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Abstract

Large Vision-Language Models (LVLMs) excel at caption-001
ing, visual question answering, and robotics by combining002
vision and language, yet they often miss obvious objects or003
hallucinate nonexistent ones in atypical scenes. We exam-004
ine these failures through the lens of uncertainty, focusing005
on contextual incongruity, where objects appear unexpect-006
edly or fail to appear in expected contexts, and show that007
such cases increase recognition difficulty for state-of-the-008
art LVLMs. To study this regime, we introduce the Object009
Recognition in Incongruous Context (ORIC) framework,010
which constructs incongruous object-context pairs through011
two complementary strategies: (1) LLM-guided sampling012
to identify hard-to-recognize objects present in the image013
and (2) CLIP-guided sampling to mine plausible but ab-014
sent ones. Applied to MSCOCO, ORIC produces ORIC-015
Bench and ORIC-style training data. Evaluating 18 LVLMs016
and 2 open-vocabulary detectors reveals substantial perfor-017
mance drops and bias patterns under incongruous contexts.018
Fine-tuning Qwen3-VL-8B-Instruct with Visual Reinforce-019
ment Fine-Tuning on 600 ORIC-style samples improves re-020
sults on ORIC-Bench, AMBER, and HallusionBench. Over-021
all, we show that contextual incongruity is a key source of022
uncertainty and provide tools for more reliable LVLMs.023

1. Introduction024

Large Vision-Language Models (LVLMs) have achieved025
remarkable progress across image captioning [16], visual026
question answering (VQA) [60], robotics [22], and embod-027
ied AI [73], driven by their ability to integrate visual and028
textual modalities. A core skill underlying these advances029
is accurate object recognition [12], essential for reliable030
perception and high-level reasoning [83]. However, de-031
spite strong benchmark scores, LVLMs remain vulnerable032
to two key failures: (1) object misidentification, where ex-033
isting objects are missed [49]; and (2) object hallucination,034
where nonexistent objects are falsely recognized [15, 58],035

Original Question

Is there a mouse in the image?

Yes 

Incongruous Question

Is there a train in the image?

No 

Original Question

Is there a car in the image?

No 

Incongruous Question

Is there a sports ball in the image?

Yes 

Figure 1. Contextual Incongruity Leads to Recognition Fail-
ures. This figure illustrates how incongruous contexts cause two
primary errors: misidentification of present objects and hallucina-
tion of absent ones. Left (Misidentification): In an office, GPT-5
identifies the expected “mouse” (purple) but fails to recognize the
out-of-context “train” (red). Right (Hallucination): On a base-
ball court, the model correctly denies an unrelated “car” but hallu-
cinates a plausible yet non-existent “sports ball.”

which undermine downstream reliability [20, 36]. A partic- 036
ularly challenging regime that amplifies these issues is con- 037
textual incongruity, where objects appear in unexpected 038
settings or are absent from expected ones. Under such con- 039
ditions, LVLMs often misread visual evidence, either over- 040
looking valid objects or hallucinating contextually plausi- 041
ble ones. For instance, as shown in the left side of Fig. 1, 042
GPT-5 [53] correctly identifies a mouse but fails to recog- 043
nize a prominent train in an office; in the right side of Fig. 1, 044
it correctly denies a car but hallucinates a sports ball on a 045
baseball field. These observations echo cognitive findings 046
that unexpected contexts disrupt recognition [30, 54, 70]. 047

Recent theory attributes language model errors to learn- 048
ing under uncertainty with binary scoring, which rewards 049
guessing over abstaining [31]. In our setting, answering a 050
binary existence question can be formalized as estimating 051
P (a | q, I), where a ∈ {yes, no}, q denotes the question, 052
and I = (ROI, context) represents the image composed 053
of a ROI containing the queried object and its surrounding 054
scene. As illustrated in the left side of Fig. 1, the train area 055
serves as the ROI, while the office environment represents 056
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the context. When evidence from the ROI is weak, contex-057
tual priors P (a | q, context) tend to dominate the inference.058
If the context strongly implies that an object should exist059
(e.g., a sports ball on a baseball field), the model is biased060
toward answering “yes,” resulting in hallucinations. Con-061
versely, when the context implies that the object is unlikely062
to appear (e.g., a train in an office), the model confidently063
predicts “no,” causing misidentification. In both scenarios,064
contextual incongruity heightens uncertainty by opposing065
weak local evidence with strong scene-level priors, leading066
to recognition errors.067

From this uncertainty perspective, existing benchmarks068
mainly target other sources while keeping object-context069
consistency. POPE [35] tests recognition under strong sta-070
tistical or textual priors. AMBER [66] evaluates discrim-071
inative tasks involving object existence, attributes, and re-072
lations. HallusionBench [24] examines visual-dependent073
questions that require image context, such as visual illusions074
and figures. However, across these benchmarks, queried075
objects remain context-consistent with their scenes, leav-076
ing the high-uncertainty regime where weak local evidence077
opposes strong contextual priors largely unexplored.078

Motivated by this gap, we systematically examine how079
contextual incongruity affects object recognition in LVLMs.080
To analyze this effect under controlled conditions, we in-081
troduce the Object Recognition in Incongruous Context082
(ORIC) framework, which constructs incongruous object-083
context pairs for both evaluation and training. ORIC in-084
tegrates two complementary strategies: (1) LLM-guided085
sampling, where GPT-5 identifies existing objects that are086
difficult to recognize in atypical contexts; and (2) CLIP-087
guided sampling, where CLIP [56] mines plausible yet088
nonexistent objects. Applied to the MSCOCO validation089
set, ORIC produces a balanced binary benchmark, ORIC-090
Bench, while applying the same pipeline to the training split091
yields ORIC-style samples. Evaluating 18 LVLMs and two092
open-vocabulary detectors on ORIC-Bench reveals that093
even top-performing models on standard benchmarks fail094
under contextual incongruity, exposing persistent recogni-095
tion gaps. To mitigate these uncertainty-driven errors, we096
fine-tune Qwen3-VL-8B-Instruct [3, 4] using Visual Rein-097
forcement Fine-Tuning (Visual-RFT) [44] on 600 ORIC-098
style samples, improving performance on not only ORIC,099
but also AMBER and HallusionBench, with responses more100
aligned with human reasoning. Overall, our main contribu-101
tions are:102

• Problem Identification. We identify contextual incon-103
gruity as an overlooked cause of visual uncertainty in104
LVLMs, which degrades recognition performance.105

• ORIC Framework. We introduce ORIC, which builds106
incongruous object-context pairs via LLM- and CLIP-107
guided sampling for evaluation and training.108

• Model Evaluation. We test 18 LVLMs and 2 detectors on109

Ground Truth: No
POPE: Is there a truck in the image?
Incongruous Context: Is there a sheep in the image? 

Ground Truth: Yes
POPE: Is there a baseball bat in the image?
Incongruous Context: Is there a vehicle in the image? 

Figure 2. Comparison of POPE and Incongruous Context
Questions. Both examples use the same image but differ in tar-
get objects. Left: In a baseball field, POPE targets a baseball
bat (purple), while ours targets a large vehicle (red), which is less
related to the scene and thus more incongruous. Both labels are
“yes.” Right: In a rural scene with a cow, POPE targets a truck,
while our question targets a sheep—more contextually plausible
but still absent, increasing incongruity. Both labels are “no.”

