

ORIC: Benchmarking Object Recognition under Contextual Incongruity in Large Vision-Language Models

Anonymous CVPR submission

Paper ID ***

Abstract

Large Vision-Language Models (LVLMs) excel at captioning, visual question answering, and robotics by combining vision and language, yet they often miss obvious objects or hallucinate nonexistent ones in atypical scenes. We examine these failures through the lens of uncertainty, focusing on contextual incongruity, where objects appear unexpectedly or fail to appear in expected contexts, and show that such cases increase recognition difficulty for state-of-the-art LVLMs. To study this regime, we introduce the **Object Recognition in Incongruous Context (ORIC)** framework, which constructs incongruous object-context pairs through two complementary strategies: (1) **LLM-guided sampling** to identify hard-to-recognize objects present in the image and (2) **CLIP-guided sampling** to mine plausible but absent ones. Applied to MSCOCO, ORIC produces ORIC-Bench and ORIC-style training data. Evaluating 18 LVLMs and 2 open-vocabulary detectors reveals substantial performance drops and bias patterns under incongruous contexts. Fine-tuning Qwen3-VL-8B-Instruct with Visual Reinforcement Fine-Tuning on 600 ORIC-style samples improves results on ORIC-Bench, AMBER, and HallusionBench. Overall, we show that contextual incongruity is a key source of uncertainty and provide tools for more reliable LVLMs.

1. Introduction

Large Vision-Language Models (LVLMs) have achieved remarkable progress across image captioning [16], visual question answering (VQA) [60], robotics [22], and embodied AI [73], driven by their ability to integrate visual and textual modalities. A core skill underlying these advances is accurate object recognition [12], essential for reliable perception and high-level reasoning [83]. However, despite strong benchmark scores, LVLMs remain vulnerable to two key failures: (1) **object misidentification**, where existing objects are missed [49]; and (2) **object hallucination**, where nonexistent objects are falsely recognized [15, 58],

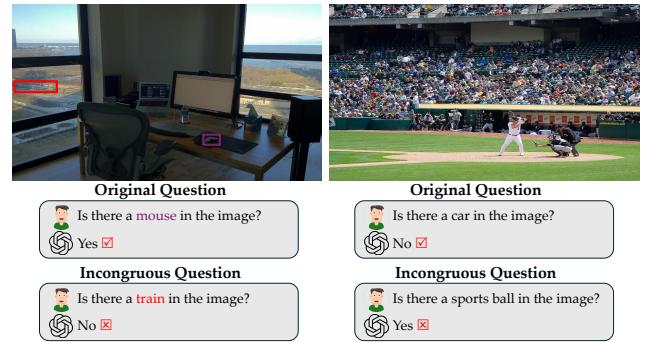


Figure 1. **Contextual Incongruity Leads to Recognition Failures.** This figure illustrates how incongruous contexts cause two primary errors: misidentification of present objects and hallucination of absent ones. **Left (Misidentification):** In an office, GPT-5 identifies the expected “mouse” (purple) but fails to recognize the out-of-context “train” (red). **Right (Hallucination):** On a baseball court, the model correctly denies an unrelated “car” but hallucinates a plausible yet non-existent “sports ball.”

which undermine downstream reliability [20, 36]. A particularly challenging regime that amplifies these issues is **contextual incongruity**, where objects appear in unexpected settings or are absent from expected ones. Under such conditions, LVLMs often misread visual evidence, either overlooking valid objects or hallucinating contextually plausible ones. For instance, as shown in the left side of Fig. 1, GPT-5 [53] correctly identifies a mouse but fails to recognize a prominent train in an office; in the right side of Fig. 1, it correctly denies a car but hallucinates a sports ball on a baseball field. These observations echo cognitive findings that unexpected contexts disrupt recognition [30, 54, 70].

Recent theory attributes language model errors to learning under uncertainty with binary scoring, which rewards guessing over abstaining [31]. In our setting, answering a binary existence question can be formalized as estimating $P(a | q, I)$, where $a \in \{\text{yes}, \text{no}\}$, q denotes the question, and $I = (\text{ROI}, \text{context})$ represents the image composed of a ROI containing the queried object and its surrounding scene. As illustrated in the left side of Fig. 1, the train area serves as the ROI, while the office environment represents

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056

057 the context. When evidence from the ROI is weak, contextual priors $P(a | q, \text{context})$ tend to dominate the inference. 058 If the context strongly implies that an object should exist 059 (e.g., a sports ball on a baseball field), the model is biased 060 toward answering “yes,” resulting in hallucinations. 061 Conversely, when the context implies that the object is unlikely 062 to appear (e.g., a train in an office), the model confidently 063 predicts “no,” causing misidentification. In both scenarios, 064 contextual incongruity heightens uncertainty by opposing 065 weak local evidence with strong scene-level priors, leading 066 to recognition errors. 067

068 From this uncertainty perspective, existing benchmarks 069 mainly target other sources while keeping object-context 070 consistency. POPE [35] tests recognition under strong 071 statistical or textual priors. AMBER [66] evaluates discriminative 072 tasks involving object existence, attributes, and 073 relations. HallusionBench [24] examines visual-dependent 074 questions that require image context, such as visual illusions 075 and figures. However, across these benchmarks, queried 076 objects remain context-consistent with their scenes, leaving 077 the high-uncertainty regime where weak local evidence 078 opposes strong contextual priors largely unexplored.

079 Motivated by this gap, we systematically examine how 080 contextual incongruity affects object recognition in LVLMs. 081 To analyze this effect under controlled conditions, we introduce 082 the **Object Recognition in Incongruous Context (ORIC) framework**, 083 which constructs incongruous object-context pairs for both 084 evaluation and training. ORIC integrates two complementary 085 strategies: (1) *LLM-guided sampling*, where GPT-5 identifies 086 existing objects that are difficult to recognize in atypical 087 contexts; and (2) *CLIP-guided sampling*, where CLIP [56] mines 088 plausible yet nonexistent objects. Applied to the MSCOCO validation 089 set, ORIC produces a balanced binary benchmark, **ORIC-Bench**, 090 while applying the same pipeline to the training split yields 091 ORIC-style samples. Evaluating 18 LVLMs and two 092 open-vocabulary detectors on **ORIC-Bench** reveals that 093 even top-performing models on standard benchmarks fail 094 under contextual incongruity, exposing persistent recognition 095 gaps. To mitigate these uncertainty-driven errors, we 096 fine-tune Qwen3-VL-8B-Instruct [3, 4] using Visual Reinforcement 097 Fine-Tuning (Visual-RFT) [44] on 600 ORIC-style samples, 098 improving performance on not only ORIC, 099 but also AMBER and HallusionBench, with responses more 100 aligned with human reasoning. Overall, our main contributions 101 are:

- **Problem Identification.** We identify *contextual incongruity* as an overlooked cause of visual uncertainty in LVLMs, which degrades recognition performance.
- **ORIC Framework.** We introduce ORIC, which builds incongruous object-context pairs via LLM- and CLIP-guided sampling for evaluation and training.
- **Model Evaluation.** We test 18 LVLMs and 2 detectors on

Figure 2. **Comparison of POPE and Incongruous Context Questions.** Both examples use the same image but differ in target objects. **Left:** In a baseball field, POPE targets a baseball bat (purple), while ours targets a large vehicle (red), which is less related to the scene and thus more incongruous. Both labels are “yes.” **Right:** In a rural scene with a cow, POPE targets a truck, while our question targets a sheep—more contextually plausible but still absent, increasing incongruity. Both labels are “no.”

ORIC, showing that the task is difficult and reveals clear bias patterns.

- **ORIC-driven Uncertainty Mitigation.** Visual-RFT of Qwen3-VL-8B-Instruct on ORIC-style data lowers uncertainty-driven errors and yields more human-aligned performance across benchmarks.

2. Contextual Incongruity and Uncertainty

This section examines how contextual incongruity affects object recognition under uncertainty and provides empirical evidence that it significantly degrades model performance.

2.1. Theoretical Formulation

Mentioned on Sec. 1, answering a binary existence query is estimating $P(a | q, I)$ for $a \in \{\text{yes, no}\}$, with the image represented as $I = (\text{ROI, context})$. Let o be the queried object class and c the scene context (e.g., *baseball field*, *office*). Training data induce a joint $P(o, c)$ over object-context pairs. Existing benchmarks mostly sample head regions of this distribution, where pairs are frequent and consistent; both $P(a_{\text{gt}} | q, \text{ROI})$ and $P(a_{\text{gt}} | q, \text{context})$ are high for the ground-truth a_{gt} , yielding low uncertainty and allowing co-occurrence heuristics to perform well.

However, we focus on the *high-uncertainty regime* induced by contextual incongruity, where ROI evidence and contextual priors disagree. Typical examples include an unusual object in a familiar scene (e.g., a train in an office) or a missing object that the scene strongly suggests (e.g., no ball on a baseball field). In such cases, the posterior based on the ROI alone is diffuse, with $P(\text{yes} | q, \text{ROI})$ and $P(\text{no} | q, \text{ROI})$ being similar in magnitude, while the context strongly favors one of them. Theory [31] suggests that binary supervision rewarding guesses drives models toward contextual priors instead of uncertainty, causing hallucinations of plausible objects or overconfident rejections in incongruous contexts.

