1 Score YP (%)
Closed-source
GPT-5-2025-08-07 \ 89.06 88.60 88.56 44.62 \ 79.50 78.75 78.61 42.12
Encoder-based
Llama-3.2-11B-Vision 25.00 50.00 33.33 0.00 25.00 50.00 33.33 0.00
Chameleon-7B 47.08 50.01 33.95 99.29 59.75 50.10 34.08 99.28
BLIP-3 36.20 44.88 37.29 80.30 43.14 49.86 42.99 81.54
VILA1.5-13B 60.87 59.92 57.49 36.80 65.19 62.40 60.41 28.95
GLM-4v-9B 86.55 84.12 83.85 37.30 71.18 64.92 61.99 23.32
Phi-3.5-Vision-Instruct 86.76 86.28 86.23 44.35 68.69 68.06 67.79 40.86
InternLM-XComposer2.5-7B 84.72 83.16 82.98 39.84 73.32 70.35 69.33 33.77
SmolVLM2-2.2B-Instruct 87.57 86.89 86.83 43.56 72.87 71.44 70.95 38.01
Kimi-VL-A3B-Instruct 88.91 87.69 87.59 41.19 74.67 72.28 71.58 34.45
Molmo-7B-D-0924 83.76 81.45 81.03 61.42 78.92 73.74 71.95 69.34
LLaVA-v1.6-Vicuna-13B 88.24 88.14 88.13 51.39 75.29 74.56 74.37 56.94
Janus-Pro-7B 87.32 87.03 87.00 50.65 76.60 75.22 74.83 56.42
InternVL3-9B 88.8 88.69 88.68 47.96 77.33 76.95 76.87 44.60
Qwen3-VL-8B-Instruct 88.13 88.04 88.03 47.66 79.93 79.61 79.55 44,94
Encoder-free
Fuyu-8B 68.39 53.47 40.48 95.70 44.83 50.16 34.16 99.29
EVE-7B-HD-v1.0 82.19 79.81 79.34 61.36 61.02 56.42 51.59 76.53
Emu3-Chat 87.43 86.72 86.66 43.25 67.74 65.79 64.78 33.41
Open-vocabulary Detection
OWLv2 86.74 86.55 86.53 53.55 73.02 72.25 72.02 40.85
Grounding DINO 1.5 Pro 85.62 85.05 84.99 56.35 77.02 73.40 72.48 68.30

Table 8. Full Model Performance Comparison: POPE vs. ORIC. The table compares POPE and ORIC across various model categories:
closed-source, encoder-based, encoder-free, and open-vocabulary detection models. Performance is evaluated using macro precision, recall,
and F1 score. The yes proportion (YP (%)) indicates the percentage of “yes” predictions. “Prec.” denotes precision, “Rec.” denotes recall,
and “F1.” denotes the F1 score. All values are averaged across four prompts, except for detection models, which use a single prompt

without averaging.

B.3.3. Comparison of Object Size Distribution between
POPE, ORIC-Bench, and COCO:

Fig. 10 compares the proportions of small (< 24 x 24 pt2),
medium (24 x 24-96 x 96 pt?), and large (> 96 x 96 pt?) ob-
jects in POPE, ORIC-Bench, and COCO. In ORIC-Bench,
small objects are the single largest category at 44.8%—yet
they do not constitute a majority: medium objects follow
closely at 41.2%, while large objects still make up a sub-
stantial 14.0%. Relative to POPE (27.6% small, 34.9%
medium, 37.4% large) and COCO (41.3% small, 34.2%
medium, 24.4% large), ORIC-Bench deliberately boosts the
share of small and medium instances at the expense of large
ones. This design amplifies the need for fine-grained recog-
nition and scale-robust feature extraction in the face of con-
text incongruity, while still retaining a substantial number
of medium and large objects to ensure the benchmark is not
solely focused on small instances and can assess model per-
formance across the full spectrum of object scales.

C. Visual-RFT Experimental Details
C.1. Visual-RFT Training Hyper-parameters

Tab. 9 lists the full set of hyper-parameters used in our
Visual-RFT training. We include all optimization, sam-
pling, and generation settings to ensure complete repro-
ducibility.

C.2. R1-Style Prompt for Reinforcement Fine-
Tuning

Fig. 11 shows the R1-style prompt used in our reinforce-
ment fine-tuning (RFT) experiments. An example of a spe-
cific question is: "Is there a cat in the image?”.

C.3. Zero-Shot CoT Prompt of LVLMs:

Fig. 12 shows the zero-shot CoT prompt for LVLMs. An
example of a specific question is: "Is there a person in the
image?”.