ORIC, showing that the task is difficult and reveals clear 110
bias patterns. 111

• ORIC-driven Uncertainty Mitigation. Visual-RFT 112
of Qwen3-VL-8B-Instruct on ORIC-style data lowers 113
uncertainty-driven errors and yields more human-aligned 114
performance across benchmarks. 115

2. Contextual Incongruity and Uncertainty 116

This section examines how contextual incongruity affects 117
object recognition under uncertainty and provides empirical 118
evidence that it significantly degrades model performance. 119

2.1. Theoretical Formulation 120

Mentioned on Sec. 1, answering a binary existence query is 121
estimating P (a | q, I) for a ∈ {yes, no}, with the image 122
represented as I = (ROI, context). Let o be the queried 123
object class and c the scene context (e.g., baseball field, 124
office). Training data induce a joint P (o, c) over object- 125
context pairs. Existing benchmarks mostly sample head re- 126
gions of this distribution, where pairs are frequent and con- 127
sistent; both P (agt | q,ROI) and P (agt | q, context) are 128
high for the ground-truth agt, yielding low uncertainty and 129
allowing co-occurrence heuristics to perform well. 130

However, we focus on the high-uncertainty regime in- 131
duced by contextual incongruity, where ROI evidence and 132
contextual priors disagree. Typical examples include an un- 133
usual object in a familiar scene (e.g., a train in an office) 134
or a missing object that the scene strongly suggests (e.g., 135
no ball on a baseball field). In such cases, the posterior 136
based on the ROI alone is diffuse, with P (yes | q,ROI) 137
and P (no | q,ROI) being similar in magnitude, while the 138
context strongly favors one of them. Theory [31] suggests 139
that binary supervision rewarding guesses drives models to- 140
ward contextual priors instead of uncertainty, causing hal- 141
lucinations of plausible objects or overconfident rejections 142
in incongruous contexts. 143
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(a). POPE Subset vs. Incongruous Context Questions (b). POPE Subset vs. Full POPE Questions (c). Incongruous Context vs. ORIC Questions

POPE Subset Questions Incongruous Context Questions Full POPE Questions ORIC Questions

Figure 3. Object–Context Congruity via CLIPScore. CLIPScore quantifies alignment between queried objects and scene context. (a)
For “yes” questions, POPE subset yields higher scores than incongruous variants (23.83 vs. 20.77); for “no” questions, the reverse holds
(22.87 vs. 20.18), indicating stronger misleading cues. (b) The sampled POPE subset shows consistent CLIPScore distribution with the
full dataset, confirming its representativeness. (c) ORIC questions exhibit even higher incongruity (e.g., 24.26 for “no”), reinforcing the
contextual challenge. Subplots (a) and (c) share images but differ in queried objects. Error bars show 95% confidence intervals.

2.2. Empirical Analysis of Contextual Incongruity144

To assess how contextual incongruity affects LVLMs, we145
conduct a controlled study based on the POPE bench-146
mark [35]. We sample 25 “yes” and 25 “no” context-147
consistent questions, then keep each image and label fixed148
while replacing the queried object, creating paired context-149
incongruous questions. For example, in the left side of150
Fig. 2, the baseball-field question “Is there a baseball bat151
in the image?” is changed to “Is there a vehicle in the im-152
age?”. In the right side of Fig. 2, the rural-scene ques-153
tion “Is there a truck in the image?” becomes “Is there a154
sheep in the image?” even though the image contains only155
a cow. We evaluate four representative LVLMs including156
GPT-5-08-07 [28], Janus-Pro-7B [10], InternVL3-9B [85],157
and Qwen3-VL-8B-Instruct using macro accuracy, preci-158
sion, recall, and F1 (see formulas in Appendix A.4).159

Model
POPE Subset Incongruous Context

Prec. Rec. F1. Prec. Rec. F1.

Janus-Pro-7B 96.30 96.00 95.99 58.01 58.00 57.98
InternVL3-9B 96.30 96.00 95.99 56.16 56.00 58.00

Qwen3-VL-8B-Instruct 98.08 98.00 98.00 61.90 60.00 58.33
GPT-5-08-07 100.00 100.00 100.0 61.27 60.32 60.79

Table 1. Model Performance on POPE vs. Incongruous Con-
text Questions. This table reports macro precision (Prec.), recall
(Rec.), and F1 score (F1) for four LVLMs on the POPE benchmark
and a set of manually curated questions. Although all models per-
form well on the POPE subset, they struggle with incongruous
context questions.

Table 1 reports results on the original context-consistent160
questions and their context-incongruous counterparts. All161
four models achieve near-perfect performance on the orig-162
inal subset (macro F1 between 96.0 and 100.0), indicating163
that these questions are easy for current LVLMs. However,164
macro F1 drops dramatically to around 60 on the incon-165
gruous questions, despite the images being identical. This166
sharp degradation cannot be attributed to low-level visual167
difficulty and instead points to failures induced purely by168

breaking object–context compatibility. 169
To quantify how our modifications alter object– 170

background associations, we further analyze CLIPScores 171
between each image and the textual description of the 172
queried object. Given an image I and a question-related ob- 173
ject name O, we use CLIP [56] to extract visual and textual 174
embeddings fI , fO ∈ Rd, normalize them as f̂I = fI/∥fI∥ 175

and f̂O = fO/∥fO∥, and compute 176

CLIPScore(I,O) = f̂⊤
I f̂O =

f⊤
I fO

∥fI∥ ∥fO∥
× 100. (1) 177

Fig. 3(a) plots CLIPScores for 50 pairs of original and 178
context-incongruous questions. For “yes” questions, orig- 179
inal objects show a higher mean score (23.83) than their 180
incongruous replacements (20.77), indicating weaker con- 181
textual alignment. For “no” questions, the trend reverses: 182
context-incongruous objects score higher (22.87 vs. 20.18), 183
suggesting that the background strongly implies the pres- 184
ence of objects that are actually absent. The middle subplot 185
in Fig. 3(b) exhibits the same patterns as the full bench- 186
mark, confirming that our subset is representative. To- 187
gether, these results show that contextual incongruity cre- 188
ates a high-uncertainty regime for LVLMs, where models 189
that perform reliably on standard questions experience sub- 190
stantial accuracy drops. This motivates ORIC as a frame- 191
work that systematically constructs data with incongruous 192
context for both evaluation and training. 193

3. The ORIC Framework 194

This section introduces ORIC, which generates object- 195
recognition questions under contextual incongruity, each 196
framed as a binary “yes” or “no” label of object presence. 197

3.1. ORIC Construction Method 198

Positive Questions (Existing Objects): Contextual in- 199
congruity arises when objects appear in unexpected set- 200
tings, creating high uncertainty. Therefore, our objec- 201
tive is to generate questions that deliberately minimize 202
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Human annotation

Image: 𝐈 Similar Image: 𝑰′

Human annotation

Split objects into ROI 
and Non-ROI by 50% 
union area percentile

Select k unpredictable  
ROI objects via non-

ROI using LLM

Select the top k 
objects with the 

highest CLIP scoresExample: k=3

Q: Is there an apple in the image?

Q: Is there a banana in the image?

Positive Questions (Label Yes) Negative Questions (Label No)

Q: Is there a microwave in the image?

Q: Is there an oven in the image?

Nonexistent ROI 
Objects

microwave, oven, car, 
horse, spoon, cup, fork, 

person
…

Existent ROI Objects
microwave, apple, 
banana, orange, …

Existent Non-ROI 
Objects

cabinet, refrigerator, 
dining table, …

Filtered k Existent 
ROI Objects

apple: no, 
banana: no,
orange: no,

microwave: yes

Filtered k Nonexistent 
ROI Objects

oven: 57.46, 
microwave: 21.79,

spoon: 16.32,
car : 3.02

Q: Is there an orange in the image? Q: Is there a spoon in the image?

Omit existed objects

LLM-Guided Sampling CLIP-Guided SamplingFind the most similar image

Figure 4. ORIC Method Overview. This figure shows two construction methods of the ORIC. LLM-Guided Sampling (Positive
Question Construction): First, given an image I , objects are classified as ROI if their combined bounding box area is under 50%;
otherwise, they are non-ROI. Next, we query the LLM (GPT-5) with textual categories of non-ROI objects to predict the existence of each
ROI object based on common sense and co-occurrence. Finally, we select the top k unpredictable ROI objects (e.g., k = 3) for which the
LLM predicts “no” (e.g., apple, banana, and orange). CLIP-Guided Sampling (Negative Question Construction): A similar image I ′ is
identified using cosine distance from I . We then compute the CLIPScore for each nonexistent ROI object against I ′ and select the top k
nonexistent ROI objects based on their scores. For example, the top three are an oven (57.46), a microwave (21.79), and a spoon (16.32).

Category HallusionBench POPE MM-Vet v2 AMBER Hallu-PI ORIC-Bench

Image Count 346 500 517 1k 1.2k 1k
Contextual Incongruity ✗ ✗ ✗ ✗ ✗ ✓
Missed / Hallucinated Recognition Hallucinated only Both Both Both Hallucinated only Both

Table 2. Benchmark Comparison. Benchmarks compared by image count, contextual incongruity, and error types.

background-object associations, utilizing LLM-guided203
sampling. We define the objects targeted for recogni-204
tion as ROI, while background contexts consist of non-205
ROI elements. Formally, as illustrated on the left side of206
Fig. 4, given an image I containing objects O = {oi =207
(ni, {Bij}mi

j=1)}Ni=1, where ni is the object’s name and Bij208
denotes the j-th bounding box associated with object oi,209
we categorize objects into ROI and non-ROI based on their210
bounding box coverage. We then select k ROI objects as211
positive question candidates, where k is the desired number212
of selected objects. The total area covered by each object’s213
bounding boxes is calculated as:214

Ai = area
(mi⋃
j=1

Bij

)
, (2)215

where the function area(·) computes pixel area, and then we216
split O into two disjoint sets based on the 50th percentile:217
OROI = {o(i) | A(i) < M50(A)} and OnonROI = {o(i) |218
A(i) ≥ M50(A)}, where M50(A) denotes the median area219
of the union of bounding boxes (i.e., the 50th-percentile220
area of the union of bounding boxes among all objects). We221
then use GPT-5 to filter ROI candidates. Specifically, the222

LLM is queried to determine whether each ROI object is 223
logically consistent with the provided non-ROI object cate- 224
gories. The verification function is defined as: 225

f(o) =

{
1, if LLM(o,OnonROI) = “no”,
0, otherwise.