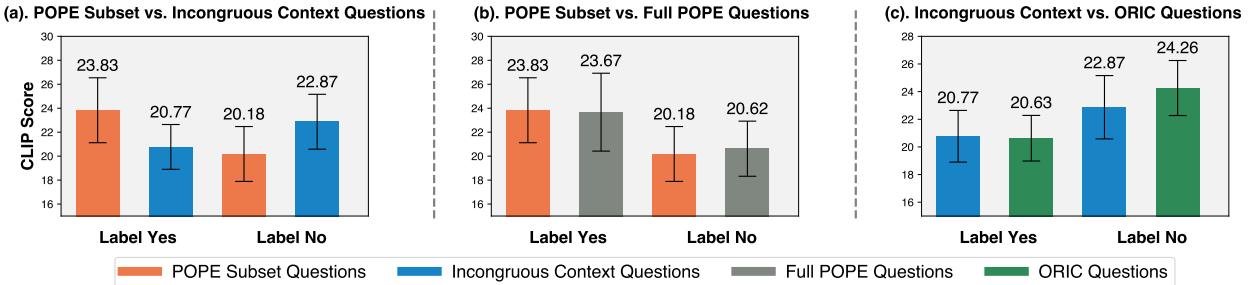


Figure 3. **Object-Context Congruity via CLIPScore.** CLIPScore quantifies alignment between queried objects and scene context. (a) For “yes” questions, POPE subset yields higher scores than incongruous variants (23.83 vs. 20.77); for “no” questions, the reverse holds (22.87 vs. 20.18), indicating stronger misleading cues. (b) The sampled POPE subset shows consistent CLIPScore distribution with the full dataset, confirming its representativeness. (c) ORIC questions exhibit even higher incongruity (e.g., 24.26 for “no”), reinforcing the contextual challenge. Subplots (a) and (c) share images but differ in queried objects. Error bars show 95% confidence intervals.

144

2.2. Empirical Analysis of Contextual Incongruity

145

To assess how contextual incongruity affects LVLMs, we conduct a controlled study based on the POPE benchmark [35]. We sample 25 “yes” and 25 “no” context-consistent questions, then keep each image and label fixed while replacing the queried object, creating paired context-incongruous questions. For example, in the left side of Fig. 2, the baseball-field question “Is there a baseball bat in the image?” is changed to “Is there a vehicle in the image?”. In the right side of Fig. 2, the rural-scene question “Is there a truck in the image?” becomes “Is there a sheep in the image?” even though the image contains only a cow. We evaluate four representative LVLMs including GPT-5-08-07 [28], Janus-Pro-7B [10], InternVL3-9B [85], and Qwen3-VL-8B-Instruct using macro accuracy, precision, recall, and F1 (see formulas in Appendix A.4).

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

breaking object–context compatibility.

To quantify how our modifications alter object–background associations, we further analyze CLIPScores between each image and the textual description of the queried object. Given an image I and a question-related object name O , we use CLIP [56] to extract visual and textual embeddings $f_I, f_O \in \mathbb{R}^d$, normalize them as $\hat{f}_I = f_I / \|f_I\|$ and $\hat{f}_O = f_O / \|f_O\|$, and compute

$$\text{CLIPScore}(I, O) = \hat{f}_I^\top \hat{f}_O = \frac{\hat{f}_I^\top \hat{f}_O}{\|\hat{f}_I\| \|\hat{f}_O\|} \times 100. \quad (1)$$

Fig. 3(a) plots CLIPScores for 50 pairs of original and context-incongruous questions. For “yes” questions, original objects show a higher mean score (23.83) than their incongruous replacements (20.77), indicating weaker contextual alignment. For “no” questions, the trend reverses: context-incongruous objects score higher (22.87 vs. 20.18), suggesting that the background strongly implies the presence of objects that are actually absent. The middle subplot in Fig. 3(b) exhibits the same patterns as the full benchmark, confirming that our subset is representative. Together, these results show that contextual incongruity creates a high-uncertainty regime for LVLMs, where models that perform reliably on standard questions experience substantial accuracy drops. This motivates ORIC as a framework that systematically constructs data with incongruous context for both evaluation and training.

3. The ORIC Framework

This section introduces ORIC, which generates object-recognition questions under contextual incongruity, each framed as a binary “yes” or “no” label of object presence.

3.1. ORIC Construction Method

Positive Questions (Existing Objects): Contextual incongruity arises when objects appear in unexpected settings, creating high uncertainty. Therefore, our objective is to generate questions that deliberately minimize

160

195

161

196

162

197

163

198

164

199

165

200

166

201

167

202

168

Table 1 reports results on the original context-consistent questions and their context-incongruous counterparts. All four models achieve near-perfect performance on the original subset (macro F1 between 96.0 and 100.0), indicating that these questions are easy for current LVLMs. However, macro F1 drops dramatically to around 60 on the incongruous questions, despite the images being identical. This sharp degradation cannot be attributed to low-level visual difficulty and instead points to failures induced purely by

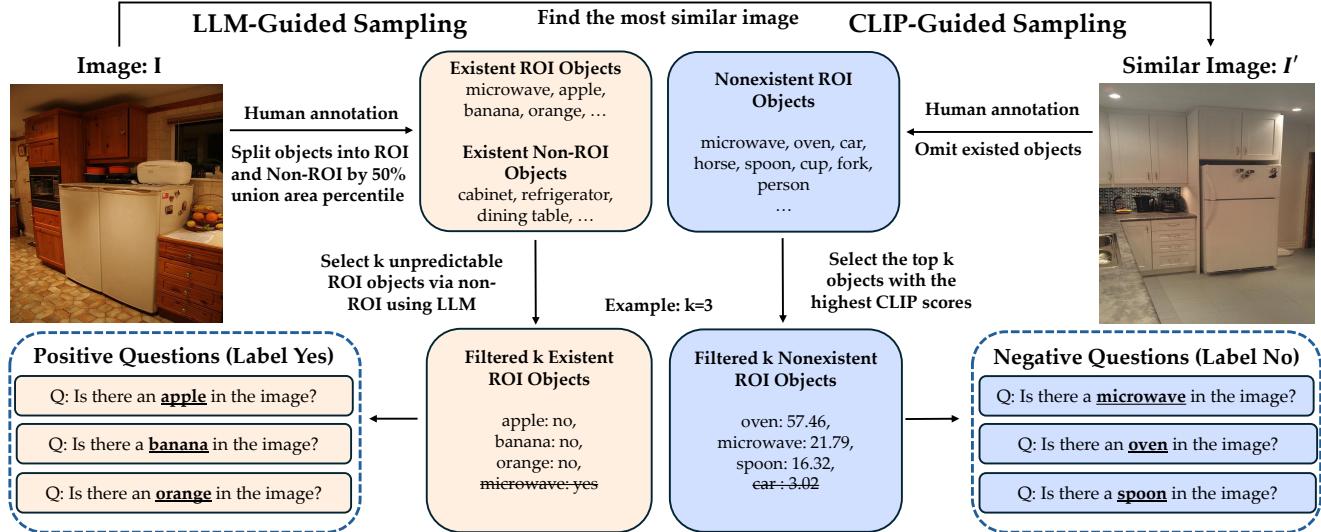


Figure 4. **ORIC Method Overview.** This figure shows two construction methods of the ORIC. **LLM-Guided Sampling (Positive Question Construction):** First, given an image I , objects are classified as ROI if their combined bounding box area is under 50%; otherwise, they are non-ROI. Next, we query the LLM (GPT-5) with textual categories of non-ROI objects to predict the existence of each ROI object based on common sense and co-occurrence. Finally, we select the top k unpredictable ROI objects (e.g., $k = 3$) for which the LLM predicts “no” (e.g., apple, banana, and orange). **CLIP-Guided Sampling (Negative Question Construction):** A similar image I' is identified using cosine distance from I . We then compute the CLIPScore for each nonexistent ROI object against I' and select the top k nonexistent ROI objects based on their scores. For example, the top three are an oven (57.46), a microwave (21.79), and a spoon (16.32).