Hyper-parameter Configuration
VLM Init Qwen3-VL-8B-Instruct
KL Penalty (53) 0

Optimizer AdamW
Learning Rate 2x107°
Clipping Range € 0.2

LR Scheduler Cosine

Weight Decay 0

Precision BF16
Gradient Clipping 1.0
Per-device Batch Size 1

Gradient Accumulation 4

Rollout Temperature 0.7

Rollout Top-p 0.8

Rollout Top-k 20

Group Size G 8

Max Prompt Length 1024

Max Completion Length 256

Epochs 15

GPUs 4x NVIDIA H100 80GB

Table 9. Training Configuration. Key hyper-parameters for
GRPO-based Visual-RFT of Qwen3-VL-8B-Instruct.

R1-Style Prompt for Visual RFT

<image>

Prompt: Is there a/an {object} in the image?
Please first provide your reasoning or working out
on how you would go about solving the question
between <REASONING> and </REASONING>
and then your final answer between <SOLUTION>
and (put yes or no here) </SOLUTION>.

Figure 11. The Rl1-style prompt used for reinforce-
ment fine-tuning. The prompt elicits explicit reasoning
(KREASONING>...</REASONING>) and a verifiable final an-
swer (<KSOLUTION>. ..</SOLUTION>) to enable reward eval-
uation.

Zero-Shot CoT of LVLMs

<image>

Question: {question}

Let’s think step-by-step and then answer the ques-
tion based on the given image.

Figure 12. The zero-shot CoT Prompt of LVLMs. The prompt
of a binary classification task for LVLMs using zero-shot CoT
prompting strategy.

D. CLIPScore as a Proxy for Contextual Align-
ment

While CLIPScore is not a perfect object detector and
has known limitations in capturing compositional seman-
tics [32, 80], we use it solely as an external probe to assess
the contextual alignment of replaced objects. Specifically,
CLIP-guided sampling is applied only to “no”-label cases
to select ground-truth nonexistent yet contextually plausible
objects with higher CLIPScores, thereby constructing more
challenging negatives. Our ablation study B.3 confirms this
strategy by showing a significant reduction in negative re-
call, indicating increased contextual incongruity.

Importantly, CLIPScore is never used for model evalua-
tion but serves as a heuristic signal of object—context com-
patibility. To ensure robustness, we validate our findings
across three independent CLIP variants in A.3, all consis-
tently showing that ORIC “yes” or “no” pairs exhibit higher
visual similarity than those in POPE, thus increasing task
difficulty. While CLIP’s co-occurrence bias may contribute
to high scores for out-of-context objects, we argue this re-
flects its tendency to associate such objects with plausi-
ble scenes—precisely the kind of confounding signal our
benchmark targets. Despite its limitations, CLIPScore re-
mains a useful proxy for semantic alignment, as supported
by recent work [29, 74].

E. Visualization of ORIC Examples

E.1. Error Questions from Human Evaluation

Fig. 13 presents six error cases from 300 sampled ques-

tions (150 “yes” and 150 “no” labels) in ORIC using the

MSCOCO dataset. We assess two key aspects: accurate ob-

ject labeling and the appropriateness of visual backgrounds,

ensuring incongruous context in both “yes” and “no” ques-
tions. The identified errors fall into two categories:

* Inaccurate Object Labeling: The presence of objects
does not match the actual image content due to errors in
human annotation within the MSCOCO dataset.

* Not Causing the Incongruous Context: In “yes”-label
questions, the visual context aligns with the target ob-
ject, making the questions less challenging. In “no”-label
questions, the visual context does not create incongruity
for the nonexistent object.

E.2. ORIC Question Examples

Fig. 14 presents various examples from ORIC. In “yes”-
label and “no”-label questions, visual contexts are incon-
gruous with the question-related objects. Our LLM-guided
and CLIP-guided sampling method effectively generates
challenging questions considering contextual incongruity.