(3) 226

The function LLM(o,OnonROI) returns “no” if the ROI ob- 227
ject is unexpected based on common sense and typical co- 228
occurrence. Objects receiving a ”no” from GPT-5 form the 229
positive candidate set C. Positive questions are generated 230
by randomly selecting k objects from C. For detailed pseu- 231
docode and prompts, refer to Appendix A.1. 232

Negative Questions (Nonexistent Objects): LVLMs of- 233
ten hallucinate objects when strong contextual cues make 234
nonexistent items seem plausible, reflecting the high un- 235
certainty created by incongruous contexts. Therefore, our 236
goal is to generate questions that enhance the correlation 237
between nonexistent ROI objects and non-ROI elements by 238
leveraging CLIP-guided sampling. As depicted on the 239
right side of Fig. 4, we first identify the most visually sim- 240
ilar image I ′ to a query image I using the CLIP model’s 241
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image encoder, which helps curate a more diverse set of re-242
trieved images. Formally, given images {I1, . . . , In} and a243
query image Iq , visual embeddings are extracted via ViT:244
e = V iT (I). The image similarity is measured using co-245
sine distance:246

D(Iq, Ii) = 1− eq · ei
∥eq∥∥ei∥

, (4)247

where eq and ei represent embeddings of image Iq and Ii,248
respectively. The most similar image I ′ minimizes this dis-249
tance. Next, given the most similar image I ′ and a set of250
nonexistent ROI objects Onon = {ni}Mi=1, where ni rep-251
resents an individual nonexistent ROI object and M is the252
total number of nonexistent ROI objects considered in the253
set Onon. For each ni, a text description Ti is generated in254
the form of “an image contains ni.” We compute the simi-255
larity score for each object as si = CLIPScore(I ′, Ti). The256
objects are then sorted by si, and the top k nonexistent ROI257
objects are selected to form Onon for negative question gen-258
eration. See Appendix A.2 for the detailed algorithm.259

3.2. ORIC Statistics260

Human Evaluation: We sampled 150 “yes” and 150261
“no” questions using ORIC framework and manually ver-262
ified (1) object labeling accuracy and (2) contextual incon-263
gruity. The low 2% error rate confirms the robustness of264
our pipeline. Appendix E.1 provides six error cases, and265
additional correct examples are shown in Appendix E.2.266

CLIPScore for ROI–Background Analysis: We com-267
pared ORIC-generated questions with incongruous con-268
text questions in Sec. 2 using a CLIPScore-based method.269
Specifically, we generated 50 ORIC questions (25 for each270
label, “yes” and “no”) corresponding to the same images271
used in the previous incongruous context questions. As272
illustrated in Fig. 3(c), CLIP scores for “yes” questions273
were nearly identical between ORIC (20.77) and incongru-274
ous context questions (20.63), suggesting similar contextual275
alignment. However, for “no” questions, ORIC achieved276
higher CLIP scores (24.25 vs. 22.87), indicating a stronger277
correlation between the nonexistent object and the visual278
context, thereby creating a more incongruous context.279

4. ORIC-Bench Experiments and Analysis280

We evaluate 18 LVLMs and 2 open-vocabulary detectors on281
ORIC-Bench under contextual incongruity, analyzing per-282
formance, architecture, class bias, and object-size effects.283
The 11-LVLM summary is in Table 3, and the full 18-284
LVLM results are in Appendix Table 10. Ablations and285
POPE comparisons in Appendices B.3.1 and B.3.2 show286
that ORIC-Bench is more challenging and discriminative287
for LVLMs.288

4.1. Experimental Setup 289

ORIC-Bench Setup and Evaluated Models. We eval- 290
uate on ORIC-Bench, built with the ORIC using 1,000 291
MSCOCO [40] validation images (avoiding leakage). Each 292
image pair yields two present-object and two absent-object 293
queries, resulting in 1,000 “yes” and 1,000 “no” questions. 294
As shown in Table 2, ORIC-Bench uniquely introduces 295
contextual incongruity and jointly tests both missed and 296
hallucinated recognition. We evaluate 18 LVLMs (vision- 297
encoder-based, vision-encoder-free, and closed-source) and 298
2 open-vocabulary detectors (Grounding DINO 1.5 Pro [57] 299
and OWLv2 [50]). Detailed model specifications are pro- 300
vided in Appendix B.1. 301

Evaluation Protocol and Metrics. Ambiguous LVLM 302
outputs are resolved using MMBench’s two-step match- 303
ing [43]: we first heuristically extract explicit “yes” or “no” 304
labels from each output; if none are found, GPT-5-08-07 is 305
prompted with the question, answer options, and the raw 306
response to infer the label. All experiments are conducted 307
on a single NVIDIA H100 with temperature 0 and a 1,024- 308
token limit. Each LVLM is tested under four prompts, and 309
results are averaged. Detectors jointly process present and 310
absent objects: a detection with confidence ≥ 0.25 counts 311
as “yes,” otherwise “no.” We report the yes-predictions pro- 312
portion (YP), macro precision, recall, and F1, as well as 313
class-wise precision, recall, and F1 for yes and no. See Ap- 314
pendix B.2 for prompt details and Appendix A.4 for metric 315
details. 316

4.2. ORIC-Bench Results and Analysis 317

Table 3 presents the results of 11 LVLMs and 2 open- 318
vocabulary detectors on ORIC-Bench. We analyze over- 319
all performance, architectural differences, and the impact 320
of contextual incongruity. 321

Overall Performance: Qwen3-VL-8B-Instruct achieves 322
the highest overall F1 of 79.55, surpassing GPT-5 (78.61) 323
and strong vision-encoder models like InternVL3-9B 324
(76.87) and Janus-Pro-7B (74.83). Open-vocabulary de- 325
tectors perform slightly lower but remain competitive, with 326
Grounding DINO 1.5 Pro at 72.48 and OWLv2 at 72.02. 327
Most models fall between 60 and 77 F1, highlighting 328
benchmark difficulty. Llama-3.2-11B-Vision (33.33, YP = 329
0.00%) shows extreme class bias, while GLM-4v-9B fa- 330
vors precision (missed objects). Qwen3-VL-8B-Instruct 331
also leads per-class F1 for Yes (78.51) and No (80.59) with 332
balanced YP = 44.94%, whereas GPT-5 remains similarly 333
balanced (Yes 76.92, No 79.35, Y P = 42.12%). Despite 334
potential data overlap, the 79.55 F1 ceiling shows LVLMs 335
still struggle with incongruous cases. 336

Model Architecture Comparison: Vision-encoder- 337
based LVLMs dominate overall, with Qwen3-VL- 338
8B-Instruct (79.55 F1), InternVL3-9B (76.87), and 339
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Model Overall Label Yes Label No

Pre. Rec. F1 YP (%) Pre. Rec. F1 Pre. Rec. F1

Closed-source
GPT-5-2025-08-07 [53] 79.50 78.75 78.61 42.12 84.14 70.88 76.92 71.84 88.62 79.35

Vision-encoder-based
Llama-3.2-11B-Vision [13] 25.00 50.00 33.33 0.00 0.00 0.00 0.00 50.00 100.00 66.67

VILA1.5-13B [39] 65.19 62.40 60.41 28.95 71.44 41.35 51.86 58.92 83.45 68.96
GLM-4v-9B [23] 71.18 64.92 61.99 23.32 82.41 38.25 51.61 59.94 91.60 72.35

Phi-3.5-Vision-Instruct [1] 68.69 68.06 67.79 40.86 72.12 58.92 64.85 65.27 77.20 70.73
LLaVA-v1.6-Vicuna-13B [42] 75.29 74.56 74.37 56.94 71.76 81.50 76.19 78.82 67.62 72.55

Janus-Pro-7B [10] 76.60 75.22 74.83 56.42 73.30 81.65 76.71 79.90 68.80 72.95
InternVL3-9B [85] 77.33 76.95 76.87 44.60 80.27 71.55 75.60 74.39 82.35 78.13

Qwen3-VL-8B-Instruct [3, 4] 79.93 79.61 79.55 44.94 82.96 74.55 78.51 76.91 84.68 80.59
Vision-encoder-free

EVE-7B-HD-v1.0 [18] 61.02 56.42 51.59 76.53 54.82 82.95 65.27 67.22 29.90 37.90
Emu3-Chat [68] 67.74 65.79 64.78 33.41 73.58 49.20 58.90 61.91 82.38 70.67

Open-vocabulary Detection
OWLv2 [50] 73.02 72.25 72.02 40.85 77.23 63.10 69.46 68.81 81.40 74.58

Grounding DINO 1.5 Pro [57] 77.02 73.40 72.48 68.30 67.13 91.70 77.51 86.91 55.10 67.44

Table 3. Main Experimental Results on ORIC. Performance is broken down by model category and label type (Yes/No). We report
macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over four
prompts, while detection models use a single prompt. Full metric definitions are in Appendix A.4.