Category	HallusionBench	POPE	MM-Vet v2	AMBER	Hallu-PI	ORIC-Bench
Image Count	346	500	517	1k	1.2k	1k
Contextual Incongruity	\times	\times	\times	\times	\times	\checkmark
Missed / Hallucinated Recognition	Hallucinated only	Both	Both	Both	Hallucinated only	Both

Table 2. **Benchmark Comparison.** Benchmarks compared by image count, contextual incongruity, and error types.

background-object associations, utilizing **LLM-guided sampling**. We define the objects targeted for recognition as ROI, while background contexts consist of non-ROI elements. Formally, as illustrated on the left side of Fig. 4, given an image I containing objects $\mathcal{O} = \{o_i = (n_i, \{B_{ij}\}_{j=1}^{m_i}\}_{i=1}^N$, where n_i is the object’s name and B_{ij} denotes the j -th bounding box associated with object o_i , we categorize objects into ROI and non-ROI based on their bounding box coverage. We then select k ROI objects as positive question candidates, where k is the desired number of selected objects. The total area covered by each object’s bounding boxes is calculated as:

$$A_i = \text{area}\left(\bigcup_{j=1}^{m_i} B_{ij}\right), \quad (2)$$

where the function $\text{area}(\cdot)$ computes pixel area, and then we split \mathcal{O} into two disjoint sets based on the 50th percentile: $\mathcal{O}_{\text{ROI}} = \{o_{(i)} \mid A_{(i)} < M_{50}(A)\}$ and $\mathcal{O}_{\text{nonROI}} = \{o_{(i)} \mid A_{(i)} \geq M_{50}(A)\}$, where $M_{50}(A)$ denotes the median area of the union of bounding boxes (i.e., the 50th-percentile area of the union of bounding boxes among all objects). We then use GPT-5 to filter ROI candidates. Specifically, the

LLM is queried to determine whether each ROI object is logically consistent with the provided non-ROI object categories. The verification function is defined as:

$$f(o) = \begin{cases} 1, & \text{if } \text{LLM}(o, \mathcal{O}_{\text{nonROI}}) = \text{"no"}, \\ 0, & \text{otherwise.} \end{cases} \quad (3)$$

The function $\text{LLM}(o, \mathcal{O}_{\text{nonROI}})$ returns “no” if the ROI object is unexpected based on common sense and typical co-occurrence. Objects receiving a “no” from GPT-5 form the positive candidate set \mathcal{C} . Positive questions are generated by randomly selecting k objects from \mathcal{C} . For detailed pseudocode and prompts, refer to Appendix A.1.

Negative Questions (Nonexistent Objects): LVLMs often hallucinate objects when strong contextual cues make nonexistent items seem plausible, reflecting the high uncertainty created by incongruous contexts. Therefore, our goal is to generate questions that enhance the correlation between nonexistent ROI objects and non-ROI elements by leveraging **CLIP-guided sampling**. As depicted on the right side of Fig. 4, we first identify the most visually similar image I' to a query image I using the CLIP model’s

242 image encoder, which helps curate a more diverse set of re-
 243 tried images. Formally, given images $\{I_1, \dots, I_n\}$ and a
 244 query image I_q , visual embeddings are extracted via ViT:
 245 $e = ViT(I)$. The image similarity is measured using co-
 246 sine distance:

$$247 D(I_q, I_i) = 1 - \frac{\mathbf{e}_q \cdot \mathbf{e}_i}{\|\mathbf{e}_q\| \|\mathbf{e}_i\|}, \quad (4)$$

248 where \mathbf{e}_q and \mathbf{e}_i represent embeddings of image I_q and I_i ,
 249 respectively. The most similar image I' minimizes this dis-
 250 tance. Next, given the most similar image I' and a set of
 251 nonexistent ROI objects $\mathcal{O}_{\text{non}} = \{n_i\}_{i=1}^M$, where n_i rep-
 252 presents an individual nonexistent ROI object and M is the
 253 total number of nonexistent ROI objects considered in the
 254 set \mathcal{O}_{non} . For each n_i , a text description T_i is generated in
 255 the form of “*an image contains n_i .*” We compute the simi-
 256 larity score for each object as $s_i = \text{CLIPScore}(I', T_i)$. The
 257 objects are then sorted by s_i , and the top k nonexistent ROI
 258 objects are selected to form \mathcal{O}_{non} for negative question gen-
 259 eration. See Appendix A.2 for the detailed algorithm.

260 3.2. ORIC Statistics

261 **Human Evaluation:** We sampled 150 “yes” and 150
 262 “no” questions using ORIC framework and manually veri-
 263 fied (1) object labeling accuracy and (2) contextual incon-
 264 gruity. The low 2% error rate confirms the robustness of
 265 our pipeline. Appendix E.1 provides six error cases, and
 266 additional correct examples are shown in Appendix E.2.

267 **CLIPScore for ROI-Background Analysis:** We com-
 268 pared ORIC-generated questions with incongruous con-
 269 text questions in Sec. 2 using a CLIPScore-based method.
 270 Specifically, we generated 50 ORIC questions (25 for each
 271 label, “yes” and “no”) corresponding to the same images
 272 used in the previous incongruous context questions. As
 273 illustrated in Fig. 3(c), CLIP scores for “yes” questions
 274 were nearly identical between ORIC (20.77) and incongruous
 275 context questions (20.63), suggesting similar contextual
 276 alignment. However, for “no” questions, ORIC achieved
 277 higher CLIP scores (24.25 vs. 22.87), indicating a stronger
 278 correlation between the nonexistent object and the visual
 279 context, thereby creating a more incongruous context.

280 4. ORIC-Bench Experiments and Analysis

281 We evaluate 18 LVLMs and 2 open-vocabulary detectors on
 282 ORIC-Bench under contextual incongruity, analyzing per-
 283 formance, architecture, class bias, and object-size effects.
 284 The 11-LVLM summary is in Table 3, and the full 18-
 285 LVLM results are in Appendix Table 10. Ablations and
 286 POPE comparisons in Appendices B.3.1 and B.3.2 show
 287 that ORIC-Bench is more challenging and discriminative
 288 for LVLMs.

289 4.1. Experimental Setup

290 **ORIC-Bench Setup and Evaluated Models.** We eval-
 291 uate on ORIC-Bench, built with the ORIC using 1,000
 292 MSCOCO [40] validation images (avoiding leakage). Each
 293 image pair yields two present-object and two absent-object
 294 queries, resulting in 1,000 “yes” and 1,000 “no” questions.
 295 As shown in Table 2, ORIC-Bench uniquely introduces
 296 contextual incongruity and jointly tests both missed and
 297 hallucinated recognition. We evaluate 18 LVLMs (vision-
 298 encoder-based, vision-encoder-free, and closed-source) and
 299 2 open-vocabulary detectors (Grounding DINO 1.5 Pro [57]
 300 and OWLv2 [50]). Detailed model specifications are pro-
 301 vided in Appendix B.1.

302 **Evaluation Protocol and Metrics.** Ambiguous LVLM
 303 outputs are resolved using MMBench’s two-step match-
 304 ing [43]: we first heuristically extract explicit “yes” or “no”
 305 labels from each output; if none are found, GPT-5-08-07 is
 306 prompted with the question, answer options, and the raw
 307 response to infer the label. All experiments are conducted
 308 on a single NVIDIA H100 with temperature 0 and a 1,024-
 309 token limit. Each LVLM is tested under four prompts, and
 310 results are averaged. Detectors jointly process present and
 311 absent objects: a detection with confidence ≥ 0.25 counts
 312 as “yes,” otherwise “no.” We report the yes-predictions pro-
 313 portion (YP), macro precision, recall, and F1, as well as
 314 class-wise precision, recall, and F1 for yes and no. See Ap-
 315 pendix B.2 for prompt details and Appendix A.4 for metric
 316 details.

317 4.2. ORIC-Bench Results and Analysis

318 Table 3 presents the results of 11 LVLMs and 2 open-
 319 vocabulary detectors on ORIC-Bench. We analyze over-
 320 all performance, architectural differences, and the impact
 321 of contextual incongruity.

322 **Overall Performance:** Qwen3-VL-8B-Instruct achieves
 323 the highest overall F1 of 79.55, surpassing GPT-5 (78.61)
 324 and strong vision-encoder models like InternVL3-9B
 325 (76.87) and Janus-Pro-7B (74.83). Open-vocabulary de-
 326 tectors perform slightly lower but remain competitive, with
 327 Grounding DINO 1.5 Pro at 72.48 and OWLv2 at 72.02.
 328 Most models fall between 60 and 77 F1, highlighting
 329 benchmark difficulty. Llama-3.2-11B-Vision (33.33, YP =
 330 0.00%) shows extreme class bias, while GLM-4v-9B fa-
 331 vors precision (missed objects). Qwen3-VL-8B-Instruct
 332 also leads per-class F1 for Yes (78.51) and No (80.59) with
 333 balanced YP = 44.94%, whereas GPT-5 remains similarly
 334 balanced (Yes 76.92, No 79.35, YP = 42.12%). Despite
 335 potential data overlap, the 79.55 F1 ceiling shows LVLMs
 336 still struggle with incongruous cases.