Model | Overall | Label Yes | Label No
| Pre. Rec. F1  YP(%) | Pre. Rec. F1 | Pre. Rec. F1

Closed-source
GPT-5-2025-08-07 \79.50 78.75 178.61 42.12 \84.14 70.88  76.92 \ 71.84 88.62 79.35
Vision-encoder-based
Llama-3.2-11B-Vision 25.00 50.00 33.33 0.00 0.00 0.00 0.00 | 50.00 100.00 66.67

Chameleon-7B 59.75 50.10 34.08 99.28 | 50.05 99.38 66.57 | 69.45  0.82 1.59
BLIP-3 43.14 49.86 4299 8154 | 4536 5122 47.02 | 4092 48.50 38.96
VILA1.5-13B 65.19 6240 6041 2895 | 71.44 4135 51.86 | 5892 8345 68.96
GLM-4v-9B 71.18 6492 6199 2332 | 8241 3825 5161|5994 91.60 72.35

Phi-3.5-Vision-Instruct 68.69 68.06 67.79 40.86 | 72.12 5892 64.85 | 6527 7720 70.73
InternLM-XComposer2.5-7B | 73.32 70.35 69.33  33.77 | 80.96 54.12 64.17 | 65.67 86.58 74.49
SmolVLM2-2.2B-Instruct 72.87 7144 7095  38.01 78.30 59.45 67.38 | 67.44 8342 74.52
Kimi-VL-A3B-Instruct 74.67 7228 7158 3445 | 8232 56.73 67.13 | 67.02 87.83 76.02

Molmo-7B-D-0924 78.92 7374 7195 69.34 | 6822 93.08 76.61 | 89.62 5440 65.59
LLaVA-v1.6-Vicuna-13B 75.29 7456 7437 5694 | 71.76 81.50 76.19 | 7882 67.62 72.55
Janus-Pro-7B 76.60 7522 74.83 5642 | 7330 81.65 76.71 | 7990 68.80 72.95
InternVL3-9B 7733 7695 76.87 44.60 | 80.27 71.55 75.60 | 7439 8235 78.13

Qwen3-VL-8B-Instruct 7993 79.61 79.55 4494 8296 7455 7851 | 7691 84.68 80.59
Vision-encoder-free

Fuyu-8B 4483 50.16 34.16 99.29 | 50.08 9945 66.61 | 39.59  0.88 1.71
EVE-7B-HD-v1.0 61.02 5642 51.59 7653 | 54.82 8295 6527 | 6722 2990 37.90
Emu3-Chat 67.74 6579 64.78 3341 73.58 4920 5890 | 6191 8238 70.67
Open-vocabulary Detection
OWLv2 73.02 7225 72.02 40.85 | 7723 63.10 69.46 | 68.81 8140 74.58

Grounding DINO 1.5 Pro 77.02 7340 72.48 6830 | 67.13 91.70 77.51 | 8691 55.10 67.44

Table 10. Full Experimental Results on ORIC-Bench. Performance is broken down by model category and label type (Yes/No). We
report macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over
four prompts, while detection models use a single prompt.
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. . . > . . . >
POPE: Is there a mouse in the image? Quest.lon. Is there a mouse in the image? Quest.lon. Is there a remote in the image?
Label : No Label: Yes Label: Yes

. . - p Not Causing The Incongruous Context: The Not Causing The Incongruous Context: The
Inaccurate Object Labeling: The keyboard is ’ . N

. ! office area provides a congruous context for a conference room provides a congruous context
present while labeling errors.
mouse. for a remote.

Question: Is there a bed in the image? Question: Is there an orange in the image? Question: Is there a skateboard in the image?
Label: No Label: No Label: Yes

Not Causing The Incongruous Context: The Not Causing The Incongruous Context: The Not Causing The Incongruous Context: The
living room doesn’t provide an incongruous tennis court doesn’t provide an incongruous skatepark doesn’t provide an incongruous
context for a nonexistent bed. context for a nonexistent orange . context for a nonexistent skateboard.

Figure 13. Error Examples of ORIC from Human Evaluation. There are six error cases among the 300 sampled questions in ORIC using
the MSCOCO dataset, resulting in an error rate of 2%. These errors can be classified into two categories. Inaccurate Object Labeling
occurs when the labeled object’s presence does not match the actual content of the image. Not Causing the Incongruous Background
includes cases where the visual context aligns with an existent object in a “yes”-label question or does not introduce incongruity for a

nonexistent object in a “no”-label question.
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Yes Label

No Label [QUESﬁO"i Is there a stop sign in the image? ] [Questiun: Is there a snowboard in the image? ] [Question: Is there a refrigerator in the image? ]

(Question: Is there a baseball bat in the image? | Question: Is there a dining table in the image? | (<Question: Is there a sports balln the image? | | Question: Is there  parking meter in the image? |

Figure 14. Question Examples of ORIC. The figure shows sampled question examples from ORIC using the MSCOCO dataset. The first
and second rows contain questions labeled “yes,” while the third and fourth rows contain questions labeled “no.” The red box highlights
the bounding boxes of existing objects in “yes”-label questions.
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