Janus-Pro-7B (74.83) notably outperforming encoder-free340
models, whose best, Emu3-Chat, reaches 64.78. The gap341
stems from ViT-style encoders providing structured visual342
features for fine-grained perception, whereas encoder-343
free models using raw pixels remain fragile in complex344
scenes. Among closed-source systems, GPT-5 (78.61)345
trails Qwen3-VL-8B-Instruct by only 0.94 points, showing346
open-source LVLMs can match or surpass proprietary347
ones. Open-vocabulary detectors like Grounding DINO348
1.5 Pro (72.48) and OWLv2 (72.02) lag further, as their349
region–text alignment lacks holistic reasoning and explicit350
modeling of object absence, leading to more hallucinations351
in incongruous contexts.352

Model
POPE-Bench ORIC

Small Medium Large Small Medium Large

Emu3-Chat 68.22 80.97 94.19 38.73 56.61 71.99
GPT-5-2025-08-07 78.24 88.48 94.30 67.85 71.69 84.34

InternVL3-9B 82.29 90.43 96.34 63.63 77.61 86.45
Qwen3-VL-8B-Instruct 79.96 89.71 96.40 69.96 77.67 85.24

Table 4. Recall by Object Size on POPE vs. ORIC. We report the
recall for questions labeled “yes” across small, medium, and large
objects in both the POPE and ORIC datasets for three LVLMs,
illustrating how object scale affects model performance.

Influence of Incongruous Context (Class-Wise): Mod-353
els exhibit distinct biases in incongruous contexts. Qwen3-354
VL-8B-Instruct and InternVL3-9B maintain balanced per-355
formance but lean conservative on “yes” predictions (YP ≈356
45%), yielding higher “no” F1 scores of 80.59 and 78.13.357

Their high “no” recall (84.68, 82.35) and lower “yes” recall 358
suggest a preference for rejecting uncertainty over halluci- 359
nating presence. GLM-4v-9B and VILA1.5-13B show the 360
opposite trend, underdetecting valid objects, while LLaVA- 361
1.6-Vicuna-13B maintains a more even trade-off. Among 362
detectors, Grounding DINO 1.5 Pro favors “yes” (recall 363
= 91.70, “no” recall = 55.10), whereas OWLv2 is more 364
balanced with the best “no” F1 (74.58). Overall, vision- 365
encoder LVLMs handle contextual incongruity best, though 366
a shared “yes”-conservatism bias reduces hallucinations but 367
limits true-positive sensitivity. 368

Performance Comparison Across Object Sizes: Using 369
COCO tiers—small (< 242 pt2), medium (242–962 pt2), 370
and large (≥ 962 pt2)—we compare 1,000 “yes”-labeled 371
questions for POPE and ORIC-Bench. As shown in Table 4, 372
all four models show lower recall on ORIC-Bench across 373
sizes. Emu3-Chat drops most on small objects (68.22 → 374
38.73,−29.49), while GPT-5 is comparatively stable on 375
large ones (94.30 → 84.34,−9.96). The large–small gap 376
widens under incongruity for Emu3-Chat (25.97 → 33.26) 377
and InternVL3-9B (14.05 → 22.82), remains roughly un- 378
changed for GPT-5 (16.06 → 16.49), and slightly narrows 379
for Qwen3-VL-8B-Instruct (16.44 → 15.28). Thus, while 380
large objects remain easier, the consistent drop across all 381
sizes shows that contextual incongruity, rather than scale, is 382
the main source of uncertainty and performance drop. 383
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Method Overall Label Yes Label No

Precision Recall F1 YP (%) Precision Recall F1 Precision Recall F1

(a) Standard ORIC-Bench Evaluation
w 0-shot CoT 78.69 78.50 78.46 46.23 80.85 74.72 77.64 76.53 82.28 79.28

w/o 0-shot CoT 79.93 79.61 79.55 44.94 82.96 74.55 78.51 76.91 84.68 80.59
Visual-RFT 83.55 82.88 82.79 43.05 88.21 75.92 81.59 78.88 89.83 83.99

(b) Human-Labeled Ground Truth on ORIC-Bench
w/o 0-shot CoT 78.70 78.63 78.63 47.14 79.73 76.52 78.08 77.69 80.75 79.17

Visual-RFT 84.03 83.64 83.62 44.72 87.36 78.54 82.71 80.70 88.75 84.53

Table 5. Visual-RFT and Human-Referenced Results on ORIC-Bench. (a) Standard evaluation comparing models with and without
0-shot CoT; (b) comparison against human-labeled ground truth. We report macro precision, recall, F1, and the proportion of “yes”
predictions (YP). We find that visual-RFT produces outputs that better align with human thinking.

5. ORIC-driven Uncertainty Mitigation384

Models trained on conventional data degrade on ORIC-385
Bench (macro-F1 79.55; Table 3). To mitigate these386
uncertainty-driven errors, we adopt Visual-RFT [44], which387
uses verifiable rewards to enforce evidence-grounded rea-388
soning. We choose Visual-RFT over supervised fine-tuning389
because it is more data-efficient, more robust in few-sample390
regimes, and matches our ORIC setting, where rewards are391
naturally verifiable under the incongruous context.392

We follow Visual-RFT [44], applying Group Relative393
Policy Optimization (GRPO) [59] to vision–language bi-394
nary recognition with verifiable rewards. GRPO removes395
the PPO-style critic and compares candidates sampled from396
the same prompt, directly optimizing relative quality. Given397
a question q, we sample a group of G candidate re-398
sponses {o1, . . . , oG} ∼ πθold(· | q). Each sample re-399
ceives two automatically checkable binary rewards: racc ∈400
{0, 1} for answer correctness and rfmt ∈ {0, 1} for format401
compliance (e.g., <REASONING>...<\REASONING>402
<SOLUTION>...<\SOLUTION>). Then, we define the403
per-sample reward as ri = racc,i + rfmt,i. Let {rj}Gj=1 de-404
note the rewards of all candidates in the group. Since raw405
rewards may vary in scale across samples, we normalize406
them within each group (z-score) with a small constant ε:407

r̂i =
ri −mean({rj}Gj=1)

std({rj}Gj=1) + ε
. (5)408

As rewards are one-step, token-level advantages are con-409
stant within a sample: Âi,t = r̂i, ∀t. With the per-token410

ratio ρi,t(θ) =
πθ(oi,t | q, oi,<t)

πθold
(oi,t | q, oi,<t)

GRPO maximizes the411

clipped, KL-regularized objective:412

JGRPO(θ) = Eq

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ρi,t(θ),

clip
(
ρi,t(θ), 1− ϵ, 1 + ϵ

))
Âi,t

]
− β DKL

(
πθ(·|q)

∥∥πref(·|q)
)

(6)413

where ϵ is the clipping parameter and β controls a KL 414
penalty to a frozen reference policy πref . In practice, we 415
minimize LGRPO = −JGRPO. We adopt an R1-style, tag- 416
constrained prompt to elicit explicit reasoning and a verifi- 417
able “yes” or “no” answer. 418