337 **Model Architecture Comparison:** Vision-encoder-
 338 based LVLMs dominate overall, with Qwen3-VL-
 339 8B-Instruct (79.55 F1), InternVL3-9B (76.87), and

Model	Overall				Label Yes			Label No		
	Pre.	Rec.	F1	YP (%)	Pre.	Rec.	F1	Pre.	Rec.	F1
Closed-source										
GPT-5-2025-08-07 [53]	79.50	78.75	78.61	42.12	84.14	70.88	76.92	71.84	88.62	79.35
Vision-encoder-based										
Llama-3.2-11B-Vision [13]	25.00	50.00	33.33	0.00	0.00	0.00	0.00	50.00	100.00	66.67
VILA1.5-13B [39]	65.19	62.40	60.41	28.95	71.44	41.35	51.86	58.92	83.45	68.96
GLM-4v-9B [23]	71.18	64.92	61.99	23.32	82.41	38.25	51.61	59.94	91.60	72.35
Phi-3.5-Vision-Instruct [1]	68.69	68.06	67.79	40.86	72.12	58.92	64.85	65.27	77.20	70.73
LLaVA-v1.6-Vicuna-13B [42]	75.29	74.56	74.37	56.94	71.76	81.50	76.19	78.82	67.62	72.55
Janus-Pro-7B [10]	76.60	75.22	<u>74.83</u>	56.42	73.30	81.65	<u>76.71</u>	79.90	68.80	72.95
InternVL3-9B [85]	77.33	76.95	<u>76.87</u>	44.60	80.27	71.55	75.60	74.39	82.35	<u>78.13</u>
Qwen3-VL-8B-Instruct [3, 4]	79.93	79.61	79.55	44.94	82.96	74.55	78.51	76.91	84.68	80.59
Vision-encoder-free										
EVE-7B-HD-v1.0 [18]	61.02	56.42	<u>51.59</u>	76.53	54.82	82.95	<u>65.27</u>	67.22	29.90	<u>37.90</u>
Emu3-Chat [68]	67.74	65.79	64.78	33.41	73.58	49.20	58.90	61.91	82.38	70.67
Open-vocabulary Detection										
OWLv2 [50]	73.02	72.25	72.02	40.85	77.23	63.10	69.46	68.81	81.40	74.58
Grounding DINO 1.5 Pro [57]	77.02	73.40	72.48	68.30	67.13	91.70	77.51	86.91	55.10	67.44

Table 3. **Main Experimental Results on ORIC.** Performance is broken down by model category and label type (Yes/No). We report macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over four prompts, while detection models use a single prompt. Full metric definitions are in Appendix A.4.

340 Janus-Pro-7B (74.83) notably outperforming encoder-free
341 models, whose best, Emu3-Chat, reaches 64.78. The gap
342 stems from ViT-style encoders providing structured visual
343 features for fine-grained perception, whereas encoder-
344 free models using raw pixels remain fragile in complex
345 scenes. Among closed-source systems, GPT-5 (78.61)
346 trails Qwen3-VL-8B-Instruct by only 0.94 points, showing
347 open-source LVLMs can match or surpass proprietary
348 ones. Open-vocabulary detectors like Grounding DINO
349 1.5 Pro (72.48) and OWLv2 (72.02) lag further, as their
350 region-text alignment lacks holistic reasoning and explicit
351 modeling of object absence, leading to more hallucinations
352 in incongruous contexts.

Their high “no” recall (84.68, 82.35) and lower “yes” recall
358 suggest a preference for rejecting uncertainty over hallucinating
359 presence. GLM-4v-9B and VILA1.5-13B show the
360 opposite trend, underdetecting valid objects, while LLaVA-
361 1.6-Vicuna-13B maintains a more even trade-off. Among
362 detectors, Grounding DINO 1.5 Pro favors “yes” (recall
363 = 91.70, “no” recall = 55.10), whereas OWLv2 is more
364 balanced with the best “no” F1 (74.58). Overall, vision-
365 encoder LVLMs handle contextual incongruity best, though
366 a shared “yes”-conservatism bias reduces hallucinations but
367 limits true-positive sensitivity.

Model	POPE-Bench			ORIC		
	Small	Medium	Large	Small	Medium	Large
Emu3-Chat	68.22	80.97	94.19	38.73	56.61	71.99
GPT-5-2025-08-07	78.24	88.48	94.30	67.85	71.69	84.34
InternVL3-9B	82.29	90.43	96.34	63.63	77.61	86.45
Qwen3-VL-8B-Instruct	79.96	89.71	96.40	69.96	77.67	85.24

Table 4. **Recall by Object Size on POPE vs. ORIC.** We report the recall for questions labeled “yes” across small, medium, and large objects in both the POPE and ORIC datasets for three LVLMs, illustrating how object scale affects model performance.

353 **Influence of Incongruous Context (Class-Wise):** Models
354 exhibit distinct biases in incongruous contexts. Qwen3-
355 VL-8B-Instruct and InternVL3-9B maintain balanced
356 performance but lean conservative on “yes” predictions (YP ≈
357 45%), yielding higher “no” F1 scores of 80.59 and 78.13.

Performance Comparison Across Object Sizes: Using
369 COCO tiers—small ($< 24^2$ pt 2), medium (24^2 – 96^2 pt 2),
370 and large ($\geq 96^2$ pt 2)—we compare 1,000 “yes”-labeled
371 questions for POPE and ORIC-Bench. As shown in Table 4,
372 all four models show lower recall on ORIC-Bench across
373 sizes. Emu3-Chat drops most on small objects (68.22 →
374 38.73, −29.49), while GPT-5 is comparatively stable on
375 large ones (94.30 → 84.34, −9.96). The large–small gap
376 widens under incongruity for Emu3-Chat (25.97 → 33.26)
377 and InternVL3-9B (14.05 → 22.82), remains roughly un-
378 changed for GPT-5 (16.06 → 16.49), and slightly narrows
379 for Qwen3-VL-8B-Instruct (16.44 → 15.28). Thus, while
380 large objects remain easier, the consistent drop across all
381 sizes shows that contextual incongruity, rather than scale, is
382 the main source of uncertainty and performance drop.

Method	Overall				Label Yes			Label No		
	Precision	Recall	F1	YP (%)	Precision	Recall	F1	Precision	Recall	F1
(a) Standard ORIC-Bench Evaluation										
w 0-shot CoT	78.69	78.50	78.46	46.23	80.85	74.72	77.64	76.53	82.28	79.28
w/o 0-shot CoT	79.93	79.61	79.55	44.94	82.96	74.55	78.51	76.91	84.68	80.59
Visual-RFT	83.55	82.88	82.79	43.05	88.21	75.92	81.59	78.88	89.83	83.99
(b) Human-Labeled Ground Truth on ORIC-Bench										
w/o 0-shot CoT	78.70	78.63	78.63	47.14	79.73	76.52	78.08	77.69	80.75	79.17
Visual-RFT	84.03	83.64	83.62	44.72	87.36	78.54	82.71	80.70	88.75	84.53

Table 5. **Visual-RFT and Human-Referenced Results on ORIC-Bench.** (a) Standard evaluation comparing models with and without 0-shot CoT; (b) comparison against human-labeled ground truth. We report macro precision, recall, F1, and the proportion of “yes” predictions (YP). We find that visual-RFT produces outputs that better align with human thinking.

384

5. ORIC-driven Uncertainty Mitigation

385

Models trained on conventional data degrade on ORIC-Bench (macro-F1 79.55; Table 3). To mitigate these uncertainty-driven errors, we adopt Visual-RFT [44], which uses verifiable rewards to enforce evidence-grounded reasoning. We choose Visual-RFT over supervised fine-tuning because it is more data-efficient, more robust in few-sample regimes, and matches our ORIC setting, where rewards are naturally verifiable under the incongruous context.

393

We follow Visual-RFT [44], applying Group Relative Policy Optimization (GRPO) [59] to vision-language binary recognition with verifiable rewards. GRPO removes the PPO-style critic and compares candidates sampled from the same prompt, directly optimizing *relative* quality. Given a question q , we sample a group of G candidate responses $\{o_1, \dots, o_G\} \sim \pi_{\theta_{\text{old}}}(\cdot | q)$. Each sample receives two automatically checkable binary rewards: $r_{\text{acc}} \in \{0, 1\}$ for answer correctness and $r_{\text{fmt}} \in \{0, 1\}$ for format compliance (e.g., <REASONING>...<\REASONING><SOLUTION>...<\SOLUTION>). Then, we define the per-sample reward as $r_i = r_{\text{acc},i} + r_{\text{fmt},i}$. Let $\{r_j\}_{j=1}^G$ denote the rewards of all candidates in the group. Since raw rewards may vary in scale across samples, we normalize them within each group (z-score) with a small constant ε :

408

$$\hat{r}_i = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^G)}{\text{std}(\{r_j\}_{j=1}^G) + \varepsilon}. \quad (5)$$

409

As rewards are one-step, token-level advantages are constant within a sample: $\hat{A}_{i,t} = \hat{r}_i, \forall t$. With the per-token ratio $\rho_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t} | q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t} | q, o_{i,<t})}$ GRPO maximizes the clipped, KL-regularized objective:

410

$$J_{\text{GRPO}}(\theta) = \mathbb{E}_q \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \min \left(\rho_{i,t}(\theta), \text{clip}(\rho_{i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) \right) \hat{A}_{i,t} \right] - \beta D_{\text{KL}}(\pi_{\theta}(\cdot | q) \parallel \pi_{\text{ref}}(\cdot | q)) \quad (6)$$

413

where ε is the clipping parameter and β controls a KL penalty to a frozen reference policy π_{ref} . In practice, we minimize $L_{\text{GRPO}} = -J_{\text{GRPO}}$. We adopt an R1-style, tag-constrained prompt to elicit explicit reasoning and a verifiable “yes” or “no” answer.

6. Uncertainty Mitigation Experiments and Analysis

6.1. Experimental Setup

To mitigate uncertainty-driven misjudgment and to strengthen evidence-grounded reasoning through verifiable reward optimization, we employ Visual-RFT. Specifically, we fine-tune Qwen3-VL-8B-Instruct [3, 4] on 600 ORIC-style binary questions (300 “yes”-label and 300 “no”-label questions) generated from the COCO-2014 training split, while ORIC-Bench uses disjoint validation images. We perform full-parameter Visual-RFT for 15 epochs with a group size $G=8$ on $4 \times$ NVIDIA H100 GPUs using an R1-style tag-constrained prompt, which elicits explicit step-by-step reasoning and enforces verifiable yes/no outputs. Full hyper-parameters and prompts are provided in Appendix C. This setup enables reward signals based on reasoning correctness rather than label matching alone, reducing overreliance on uncertainty-driven errors. Inference follows the standard ORIC-Bench protocol, averaging predictions over four prompt variants.

Our baselines include the base model without 0-shot Chain-of-Thought (CoT) [69] and a 0-shot CoT variant using the prompt shown in Appendix Fig. 12. We further assess how Visual-RFT shifts predictions toward human-like behavior using a small human-labeled subset of ORIC-Bench, and additionally report results on HallusionBench and AMBER to show that its benefits generalize beyond ORIC-style data.

6.2. Results and Analysis on ORIC-Bench

Standard ORIC-Bench Evaluation. Table 5(a) shows that Visual-RFT consistently improves Qwen3-VL-8B-

450 Instruct, with or without 0-shot CoT. Macro F1 rises to
 451 **82.79** (from 78.46/79.55), with clear F1 and recall gains
 452 for both “yes” (78.51 → 81.59; 74.55 → 75.92) and
 453 “no” (80.59 → 83.99; 84.68 → 89.83) questions. The
 454 slight drop in YP further suggests fewer spurious positives.
 455 Overall, training on ORIC-style data with Visual-RFT miti-
 456 gates uncertainty-driven errors and strengthens LVLM per-
 457 formance under contextual incongruity.

458 **Comparison with Human Preferences.** To evaluate
 459 alignment with human reasoning, we annotate 200 ORIC-
 460 Bench questions (100 “yes”-label and 100 “no”-label ques-
 461 tions) as the alternative ground truth. As shown in
 462 Tab. 5(b), Visual-RFT improves macro F1 from 78.63 to
 463 **83.62**, indicating closer agreement with human judgments
 464 under ambiguous contexts. F1 increases for both labels
 465 (78.08→82.71 for “yes” and 79.17→84.53 for “no”), with
 466 particularly strong gains on “no” questions, where recall
 467 rises from 80.75 to 88.75. This shows that training on
 468 ORIC-style data with Visual-RFT reduces missed negatives
 469 and better aligns model predictions with human patterns.

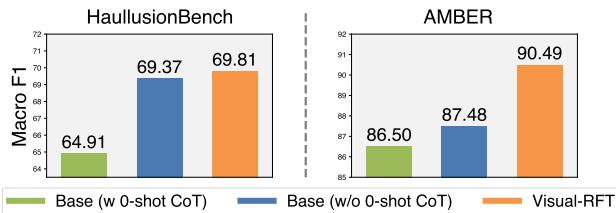


Figure 5. **Performance across Benchmarks.** Macro F1 on HallusionBench and AMBER under three settings: with/without zero-shot CoT and Visual-RFT fine-tuning.

470 **Cross-benchmark Evaluation.** We further assess general-
 471 alization on HallusionBench and AMBER (Fig. 5). Visual-
 472 RFT improves robustness on both benchmarks. On Hallu-
 473 sionBench, which contains visual illusions and abstract fig-
 474 ures, performance remains stable (69.37 → 69.81), show-
 475 ing that RFT does not overfit to ORIC-style data. On AM-
 476 BER, which requires compositional reasoning over exis-
 477 tence, attributes, and relations, the gains are substantial
 478 (87.48 → **90.49**). These results show that training on
 479 ORIC-style data with Visual-RFT improves generalization
 480 beyond ORIC-Bench and enhances robustness to both vi-
 481 sual and semantic distribution shifts.

482 7. Related Work

483 **Large Vision-Language Models:** Recent advances in
 484 large vision-language models (LVLMs) have greatly en-
 485 hanced text-image processing for visual understanding [1,
 486 28, 67, 84]. These models fall into two categories:
 487 vision-encoder-based approaches [2, 3, 23, 34, 41], which
 488 use pretrained visual encoders like Vision Transformer

(ViT) [19], and vision-encoder-free methods [6, 18, 68],
 489 which tokenize image patches for joint text-image process-
 490 ing. LVLMs are widely used in tasks such as image cap-
 491 tioning [16], visual question answering [60], robotics [22,
 492 27, 51], and embodied AI [73, 82]. Despite progress, they
 493 still struggle with fine-grained perception [55].
 494

Benchmarking Large Vision-Language Models: As
 495 LVLMs evolve, benchmarking is crucial for guiding their
 496 development [8, 37, 38]. Many benchmarks focus on fine-
 497 grained perception, including counting, relations, attributes,
 498 and reasoning [9, 21, 33, 43, 47, 71, 75, 78], or on com-
 499 monsense and knowledge-intensive tasks [7, 79]. Others
 500 target object hallucination and recognition [26, 35, 58, 66],
 501 with some emphasizing textual influences or visual seman-
 502 tics [24, 64, 65]. However, these benchmarks largely pre-
 503 serve object–context compatibility and rarely test recogni-
 504 tion under incongruous contexts. ORIC-Bench fills this gap
 505 by explicitly evaluating object existence in such settings.
 506

Reinforcement Learning: Recent RL-based post-
 507 training methods directly optimize verifiable reasoning
 508 outcomes. OpenAI o1 and DeepSeek-R1 demonstrate that
 509 large-scale RL and GRPO can strengthen chain-of-thought
 510 reasoning in both closed- and open-source models [25, 52],
 511 while subsequent work improves GRPO stability and effi-
 512 ciency [11, 14, 46, 76]. In multimodal settings, RL reduces
 513 hallucinations through fine-grained visual feedback, as in
 514 RLHF-V [77], and enables efficient visual reinforcement
 515 tuning via Visual-RFT [45]. Building on this line of work,
 516 we attach verifiable rewards directly to object existence
 517 under contextual incongruity using a Visual-RFT–style
 518 GRPO scheme that enforces evidence-grounded decisions.
 519

520 8. Conclusion and Limitations

521 This paper presents the first systematic study of how
 522 contextual incongruity, viewed through the lens of un-
 523 certainty, affects LVLM object recognition, showing that
 524 state-of-the-art models still struggle in such settings. To
 525 investigate this gap, we introduce ORIC, a framework
 526 built with LLM-guided and CLIP-guided sampling to
 527 generate challenging, context-aware recognition tasks
 528 for both evaluation and training. Experiments across
 529 20 models reveal that handling incongruous contexts
 530 remains a substantial weakness. We further fine-tune the
 531 LVLM with reinforcement learning under the Visual-RFT
 532 framework using ORIC-style data, which improves ro-
 533 bustness to incongruity, boosts both in-distribution and
 534 out-of-distribution performance, and yields outputs more
 535 aligned with human reasoning. While our study establishes
 536 a foundation, it is limited to a single dataset. Future
 537 work should explore more diverse contexts and develop
 538 stronger methods for reliable recognition under incongruity.
 539

540 **References**

[1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024. 6, 8, 2

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022. 8

[3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 1(2):3, 2023. 2, 6, 7, 8

[4] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhao-hai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025. 2, 6, 7

[5] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Soman, and Sañnak Taşırlar. Introducing our multimodal models, 2023. 2

[6] Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Soman, and Sagnak Tasirlar. Introducing our multimodal models, 2023. 8

[7] Nitzan Bitton-Guetta, Aviv Slobodkin, Aviya Maimon, Eliya Habba, Royi Rassin, Yonatan Bitton, Idan Szpektor, Amir Globerson, and Yuval Elovici. Visual riddles: a common-sense and world knowledge challenge for large vision and language models. *arXiv preprint arXiv:2407.19474*, 2024. 8

[8] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language models? *arXiv preprint arXiv:2403.20330*, 2024. 8

[9] Xuwei Chen, Ziqiao Ma, Xuejun Zhang, Sihan Xu, Shengyi Qian, Jianing Yang, David Fouhey, and Joyce Chai. Multi-object hallucination in vision language models. *Advances in Neural Information Processing Systems*, 37:44393–44418, 2024. 8