6. Uncertainty Mitigation Experiments and 419

Analysis 420

6.1. Experimental Setup 421

To mitigate uncertainty-driven misjudgment and to 422
strengthen evidence-grounded reasoning through verifiable 423
reward optimization, we employ Visual-RFT. Specifi- 424
cally, we fine-tune Qwen3-VL-8B-Instruct [3, 4] on 600 425
ORIC-style binary questions (300 “yes”-label and 300 426
“no”-label questions) generated from the COCO-2014 427
training split, while ORIC-Bench uses disjoint validation 428
images. We perform full-parameter Visual-RFT for 15 429
epochs with a group size G=8 on 4×NVIDIA H100 GPUs 430
using an R1-style tag-constrained prompt, which elicits 431
explicit step-by-step reasoning and enforces verifiable 432
yes/no outputs. Full hyper-parameters and prompts are 433
provided in Appendix C. This setup enables reward signals 434
based on reasoning correctness rather than label matching 435
alone, reducing overreliance on uncertainty-driven errors. 436
Inference follows the standard ORIC-Bench protocol, 437
averaging predictions over four prompt variants. 438

Our baselines include the base model without 0-shot 439
Chain-of-Thought (CoT) [69] and a 0-shot CoT variant us- 440
ing the prompt shown in Appendix Fig. 12. We further 441
assess how Visual-RFT shifts predictions toward human- 442
like behavior using a small human-labeled subset of ORIC- 443
Bench, and additionally report results on HallusionBench 444
and AMBER to show that its benefits generalize beyond 445
ORIC-style data. 446

6.2. Results and Analysis on ORIC-Bench 447

Standard ORIC-Bench Evaluation. Table 5(a) shows 448
that Visual-RFT consistently improves Qwen3-VL-8B- 449

7



CVPR
#***

CVPR
#***

CVPR 2026 Submission #***. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Instruct, with or without 0-shot CoT. Macro F1 rises to450
82.79 (from 78.46/79.55), with clear F1 and recall gains451
for both “yes” (78.51 → 81.59; 74.55 → 75.92) and452
“no” (80.59 → 83.99; 84.68 → 89.83) questions. The453
slight drop in YP further suggests fewer spurious positives.454
Overall, training on ORIC-style data with Visual-RFT miti-455
gates uncertainty-driven errors and strengthens LVLM per-456
formance under contextual incongruity.457

Comparison with Human Preferences. To evaluate458
alignment with human reasoning, we annotate 200 ORIC-459
Bench questions (100 “yes”-label and 100 “no”-label ques-460
tions) as the alternative ground truth. As shown in461
Tab. 5(b), Visual-RFT improves macro F1 from 78.63 to462
83.62, indicating closer agreement with human judgments463
under ambiguous contexts. F1 increases for both labels464
(78.08→82.71 for “yes” and 79.17→84.53 for “no”), with465
particularly strong gains on “no” questions, where recall466
rises from 80.75 to 88.75. This shows that training on467
ORIC-style data with Visual-RFT reduces missed negatives468
and better aligns model predictions with human patterns.469
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Figure 5. Performance across Benchmarks. Macro F1 on Hallu-
sionBench and AMBER under three settings: with/without zero-
shot CoT and Visual-RFT fine-tuning.

Cross-benchmark Evaluation. We further assess gener-470
alization on HallusionBench and AMBER (Fig. 5). Visual-471
RFT improves robustness on both benchmarks. On Hallu-472
sionBench, which contains visual illusions and abstract fig-473
ures, performance remains stable (69.37 → 69.81), show-474
ing that RFT does not overfit to ORIC-style data. On AM-475
BER, which requires compositional reasoning over exis-476
tence, attributes, and relations, the gains are substantial477
(87.48 → 90.49). These results show that training on478
ORIC-style data with Visual-RFT improves generalization479
beyond ORIC-Bench and enhances robustness to both vi-480
sual and semantic distribution shifts.481

7. Related Work482

Large Vision-Language Models: Recent advances in483
large vision-language models (LVLMs) have greatly en-484
hanced text-image processing for visual understanding [1,485
28, 67, 84]. These models fall into two categories:486
vision-encoder-based approaches [2, 3, 23, 34, 41], which487
use pretrained visual encoders like Vision Transformer488

(ViT) [19], and vision-encoder-free methods [6, 18, 68], 489
which tokenize image patches for joint text-image process- 490
ing. LVLMs are widely used in tasks such as image cap- 491
tioning [16], visual question answering [60], robotics [22, 492
27, 51], and embodied AI [73, 82]. Despite progress, they 493
still struggle with fine-grained perception [55]. 494

Benchmarking Large Vision-Language Models: As 495
LVLMs evolve, benchmarking is crucial for guiding their 496
development [8, 37, 38]. Many benchmarks focus on fine- 497
grained perception, including counting, relations, attributes, 498
and reasoning [9, 21, 33, 43, 47, 71, 75, 78], or on com- 499
monsense and knowledge-intensive tasks [7, 79]. Others 500
target object hallucination and recognition [26, 35, 58, 66], 501
with some emphasizing textual influences or visual seman- 502
tics [24, 64, 65]. However, these benchmarks largely pre- 503
serve object–context compatibility and rarely test recogni- 504
tion under incongruous contexts. ORIC-Bench fills this gap 505
by explicitly evaluating object existence in such settings. 506

Reinforcement Learning: Recent RL-based post- 507
training methods directly optimize verifiable reasoning 508
outcomes. OpenAI o1 and DeepSeek-R1 demonstrate that 509
large-scale RL and GRPO can strengthen chain-of-thought 510
reasoning in both closed- and open-source models [25, 52], 511
while subsequent work improves GRPO stability and effi- 512
ciency [11, 14, 46, 76]. In multimodal settings, RL reduces 513
hallucinations through fine-grained visual feedback, as in 514
RLHF-V [77], and enables efficient visual reinforcement 515
tuning via Visual-RFT [45]. Building on this line of work, 516
we attach verifiable rewards directly to object existence 517
under contextual incongruity using a Visual-RFT–style 518
GRPO scheme that enforces evidence-grounded decisions. 519

8. Conclusion and Limitations 520

This paper presents the first systematic study of how 521
contextual incongruity, viewed through the lens of un- 522
certainty, affects LVLM object recognition, showing that 523
state-of-the-art models still struggle in such settings. To 524
investigate this gap, we introduce ORIC, a framework 525
built with LLM-guided and CLIP-guided sampling to 526
generate challenging, context-aware recognition tasks 527
for both evaluation and training. Experiments across 528
20 models reveal that handling incongruous contexts 529
remains a substantial weakness. We further fine-tune the 530
LVLM with reinforcement learning under the Visual-RFT 531
framework using ORIC-style data, which improves ro- 532
bustness to incongruity, boosts both in-distribution and 533
out-of-distribution performance, and yields outputs more 534
aligned with human reasoning. While our study establishes 535
a foundation, it is limited to a single dataset. Future 536
work should explore more diverse contexts and develop 537
stronger methods for reliable recognition under incongruity. 538

539
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ORIC: Benchmarking Object Recognition under
Contextual Incongruity in Large Vision-Language Models

Supplementary Material

A. ORIC Method, Analysis, and ORIC-Bench931

Evaluation Metrics932

A.1. LLM-Guided Sampling Method (Positive933
Question Construction)934

Algorithm 1 Positive Question Construction
Require: Image I , objects O = {(ni, Bij)}, integer k
Ensure: Positive question Q

1: for i = 1 to N do
2: Ai ← area(

⋃
j Bij)

3: end for
4: Sort O by Ai (descend.)
5: OROI ← bottom 50%, OnonROI ← top 50% ▷ Note: Objects

exactly at the 50% boundary are classified as non ROI.
6: C ← ∅
7: for o ∈ OROI do
8: if LLM says “no” for o given OnonROI then
9: C ← C ∪ {o}

10: end if
11: end for
12: Randomly pick k objects from C as Q return Q

Figure 6 presents the prompt used in LLM-guided rejec-935
tion sampling for constructing positive questions in the936
ORIC. Specifically, {background objects} serves as937
a placeholder for all non-ROI objects. For example, if938
there are three non-ROI objects, they could be represented939
as ["car", "person", "bottle"]. Meanwhile,940
{target object} represents a placeholder for a specific941
ROI object, such as "vase".942

LLM-Guided Rejection Sampling

Given the following background objects:
{background objects}, can you de-
termine whether the following target object
{target object} is present in the image
without relying on textual priors, common-sense
knowledge, or general assumptions about object
co-occurrences?
Please respond with yes or no.

Figure 6. Prompt for LLM-guided rejection sampling.
{background objects} is a placeholder for all non-ROI ob-
jects, and {target object} denotes a specific ROI object.