[10] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv preprint arXiv:2501.17811*, 2025. 3, 6, 2

[11] Xiwen Chen, Wenhui Zhu, Peijie Qiu, Xuanzhao Dong, Hao Wang, Haiyu Wu, Huayu Li, Aristeidis Sotiras, Yalin Wang, and Abolfazl Razi. Dra-grpo: Exploring diversity-aware reward adjustment for r1-zero-like training of large language models. *arXiv preprint arXiv:2505.09655*, 2025. 8

[12] Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198, 2024. 1

[13] Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, and Mabhesh Pasupuleti. Llama guard 3 vision: Safeguarding human-ai image understanding conversations, 2024. 6, 2

[14] Muzhi Dai, Shixuan Liu, and Qingyi Si. Grpo-λ: An efficient and stabilized variant of grpo for long-chain reasoning in llms. *arXiv preprint arXiv:2505.18086*, 2025. 8

[15] Wenliang Dai, Zihan Liu, Ziwei Ji, Dan Su, and Pascale Fung. Plausible may not be faithful: Probing object hallucination in vision-language pre-training. *arXiv preprint arXiv:2210.07688*, 2022. 1

[16] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with instruction tuning. *arXiv preprint arXiv:2305.06500*, 2023. 1, 8

[17] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*, 2024. 2

[18] Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling encoder-free vision-language models. *arXiv preprint arXiv:2406.11832*, 2024. 6, 8, 2

[19] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020. 8

[20] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. Aha: A vision-language-model for detecting and reasoning over failures in robotic manipulation. *arXiv preprint arXiv:2410.00371*, 2024. 1

[21] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal large language models. *arXiv preprint arXiv:2306.13394*, 2023. 8

[22] Jensen Gao, Bidipta Sarkar, Fei Xia, Ted Xiao, Jiajun Wu, Brian Ichter, Anirudha Majumdar, and Dorsa Sadigh. Physically grounded vision-language models for robotic manipulation. In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pages 12462–12469. IEEE, 2024. 1, 8

[23] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi 9

654 Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
655 Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
656 Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
657 Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xi-
658 aotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang,
659 Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu,
660 Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan
661 Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou,
662 and Zihan Wang. Chatglm: A family of large language mod-
663 els from glm-130b to glm-4 all tools, 2024. 6, 8, 2

664 [24] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia
665 Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang,
666 Yaser Yacoob, et al. Hallusionbench: an advanced diagno-
667 stic suite for entangled language hallucination and visual il-
668 lusion in large vision-language models. In *Proceedings of
669 the IEEE/CVF Conference on Computer Vision and Pattern
670 Recognition*, pages 14375–14385, 2024. 2, 8

671 [25] Dong Guo et al. Deepseek-R1: Incentivizing reasoning capa-
672 bility in language models via reinforcement learning. *arXiv
673 preprint arXiv:2501.12948*, 2025. 8

674 [26] Hongyu Hu, Jiyuan Zhang, Minyi Zhao, and Zhenbang Sun.
675 Ciem: Contrastive instruction evaluation method for better
676 instruction tuning. *arXiv preprint arXiv:2309.02301*, 2023.
677 8

678 [27] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li,
679 Jiajun Wu, and Li Fei-Fei. Voxposer: Composable 3d value
680 maps for robotic manipulation with language models. *arXiv
681 preprint arXiv:2307.05973*, 2023. 8

682 [28] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-
683 man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda,
684 Alan Hayes, Alec Radford, et al. Gpt-4o system card.
685 *arXiv preprint arXiv:2410.21276*, 2024. 3, 8

686 [29] Kiyoong Jeong, Woojun Lee, Woongchan Nam, Minjeong
687 Ma, and Pilsung Kang. Technical report of nice challenge
688 at cvpr 2024: caption re-ranking evaluation using ensembled
689 clip and consensus scores. In *Proceedings of the IEEE/CVF
690 Conference on Computer Vision and Pattern Recognition*,
691 pages 7366–7372, 2024. 5

692 [30] Olivier R Joubert, Denis Fize, Guillaume A Rousselet, and
693 Michele Fabre-Thorpe. Early interference of context con-
694 gruence on object processing in rapid visual categorization
695 of natural scenes. *Journal of Vision*, 8(13):11–11, 2008. 1

696 [31] Adam Tauman Kalai, Ofir Nachum, Santosh S Vempala, and
697 Edwin Zhang. Why language models hallucinate. *arXiv
698 preprint arXiv:2509.04664*, 2025. 1, 2

699 [32] Martha Lewis, Nihal V Nayak, Peilin Yu, Qinan Yu, Jack
700 Merullo, Stephen H Bach, and Ellie Pavlick. Does clip bind
701 concepts? probing compositionality in large image models.
702 *arXiv preprint arXiv:2212.10537*, 2022. 5

703 [33] Bo Li, Peiyuan Zhang, Jingkang Yang, Yuanhan Zhang,
704 Fanyi Pu, and Ziwei Liu. Otterhd: A high-resolution multi-
705 modality model. *arXiv preprint arXiv:2311.04219*, 2023. 8

706 [34] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
707 Blip: Bootstrapping language-image pre-training for unified
708 vision-language understanding and generation. In *Inter-
709 national conference on machine learning*, pages 12888–12900.
710 PMLR, 2022. 8

35] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
711 Zhao, and Ji-Rong Wen. Evaluating object hallucina-
712 tion in large vision-language models. *arXiv preprint
713 arXiv:2305.10355*, 2023. 2, 3, 8

36] Zongxia Li, Xiyang Wu, Hongyang Du, Huy Nghiem, and
714 Guangyao Shi. Benchmark evaluations, applications, and
715 challenges of large vision language models: A survey. *arXiv
716 preprint arXiv:2501.02189*, 2025. 1

37] Paul Pu Liang, Akshay Goindani, Talha Chafekar, Leena
717 Mathur, Haofei Yu, Ruslan Salakhutdinov, and Louis-
718 Philippe Morency. Hemm: Holistic evaluation of multimodal
719 foundation models. *arXiv preprint arXiv:2407.03418*, 2024.
720 8

38] Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi
721 Wang, Qiang Fu, and Ke Liu. A survey of multimodel large
722 language models. In *Proceedings of the 3rd International
723 Conference on Computer, Artificial Intelligence and Control
724 Engineering*, pages 405–409, 2024. 8

39] Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov,
725 Andrew Tao, Huizi Mao, Jan Kautz, Mohammad Shoeybi,
726 and Song Han. Vila: On pre-training for visual language
727 models, 2023. 6, 2

40] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
728 Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
729 Zitnick. Microsoft coco: Common objects in context. In
730 *Computer Vision–ECCV 2014: 13th European Conference,
731 Zurich, Switzerland, September 6–12, 2014, Proceedings,
732 Part V 13*, pages 740–755. Springer, 2014. 5

41] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
733 Improved baselines with visual instruction tuning. In *Pro-
734 ceedings of the IEEE/CVF Conference on Computer Vision
735 and Pattern Recognition*, pages 26296–26306, 2024. 8

42] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
736 Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Im-
737 proved reasoning, ocr, and world knowledge, 2024. 6, 2

43] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang
738 Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He,
739 Ziwei Liu, et al. Mmbench: Is your multi-modal model an
740 all-around player? In *European conference on computer vi-
741 sion*, pages 216–233. Springer, 2024. 5, 8

44] Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang
742 Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-
743 rft: Visual reinforcement fine-tuning. *arXiv preprint
744 arXiv:2503.01785*, 2025. 2, 7

45] Ziyu Liu, Zeyi Sun, Yuhang Zang, et al. Visual-RFT: Visual
745 reinforcement fine-tuning. In *ICCV*, 2025. 8

46] Zichen Liu et al. Unifying the grp0 frameworks with learn-
746 able token preference. *arXiv preprint arXiv:2510.06870*,
747 2025. 8

47] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei
748 Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and
749 Ashwin Kalyan. Learn to explain: Multimodal reasoning via
750 thought chains for science question answering. *Advances
751 in Neural Information Processing Systems*, 35:2507–2521,
752 2022. 8

48] Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan,
753 Elie Bakouch, Pedro Cuenca, Cyril Zakka, Loubna Ben
754

768 Allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivastav,
769 Joshua Lochner, Hugo Larcher, Mathieu Morlon, Lewis Tun-
770 stall, Leandro von Werra, and Thomas Wolf. Smolvlm:
771 Redefining small and efficient multimodal models. *arXiv*
772 preprint arXiv:2504.05299, 2025. 2

773 [49] Dimity Miller, Niko Sünderhauf, Alex Kenna, and Keita Ma-
774 son. Open-set recognition in the age of vision-language mod-
775 els. In *European Conference on Computer Vision*, pages 1–
776 18. Springer, 2024. 1

777 [50] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby.
778 Scaling open-vocabulary object detection. *Advances in Neu-
779 ral Information Processing Systems*, 36, 2024. 5, 6, 2

780 [51] Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky
781 Liang, Ishita Dasgupta, Annie Xie, Danny Driess, Ayzaan
782 Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompt-
783 ing elicits actionable knowledge for vlms. *arXiv preprint*
784 arXiv:2402.07872, 2024. 8

785 [52] OpenAI. OpenAI o1 system card. *arXiv preprint*
786 arXiv:2412.16720, 2024. 8

787 [53] OpenAI. Introducing gpt-5, 2025. 1, 6, 2

788 [54] Marius V Peelen, Eva Berlot, Floris P de Lange, and Michele
789 Fabre-Thorpe. Predictive processing of scenes and objects.
790 *Nature Reviews Psychology*, 3(1):13–26, 2024. 1

791 [55] Wujian Peng, Sicheng Xie, Zuyao You, Shiyi Lan, and Zux-
792 uan Wu. Synthesize diagnose and optimize: Towards fine-
793 grained vision-language understanding. In *Proceedings of*
794 *the IEEE/CVF Conference on Computer Vision and Pattern*
795 *Recognition*, pages 13279–13288, 2024. 8

796 [56] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
797 Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
798 Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
799 transferable visual models from natural language supervi-
800 sion. In *International conference on machine learning*, pages
801 8748–8763. PMLR, 2021. 2, 3

802 [57] Tianhe Ren, Qing Jiang, Shilong Liu, Zhaoyang Zeng, Wen-
803 long Liu, Han Gao, Hongjie Huang, Zhengyu Ma, Xiaoke
804 Jiang, Yihao Chen, et al. Grounding dino 1.5: Advance
805 the “edge” of open-set object detection. *arXiv preprint*
806 arXiv:2405.10300, 2024. 5, 6, 2

807 [58] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
808 Darrell, and Kate Saenko. Object hallucination in image cap-
809 tioning. *arXiv preprint arXiv:1809.02156*, 2018. 1, 8

810 [59] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
811 iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K.
812 Li, Yiqun Wu, and Daya Guo. Deepseekmath: Pushing the
813 limits of mathematical reasoning in open language models.
814 *arXiv preprint arXiv:2402.03300*, 2024. 7

815 [60] Haoyu Song, Li Dong, Wei-Nan Zhang, Ting Liu, and Furu
816 Wei. Clip models are few-shot learners: Empirical studies on
817 vqa and visual entailment. *arXiv preprint arXiv:2203.07190*,
818 2022. 1, 8

819 [61] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
820 Cao. Eva-clip: Improved training techniques for clip at scale.
821 *arXiv preprint arXiv:2303.15389*, 2023. 1

822 [62] Chameleon Team. Chameleon: Mixed-modal early-fusion
823 foundation models. *arXiv preprint arXiv:2405.09818*, 2024.
824 2

825 [63] Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen
826 Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chen-
827 zhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv*
828 preprint arXiv:2504.07491, 2025. 2

829 [64] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann
830 LeCun, and Saining Xie. Eyes wide shut? exploring the
831 visual shortcomings of multimodal llms. In *Proceedings of*
832 *the IEEE/CVF Conference on Computer Vision and Pattern*
833 *Recognition*, pages 9568–9578, 2024. 8

834 [65] Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan Kankan-
835 halli, and Ying Shan. What makes for good visual to-
836 kenizers for large language models? *arXiv preprint*
837 arXiv:2305.12223, 2023. 8

838 [66] Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
839 Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Jitao Sang.
840 An llm-free multi-dimensional benchmark for mllms hallu-
841 cination evaluation. *arXiv preprint arXiv:2311.07397*, 2023.
842 2, 8

843 [67] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
844 Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
845 Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui
846 Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Jun-
847 yang Lin. Qwen2-vl: Enhancing vision-language model’s
848 perception of the world at any resolution. *arXiv preprint*
849 arXiv:2409.12191, 2024. 8

850 [68] Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan
851 Sun, Yufeng Cui, Jinsheng Wang, Fan Zhang, Yueze Wang,
852 Zhen Li, Qiyi Yu, et al. Emu3: Next-token prediction is
853 all you need. *arXiv preprint arXiv:2409.18869*, 2024. 6, 8,
854 2

855 [69] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
856 Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
857 Chain-of-thought prompting elicits reasoning in large lan-
858 guage models. *Advances in neural information processing*
859 systems, 35:24824–24837, 2022. 7

860 [70] Miles Wischnewski, Marius V Peelen, Michele Fabre-
861 Thorpe, and Michele Fabre-Thorpe. Causal neural mech-
862 anisms of context-based object recognition. *Elife*, 10:e69736,
863 2021. 1

864 [71] Shujin Wu, Yi R Fung, Sha Li, Yixin Wan, Kai-Wei Chang,
865 and Heng Ji. Macaroon: Training vision-language models to
866 be your engaged partners. *arXiv preprint arXiv:2406.14137*,
867 2024. 8

868 [72] Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,
869 Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yu-
870 tong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A
871 family of open large multimodal models. *arXiv preprint*
872 arXiv:2408.08872, 2024. 2

873 [73] Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang,
874 Haoran Tan, Chencheng Jiang, Jiamu Kang, Yuanhan Zhang,
875 Kaiyang Zhou, et al. Octopus: Embodied vision-language
876 programmer from environmental feedback. In *European*
877 *Conference on Computer Vision*, pages 20–38. Springer,
878 2024. 1, 8

879 [74] Suorong Yang, Peng Ye, Wanli Ouyang, Dongzhan Zhou,
880 and Furao Shen. A clip-powered framework for ro-
881 bust and generalizable data selection. *arXiv preprint*
882 arXiv:2410.11215, 2024. 5

883 [75] Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li, Han
 884 Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi Lin, Shuo
 885 Liu, et al. Mmt-bench: A comprehensive multimodal bench-
 886 mark for evaluating large vision-language models towards
 887 multitask agi. *arXiv preprint arXiv:2404.16006*, 2024. 8

888 [76] Qiying Yu et al. Dapo: An open-source llm reinforcement
 889 learning system at scale. *arXiv preprint arXiv:2503.14476*,
 890 2025. 8

891 [77] Tianyu Yu et al. RLHF-V: Towards trustworthy MLLMs
 892 via behavior alignment from fine-grained correctional human
 893 feedback. In *CVPR*, 2024. 8

894 [78] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
 895 Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang.
 896 Mm-vet: Evaluating large multimodal models for integrated
 897 capabilities. *arXiv preprint arXiv:2308.02490*, 2023. 8

898 [79] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi
 899 Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming
 900 Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline
 901 multimodal understanding and reasoning benchmark for ex-
 902 pert agi. In *Proceedings of the IEEE/CVF Conference*
 903 *on Computer Vision and Pattern Recognition*, pages 9556–
 904 9567, 2024. 8

905 [80] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri,
 906 Dan Jurafsky, and James Zou. When and why vision-
 907 language models behave like bags-of-words, and what to do
 908 about it? *arXiv preprint arXiv:2210.01936*, 2022. 5

909 [81] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
 910 Lucas Beyer. Sigmoid loss for language image pre-training.
 911 In *Proceedings of the IEEE/CVF International Conference*
 912 *on Computer Vision*, pages 11975–11986, 2023. 1

913 [82] Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang
 914 Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun,
 915 Yi Ma, et al. Fine-tuning large vision-language models as
 916 decision-making agents via reinforcement learning. *arXiv*
 917 *preprint arXiv:2405.10292*, 2024. 8

918 [83] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu.
 919 Vision-language models for vision tasks: A survey. *IEEE*
 920 *Transactions on Pattern Analysis and Machine Intelligence*,
 921 2024. 1

922 [84] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mo-
 923 hamed Elhoseiny. Minigpt-4: Enhancing vision-language
 924 understanding with advanced large language models. *arXiv*
 925 *preprint arXiv:2304.10592*, 2023. 8

926 [85] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shen-
 927 glong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su,
 928 Jie Shao, et al. Internvl3: Exploring advanced training and
 929 test-time recipes for open-source multimodal models. *arXiv*
 930 *preprint arXiv:2504.10479*, 2025. 3, 6, 2

ORIC: Benchmarking Object Recognition under Contextual Incongruity in Large Vision-Language Models

Supplementary Material

931 A. ORIC Method, Analysis, and ORIC-Bench 943 932 Evaluation Metrics 944

933 A.1. LLM-Guided Sampling Method (Positive 934 Question Construction)

Algorithm 1 Positive Question Construction

Require: Image I , objects $\mathcal{O} = \{(n_i, B_{ij})\}$, integer k
Ensure: Positive question Q

- 1: **for** $i = 1$ to N **do**
- 2: $A_i \leftarrow \text{area}(\bigcup_j B_{ij})$
- 3: **end for**
- 4: Sort \mathcal{O} by A_i (descend.)
- 5: $\mathcal{O}_{\text{ROI}} \leftarrow \text{bottom 50\%}$, $\mathcal{O}_{\text{nonROI}} \leftarrow \text{top 50\%}$ \triangleright Note: Objects exactly at the 50% boundary are classified as non ROI.
- 6: $\mathcal{C} \leftarrow \emptyset$
- 7: **for** $o \in \mathcal{O}_{\text{ROI}}$ **do**
- 8: **if** LLM says “no” for o given $\mathcal{O}_{\text{nonROI}}$ **then**
- 9: $\mathcal{C} \leftarrow \mathcal{C} \cup \{o\}$
- 10: **end if**
- 11: **end for**
- 12: Randomly pick k objects from \mathcal{C} **return** Q

935 Figure 6 presents the prompt used in LLM-guided rejec- 936
937 tion sampling for constructing positive questions in the 938 ORIC. Specifically, `{background_objects}` serves as 939 a placeholder for all non-ROI objects. For example, if 940 there are three non-ROI objects, they could be represented 941 as `["car", "person", "bottle"]`. Meanwhile, 942 `{target_object}` represents a placeholder for a specific 943 ROI object, such as `"vase"`.