A.2. CLIP-Guided Sampling Method (Negative 943
Question Construction) 944

Algorithm 2 Negative Question Construction

Require: Query image Iq , candidate images {I1, . . . , In},
non-existent objects Onon = {ni}Mi=1, integer k

Ensure: Negative question Q
1: Select the most similar image:

I ′ = arg min
Ii∈I

(
1− eq · ei

∥eq∥∥ei∥

)
2: for i = 1 to M do
3: Construct text: Ti ← “an image contains { ni}”
4: Compute CLIP score: si ← CLIPScore(I ′, Ti)
5: end for
6: Sort {ni} by si (descending)
7: Select top k objects: S ← {ni1 , . . . , nik}
8: Construct Q using S return Q

A.3. Image Similarity Analysis via Minimum Dis- 945
tance 946

To further characterize the ORIC, we analyzed the visual re- 947
lationships between positive and negative questions through 948
image similarity measurements. Specifically, for each ob- 949
ject class appearing in positive (“yes”) questions, we com- 950
puted its minimum visual distance to negative (“no”) ques- 951
tions containing the same object class. Given an object oi, 952
let the set of positive images be I+

i = {I+i,1, . . . , I
+
i,m} and 953

the set of negative images be I−
i = {I−i,1, . . . , I

−
i,n}. We ex- 954

tracted visual feature vectors using a ViT encoder and com- 955
puted pairwise cosine distances as follows: 956

D(I+i,k, I
−
i,l) = 1−

e(I+i,k) · e(I
−
i,l)

∥e(I+i,k)∥ ∥e(I
−
i,l)∥

(7) 957

where e(·) = ViT(·) denotes the ViT feature extractor. 958
The minimum distance between positive and negative sets is 959
defined as Dmin = mink,l D(I+i,k, I

−
i,l). To ensure thorough 960

evaluation, we calculated these minimum distances using 961
three widely used vision encoders commonly employed 962
in encoder-based LVLMs: CLIP-ViT-BigG-P14, SigLIP- 963
SO400M-P14-384 [81], and EVA02-CLIP-BigE-P14 [61]. 964
These analyses highlight the distinctiveness of ORIC in cap- 965
turing contextually challenging object recognition scenarios 966
compared to existing benchmarks. In Tab. 6, questions gen- 967
erated from ORIC shows consistently smaller minimum co- 968
sine distances between ”yes” and ”no” samples than POPE 969
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across all three vision encoders. This suggests greater visual970
similarity between positive and negative examples, making971
object recognition more challenging and realistic.972

Vision Encoder POPE ORIC
CLIP-ViT-BigG-P14 0.37 0.14
SigLIP-SO400M-P14-384 0.28 0.11
EVA02-CLIP-BigE-P14 0.40 0.13

Table 6. Comparison of Minimum Cosine Distances. This ta-
ble compares the minimum cosine distances between positive and
negative questions across three vision encoders. A smaller dis-
tance indicates greater semantic similarity between images, mean-
ing “yes” and “no” questions are linked to finer image details and
higher representational clutter, making object recognition more
challenging and realistic.

A.4. Evaluation Metric Formulas973

For a binary classification problem with labels yes and no,974
we define the following terms:975

• TP (True Positive): Number of samples correctly pre-976
dicted as yes (Ground Truth: yes).977

• TN (True Negative): Number of samples correctly pre-978
dicted as no (Ground Truth: no).979

• FP (False Positive): Number of samples incorrectly pre-980
dicted as yes (Ground Truth: no).981

• FN (False Negative): Number of samples incorrectly pre-982
dicted as no (Ground Truth: yes).983

The performance metrics include accuracy, the propor-984
tion of yes predictions, macro precision, recall, and F1985
score. These are defined as follows:986

Class-wise Metrics:

Precisionyes =
TP

TP + FP
(8)987

Recallyes =
TP

TP + FN
(9)988

F1yes = 2×
Precisionyes × Recallyes

Precisionyes + Recallyes
(10)989

Precisionno =
TN

TN + FN
(11)990

Recallno =
TN

TN + FP
(12)991

F1no = 2× Precisionno × Recallno

Precisionno + Recallno
(13)992

Macro-averaged Metrics:

Precisionmacro =
Precisionyes + Precisionno

2
(14)993

Recallmacro =
Recallyes + Recallno

2
= Accuracy (15)994

Since our experimental datasets are all balanced, the995
number of positive and negative samples is equal. In this996

case, Accuracy = Recallmacro because accuracy measures 997
the overall proportion of correctly classified samples, and 998
macro recall, being the unweighted average of recall for 999
both classes, reflects the same value. 1000

F1macro =
F1yes + F1no

2
(16) 1001

Proportion of Yes Predictions: The proportion of ”yes” 1002
predictions (i.e., the percentage of all predictions that are 1003
classified as ”yes”) is given by: 1004

Yes Proportion =
TP + FP

TP + FP + TN + FN
(17) 1005

B. ORIC-Bench Experiment and Analysis 1006

B.1. Evaluated Models 1007

We evaluate 18 widely used LVLMs spanning both encoder- 1008
based and encoder-free architectures. The encoder- 1009
based models include Qwen3-VL-8B-Instruct [3, 4], 1010
SmolVLM2-2.2B-Instruct [48], InternVL3-9B [85], Kimi- 1011
VL-A3B-Instruct [63], Janus-Pro-7B [10], Llama-3.2- 1012
11B-Vision [13], LLaVa-v1.6-7B [42], Phi-3.5-Vision- 1013
Instruct [1], Molmo-7B-D-0924 [17], GLM-4V-9B [23], 1014
Chameleon-7B [62], VILA-1.5-13B [39], and BLIP3 [72]. 1015
Encoder-free models include Fuyu-8B [5], EVE-7B-HD- 1016
v1.0 [18], Emu3-Chat [68], and the closed-source GPT- 1017
5 [53]. What’s more, we benchmark against 2 open- 1018
vocabulary detection models: Grounding DINO 1.5 1019
Pro [57] and OWLv2 [50]. 1020

B.2. Prompt Templates of Experiments 1021

Large Vision-Language Models (LVLMs) Fig. 7 illus- 1022
trates the prompt used for LVLMs in both the POPE and 1023
LOPE-3 benchmarks. An example of a specific question is: 1024
”Is there a person in the image?”. 1025

LVLMs

<image>
Question: {question}
Please answer the question based on the given im-
age.

Figure 7. The Prompt of LVLMs. The prompt of a bi-
nary classification task for LVLMs is used in all experiments,
where {question} serves as a placeholder for a specific query and
<image> is the placeholder for a specific image.

We use four distinct prompts in our experiments, detailed 1026
below: 1027
• Is there {object} in the image? 1028
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• Does the image contain {object}?1029
• Have you noticed {object} in the image?1030
• Can you see {object} in the image?1031

The {object} is the placeholder for a detail object.1032

Grounding DINO 1.5 Pro Prompt: Figure 8 shows the1033
prompt for Grounding DINO 1.5 Pro. For example, if an1034
image contains four unique objects—sports ball, person,1035
car, and traffic light—the corresponding prompt would be:1036
”sports ball.person.car.traffic light”.1037

Grounding DINO 1.5 Pro

{object1}.{object2}.· · ·.{objectn}

Figure 8. The Prompt of Grounding DINO 1.5 Pro.
The prompt used for the binary classification task in all
experiments with Grounding DINO 1.5 Pro follows a dot-
separated notation to specify multiple objects. Placeholders
{object1}, {object2}, · · · {objectn} represent unique objects in
the image, where n denotes the total number of distinct objects.

OWLv2 Prompt: Figure 9 shows the prompt for OWLv2.1038
An example of a specific object is: ”an image of truck”.1039

OWLv2

an image of {object}

Figure 9. The Prompt of OWLv2. The prompt of a binary classi-
fication task for OWLv2 used in all experiments, where {object}
serves as a placeholder for a specific object.

Model Random Pos Only Neg Only

DINO 1.5 Pro 95.50 / 85.50 91.60 (-3.90) 53.05 (-32.45)
GPT-5-2025-08-07 81.53 / 96.12 71.92 (-9.61) 84.45 (-11.67)
Emu3 67.25 / 97.30 48.75 (-18.50) 81.17 (-16.13)
InternVL3-9B 80.88 / 97.83 68.83 (-12.05) 81.75 (-16.08)
Qwen3-VL-8B-Instruct 82.95 / 97.15 74.28 (-8.67) 83.90 (-13.25)

Table 7. Ablation study of ORIC-Bench. The table evaluates
three sampling setups: Random: A baseline using randomly se-
lected positive and negative objects. Pos Only: Employs LLM-
guided sampling for positives and random negatives. Neg Only:
Uses CLIP-guided sampling for negatives and random positives.
All values are reported as (yes-recall / no-recall), with parentheses
indicating the performance drop relative to the Random baseline.

B.3. Supplementary Experiments and Analysis1040

B.3.1. ORIC-Bench Ablation Study:1041

We follow the ORIC-Bench experiment settings, averag-1042
ing LVLM metrics over four prompts and using a default1043

prompt for detection models. Tab. 7 shows that both LLM- 1044
guided and CLIP-guided sampling increase question diffi- 1045
culty across four LVLMs and Grounding DINO Pro 1.5. 1046
LLM-guided sampling reduces yes-recall across all models, 1047
with Emu3 experiencing the largest drop (-18.50). Mean- 1048
while, CLIP-guided sampling significantly lowers no-recall, 1049
with the most notable decline observed in DINO 1.5 Pro (- 1050
32.45). These results suggest that both positive and neg- 1051
ative question constructions introduce challenges, though 1052
their effects differ. Notably, no-recall declines more sharply 1053
in most models. This discrepancy arises because positive 1054
questions reference real objects, aiding recognition even in 1055
incongruous backgrounds, whereas negative questions in- 1056
volve absent objects, leading models to over-rely on back- 1057
ground context and hallucinate in congruous settings. 1058

B.3.2. Full Results of Comparison between POPE and 1059
ORIC 1060

Tab. 8 presents a comparative analysis of POPE and ORIC- 1061
Bench across 19 LVLMs and 2 open-vocabulary detection 1062
models. Notably, the macro F1 scores of Llama-3.2-11B- 1063
Vision, Chameleon-7B, BLIP-3, and VILA1.5-3B in POPE 1064
are comparable to or even exceed those in ORIC-Bench. 1065
A potential explanation is that these models exhibit a high 1066
proportion of “yes” responses in both benchmarks, suggest- 1067
ing a tendency to answer affirmatively regardless of con- 1068
text. This behavior indicates limited object recognition ca- 1069
pabilities, as their responses remain consistent across differ- 1070
ent evaluation settings. Furthermore, the macro precision 1071
and recall of other models in ORIC-Bench are significantly 1072
lower than in POPE, leading to a sharp decline in macro F1 1073
scores. This suggests that ORIC-Bench presents a greater 1074
challenge for all tested LVLMs, highlighting their struggles 1075
with object recognition, particularly when considering con- 1076
textual incongruity. 1077
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Figure 10. Object Size Distribution across POPE, ORIC-
Bench, and COCO. Percentage distribution of small (< 24× 24
pt2), medium (24×24–96×96 pt2), and large (≥ 96×96 pt2) ob-
jects in the POPE, ORIC-Bench, and COCO datasets, highlighting
ORIC-Bench’s deliberate shift toward smaller and medium object
scales.
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Model POPE ORIC-Bench

Precision Recall F1 Score YP (%) Precision Recall F1 Score YP (%)

Closed-source
GPT-5-2025-08-07 89.06 88.60 88.56 44.62 79.50 78.75 78.61 42.12

Encoder-based
Llama-3.2-11B-Vision 25.00 50.00 33.33 0.00 25.00 50.00 33.33 0.00

Chameleon-7B 47.08 50.01 33.95 99.29 59.75 50.10 34.08 99.28
BLIP-3 36.20 44.88 37.29 80.30 43.14 49.86 42.99 81.54

VILA1.5-13B 60.87 59.92 57.49 36.80 65.19 62.40 60.41 28.95
GLM-4v-9B 86.55 84.12 83.85 37.30 71.18 64.92 61.99 23.32

Phi-3.5-Vision-Instruct 86.76 86.28 86.23 44.35 68.69 68.06 67.79 40.86
InternLM-XComposer2.5-7B 84.72 83.16 82.98 39.84 73.32 70.35 69.33 33.77

SmolVLM2-2.2B-Instruct 87.57 86.89 86.83 43.56 72.87 71.44 70.95 38.01
Kimi-VL-A3B-Instruct 88.91 87.69 87.59 41.19 74.67 72.28 71.58 34.45

Molmo-7B-D-0924 83.76 81.45 81.03 61.42 78.92 73.74 71.95 69.34
LLaVA-v1.6-Vicuna-13B 88.24 88.14 88.13 51.39 75.29 74.56 74.37 56.94

Janus-Pro-7B 87.32 87.03 87.00 50.65 76.60 75.22 74.83 56.42
InternVL3-9B 88.8 88.69 88.68 47.96 77.33 76.95 76.87 44.60

Qwen3-VL-8B-Instruct 88.13 88.04 88.03 47.66 79.93 79.61 79.55 44.94
Encoder-free

Fuyu-8B 68.39 53.47 40.48 95.70 44.83 50.16 34.16 99.29
EVE-7B-HD-v1.0 82.19 79.81 79.34 61.36 61.02 56.42 51.59 76.53

Emu3-Chat 87.43 86.72 86.66 43.25 67.74 65.79 64.78 33.41
Open-vocabulary Detection

OWLv2 86.74 86.55 86.53 53.55 73.02 72.25 72.02 40.85
Grounding DINO 1.5 Pro 85.62 85.05 84.99 56.35 77.02 73.40 72.48 68.30

Table 8. Full Model Performance Comparison: POPE vs. ORIC. The table compares POPE and ORIC across various model categories:
closed-source, encoder-based, encoder-free, and open-vocabulary detection models. Performance is evaluated using macro precision, recall,
and F1 score. The yes proportion (YP (%)) indicates the percentage of ”yes” predictions. “Prec.” denotes precision, “Rec.” denotes recall,
and “F1.” denotes the F1 score. All values are averaged across four prompts, except for detection models, which use a single prompt
without averaging.

B.3.3. Comparison of Object Size Distribution between1078
POPE, ORIC-Bench, and COCO:1079

Fig. 10 compares the proportions of small (< 24× 24 pt2),1080
medium (24×24–96×96 pt2), and large (≥ 96×96 pt2) ob-1081
jects in POPE, ORIC-Bench, and COCO. In ORIC-Bench,1082
small objects are the single largest category at 44.8%—yet1083
they do not constitute a majority: medium objects follow1084
closely at 41.2%, while large objects still make up a sub-1085
stantial 14.0%. Relative to POPE (27.6% small, 34.9%1086
medium, 37.4% large) and COCO (41.3% small, 34.2%1087
medium, 24.4% large), ORIC-Bench deliberately boosts the1088
share of small and medium instances at the expense of large1089
ones. This design amplifies the need for fine-grained recog-1090
nition and scale-robust feature extraction in the face of con-1091
text incongruity, while still retaining a substantial number1092
of medium and large objects to ensure the benchmark is not1093
solely focused on small instances and can assess model per-1094
formance across the full spectrum of object scales.1095

C. Visual-RFT Experimental Details 1096

C.1. Visual-RFT Training Hyper-parameters 1097

Tab. 9 lists the full set of hyper-parameters used in our 1098
Visual-RFT training. We include all optimization, sam- 1099
pling, and generation settings to ensure complete repro- 1100
ducibility. 1101

C.2. R1-Style Prompt for Reinforcement Fine- 1102
Tuning 1103

Fig. 11 shows the R1-style prompt used in our reinforce- 1104
ment fine-tuning (RFT) experiments. An example of a spe- 1105
cific question is: ”Is there a cat in the image?”. 1106

C.3. Zero-Shot CoT Prompt of LVLMs: 1107

Fig. 12 shows the zero-shot CoT prompt for LVLMs. An 1108
example of a specific question is: ”Is there a person in the 1109
image?”. 1110
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Hyper-parameter Configuration

VLM Init Qwen3-VL-8B-Instruct
KL Penalty (β) 0
Optimizer AdamW
Learning Rate 2× 10−6

Clipping Range ϵ 0.2
LR Scheduler Cosine
Weight Decay 0
Precision BF16
Gradient Clipping 1.0
Per-device Batch Size 1
Gradient Accumulation 4
Rollout Temperature 0.7
Rollout Top-p 0.8
Rollout Top-k 20
Group Size G 8
Max Prompt Length 1024
Max Completion Length 256
Epochs 15
GPUs 4× NVIDIA H100 80GB

Table 9. Training Configuration. Key hyper-parameters for
GRPO-based Visual-RFT of Qwen3-VL-8B-Instruct.

R1-Style Prompt for Visual RFT

<image>
Prompt: Is there a/an {object} in the image?
Please first provide your reasoning or working out
on how you would go about solving the question
between <REASONING> and </REASONING>
and then your final answer between <SOLUTION>
and (put yes or no here) </SOLUTION>.

Figure 11. The R1-style prompt used for reinforce-
ment fine-tuning. The prompt elicits explicit reasoning
(<REASONING>...</REASONING>) and a verifiable final an-
swer (<SOLUTION>...</SOLUTION>) to enable reward eval-
uation.

Zero-Shot CoT of LVLMs

<image>
Question: {question}
Let’s think step-by-step and then answer the ques-
tion based on the given image.

Figure 12. The zero-shot CoT Prompt of LVLMs. The prompt
of a binary classification task for LVLMs using zero-shot CoT
prompting strategy.

D. CLIPScore as a Proxy for Contextual Align- 1111

ment 1112

While CLIPScore is not a perfect object detector and 1113
has known limitations in capturing compositional seman- 1114
tics [32, 80], we use it solely as an external probe to assess 1115
the contextual alignment of replaced objects. Specifically, 1116
CLIP-guided sampling is applied only to “no”-label cases 1117
to select ground-truth nonexistent yet contextually plausible 1118
objects with higher CLIPScores, thereby constructing more 1119
challenging negatives. Our ablation study B.3 confirms this 1120
strategy by showing a significant reduction in negative re- 1121
call, indicating increased contextual incongruity. 1122

Importantly, CLIPScore is never used for model evalua- 1123
tion but serves as a heuristic signal of object–context com- 1124
patibility. To ensure robustness, we validate our findings 1125
across three independent CLIP variants in A.3, all consis- 1126
tently showing that ORIC “yes” or “no” pairs exhibit higher 1127
visual similarity than those in POPE, thus increasing task 1128
difficulty. While CLIP’s co-occurrence bias may contribute 1129
to high scores for out-of-context objects, we argue this re- 1130
flects its tendency to associate such objects with plausi- 1131
ble scenes—precisely the kind of confounding signal our 1132
benchmark targets. Despite its limitations, CLIPScore re- 1133
mains a useful proxy for semantic alignment, as supported 1134
by recent work [29, 74]. 1135

E. Visualization of ORIC Examples 1136

E.1. Error Questions from Human Evaluation 1137

Fig. 13 presents six error cases from 300 sampled ques- 1138
tions (150 “yes” and 150 “no” labels) in ORIC using the 1139
MSCOCO dataset. We assess two key aspects: accurate ob- 1140
ject labeling and the appropriateness of visual backgrounds, 1141
ensuring incongruous context in both “yes” and “no” ques- 1142
tions. The identified errors fall into two categories: 1143
• Inaccurate Object Labeling: The presence of objects 1144

does not match the actual image content due to errors in 1145
human annotation within the MSCOCO dataset. 1146

• Not Causing the Incongruous Context: In “yes”-label 1147
questions, the visual context aligns with the target ob- 1148
ject, making the questions less challenging. In “no”-label 1149
questions, the visual context does not create incongruity 1150
for the nonexistent object. 1151

E.2. ORIC Question Examples 1152

Fig. 14 presents various examples from ORIC. In “yes”- 1153
label and “no”-label questions, visual contexts are incon- 1154
gruous with the question-related objects. Our LLM-guided 1155
and CLIP-guided sampling method effectively generates 1156
challenging questions considering contextual incongruity. 1157
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Model Overall Label Yes Label No

Pre. Rec. F1 YP (%) Pre. Rec. F1 Pre. Rec. F1

Closed-source
GPT-5-2025-08-07 79.50 78.75 78.61 42.12 84.14 70.88 76.92 71.84 88.62 79.35

Vision-encoder-based
Llama-3.2-11B-Vision 25.00 50.00 33.33 0.00 0.00 0.00 0.00 50.00 100.00 66.67

Chameleon-7B 59.75 50.10 34.08 99.28 50.05 99.38 66.57 69.45 0.82 1.59
BLIP-3 43.14 49.86 42.99 81.54 45.36 51.22 47.02 40.92 48.50 38.96

VILA1.5-13B 65.19 62.40 60.41 28.95 71.44 41.35 51.86 58.92 83.45 68.96
GLM-4v-9B 71.18 64.92 61.99 23.32 82.41 38.25 51.61 59.94 91.60 72.35

Phi-3.5-Vision-Instruct 68.69 68.06 67.79 40.86 72.12 58.92 64.85 65.27 77.20 70.73
InternLM-XComposer2.5-7B 73.32 70.35 69.33 33.77 80.96 54.12 64.17 65.67 86.58 74.49

SmolVLM2-2.2B-Instruct 72.87 71.44 70.95 38.01 78.30 59.45 67.38 67.44 83.42 74.52
Kimi-VL-A3B-Instruct 74.67 72.28 71.58 34.45 82.32 56.73 67.13 67.02 87.83 76.02

Molmo-7B-D-0924 78.92 73.74 71.95 69.34 68.22 93.08 76.61 89.62 54.40 65.59
LLaVA-v1.6-Vicuna-13B 75.29 74.56 74.37 56.94 71.76 81.50 76.19 78.82 67.62 72.55

Janus-Pro-7B 76.60 75.22 74.83 56.42 73.30 81.65 76.71 79.90 68.80 72.95
InternVL3-9B 77.33 76.95 76.87 44.60 80.27 71.55 75.60 74.39 82.35 78.13

Qwen3-VL-8B-Instruct 79.93 79.61 79.55 44.94 82.96 74.55 78.51 76.91 84.68 80.59
Vision-encoder-free

Fuyu-8B 44.83 50.16 34.16 99.29 50.08 99.45 66.61 39.59 0.88 1.71
EVE-7B-HD-v1.0 61.02 56.42 51.59 76.53 54.82 82.95 65.27 67.22 29.90 37.90

Emu3-Chat 67.74 65.79 64.78 33.41 73.58 49.20 58.90 61.91 82.38 70.67
Open-vocabulary Detection

OWLv2 73.02 72.25 72.02 40.85 77.23 63.10 69.46 68.81 81.40 74.58
Grounding DINO 1.5 Pro 77.02 73.40 72.48 68.30 67.13 91.70 77.51 86.91 55.10 67.44

Table 10. Full Experimental Results on ORIC-Bench. Performance is broken down by model category and label type (Yes/No). We
report macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over
four prompts, while detection models use a single prompt.
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POPE: Is there a mouse in the image? 

Label : No

Inaccurate Object Labeling: The keyboard is 

present while labeling errors.

Question: Is there a mouse in the image? 

Label: Yes

Not Causing The Incongruous Context: The 

office area provides a congruous context for a 

mouse.

Question: Is there a remote in the image? 

Label: Yes

Not Causing The Incongruous Context: The 

conference room provides a congruous context 

for a remote.

Question: Is there a bed in the image? 

Label: No

Not Causing The Incongruous Context: The 

living room doesn’t provide an incongruous 

context for a nonexistent bed.

Question: Is there a skateboard in the image? 

Label: Yes

Not Causing The Incongruous Context: The 

skatepark doesn’t provide an incongruous 

context for a nonexistent skateboard.

Question: Is there an orange in the image? 

Label: No

Not Causing The Incongruous Context: The 

tennis court doesn’t provide an incongruous 

context for a nonexistent orange .

Figure 13. Error Examples of ORIC from Human Evaluation. There are six error cases among the 300 sampled questions in ORIC using
the MSCOCO dataset, resulting in an error rate of 2%. These errors can be classified into two categories. Inaccurate Object Labeling
occurs when the labeled object’s presence does not match the actual content of the image. Not Causing the Incongruous Background
includes cases where the visual context aligns with an existent object in a “yes”-label question or does not introduce incongruity for a
nonexistent object in a “no”-label question.
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Question: Is there a baseball bat in the image? 

Question: Is there a book in the image? Question: Is there an umbrella in the image? 

Question: Is there a dining table in the image? 

Question: Is there a cat in the image? 

Question: Is there a sports ball in the image? Question: Is there a parking meter in the image? 

Question: Is there a suitcase in the image? Yes Label

No Label

Question: Is there a sports ball in the image? 

Question: Is there a stop sign in the image? Question: Is there a snowboard in the image? Question: Is there a refrigerator in the image? 

Question: Is there a bicycle in the image? Question: Is there a cell phone in the image? Question: Is there a potted plant in the image? 

Question: Is there a cow in the image? 

Figure 14. Question Examples of ORIC. The figure shows sampled question examples from ORIC using the MSCOCO dataset. The first
and second rows contain questions labeled “yes,” while the third and fourth rows contain questions labeled ”no.” The red box highlights
the bounding boxes of existing objects in “yes”-label questions.
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