LLM-Guided Rejection Sampling

Given the following background objects: `{background_objects}`, can you determine whether the following target object `{target_object}` is present in the image without relying on textual priors, common-sense knowledge, or general assumptions about object co-occurrences?

Please respond with yes or no.

Figure 6. **Prompt for LLM-guided rejection sampling.** `{background_objects}` is a placeholder for all non-ROI objects, and `{target_object}` denotes a specific ROI object.

A.2. CLIP-Guided Sampling Method (Negative 943 944 Question Construction)

Algorithm 2 Negative Question Construction

Require: Query image I_q , candidate images $\{I_1, \dots, I_n\}$, non-existent objects $\mathcal{O}_{\text{non}} = \{n_i\}_{i=1}^M$, integer k

Ensure: Negative question Q

1: Select the most similar image:

$$I' = \arg \min_{I_i \in \mathcal{I}} \left(1 - \frac{\mathbf{e}_q \cdot \mathbf{e}_i}{\|\mathbf{e}_q\| \|\mathbf{e}_i\|} \right)$$

2: **for** $i = 1$ to M **do**

3: Construct text: $T_i \leftarrow \text{"an image contains } \{n_i\}$ ”

4: Compute CLIP score: $s_i \leftarrow \text{CLIPScore}(I', T_i)$

5: **end for**

6: Sort $\{n_i\}$ by s_i (descending)

7: Select top k objects: $\mathcal{S} \leftarrow \{n_{i_1}, \dots, n_{i_k}\}$

8: Construct Q using \mathcal{S} **return** Q

A.3. Image Similarity Analysis via Minimum Dis- 945 946 tance

To further characterize the ORIC, we analyzed the visual relationships between positive and negative questions through image similarity measurements. Specifically, for each object class appearing in positive (“yes”) questions, we computed its minimum visual distance to negative (“no”) questions containing the same object class. Given an object o_i , let the set of positive images be $\mathcal{I}_i^+ = \{I_{i,1}^+, \dots, I_{i,m}^+\}$ and the set of negative images be $\mathcal{I}_i^- = \{I_{i,1}^-, \dots, I_{i,n}^-\}$. We extracted visual feature vectors using a ViT encoder and computed pairwise cosine distances as follows:

$$D(I_{i,k}^+, I_{i,l}^-) = 1 - \frac{e(I_{i,k}^+) \cdot e(I_{i,l}^-)}{\|e(I_{i,k}^+)\| \|e(I_{i,l}^-)\|} \quad (7)$$

where $e(\cdot) = \text{ViT}(\cdot)$ denotes the ViT feature extractor. The minimum distance between positive and negative sets is defined as $D_{\min} = \min_{k,l} D(I_{i,k}^+, I_{i,l}^-)$. To ensure thorough evaluation, we calculated these minimum distances using three widely used vision encoders commonly employed in encoder-based LVLMs: CLIP-ViT-BigG-P14, SigLIP-SO400M-P14-384 [81], and EVA02-CLIP-BigE-P14 [61]. These analyses highlight the distinctiveness of ORIC in capturing contextually challenging object recognition scenarios compared to existing benchmarks. In Tab. 6, questions generated from ORIC shows consistently smaller minimum cosine distances between “yes” and “no” samples than POPE

970 across all three vision encoders. This suggests greater visual
971 similarity between positive and negative examples, making
972 object recognition more challenging and realistic.

Vision Encoder	POPE	ORIC
CLIP-ViT-BigG-P14	0.37	0.14
SigLIP-SO400M-P14-384	0.28	0.11
EVA02-CLIP-BigE-P14	0.40	0.13

Table 6. **Comparison of Minimum Cosine Distances.** This table compares the minimum cosine distances between positive and negative questions across three vision encoders. A smaller distance indicates greater semantic similarity between images, meaning “yes” and “no” questions are linked to finer image details and higher representational clutter, making object recognition more challenging and realistic.

973 A.4. Evaluation Metric Formulas

974 For a binary classification problem with labels *yes* and *no*,
975 we define the following terms:

- 976 • **TP** (True Positive): Number of samples correctly predicted as *yes* (Ground Truth: *yes*).
- 977 • **TN** (True Negative): Number of samples correctly predicted as *no* (Ground Truth: *no*).
- 978 • **FP** (False Positive): Number of samples incorrectly predicted as *yes* (Ground Truth: *no*).
- 979 • **FN** (False Negative): Number of samples incorrectly predicted as *no* (Ground Truth: *yes*).

980 The performance metrics include accuracy, the proportion
981 of *yes* predictions, macro precision, recall, and F1
982 score. These are defined as follows:

983 Class-wise Metrics:

$$987 \text{Precision}_{\text{yes}} = \frac{\text{TP}}{\text{TP} + \text{FP}} \quad (8)$$

$$988 \text{Recall}_{\text{yes}} = \frac{\text{TP}}{\text{TP} + \text{FN}} \quad (9)$$

$$989 F1_{\text{yes}} = 2 \times \frac{\text{Precision}_{\text{yes}} \times \text{Recall}_{\text{yes}}}{\text{Precision}_{\text{yes}} + \text{Recall}_{\text{yes}}} \quad (10)$$

$$990 \text{Precision}_{\text{no}} = \frac{\text{TN}}{\text{TN} + \text{FP}} \quad (11)$$

$$991 \text{Recall}_{\text{no}} = \frac{\text{TN}}{\text{TN} + \text{FN}} \quad (12)$$

$$992 F1_{\text{no}} = 2 \times \frac{\text{Precision}_{\text{no}} \times \text{Recall}_{\text{no}}}{\text{Precision}_{\text{no}} + \text{Recall}_{\text{no}}} \quad (13)$$

993 Macro-averaged Metrics:

$$993 \text{Precision}_{\text{macro}} = \frac{\text{Precision}_{\text{yes}} + \text{Precision}_{\text{no}}}{2} \quad (14)$$

$$994 \text{Recall}_{\text{macro}} = \frac{\text{Recall}_{\text{yes}} + \text{Recall}_{\text{no}}}{2} = \text{Accuracy} \quad (15)$$

995 Since our experimental datasets are all balanced, the
996 number of positive and negative samples is equal. In this

case, Accuracy = Recall_{macro} because accuracy measures the overall proportion of correctly classified samples, and macro recall, being the unweighted average of recall for both classes, reflects the same value.

$$997 F1_{\text{macro}} = \frac{F1_{\text{yes}} + F1_{\text{no}}}{2} \quad (16) \quad 1001$$

Proportion of Yes Predictions: The proportion of “yes” predictions (i.e., the percentage of all predictions that are classified as “yes”) is given by:

$$1002 \text{Yes Proportion} = \frac{\text{TP} + \text{FP}}{\text{TP} + \text{FP} + \text{TN} + \text{FN}} \quad (17) \quad 1005$$

1006 B. ORIC-Bench Experiment and Analysis

1007 B.1. Evaluated Models

1008 We evaluate **18** widely used LVLMs spanning both encoder-
1009 based and encoder-free architectures. The encoder-
1010 based models include Qwen3-VL-8B-Instruct [3, 4],
1011 SmoLVM2-2.2B-Instruct [48], InternVL3-9B [85], Kimi-
1012 VL-A3B-Instruct [63], Janus-Pro-7B [10], Llama-3.2-
1013 11B-Vision [13], LLaVa-v1.6-7B [42], Phi-3.5-Vision-
1014 Instruct [1], Molmo-7B-D-0924 [17], GLM-4V-9B [23],
1015 Chameleon-7B [62], VILA-1.5-13B [39], and BLIP3 [72].
1016 Encoder-free models include Fuyu-8B [5], EVE-7B-HD-
1017 v1.0 [18], Emu3-Chat [68], and the closed-source GPT-
1018 5 [53]. What’s more, we benchmark against **2** open-
1019 vocabulary detection models: Grounding DINO 1.5
1020 Pro [57] and OWLv2 [50].

1021 B.2. Prompt Templates of Experiments

Large Vision-Language Models (LVLMs) Fig. 7 illustrates the prompt used for LVLMs in both the POPE and LOPE-3 benchmarks. An example of a specific question is: “*Is there a person in the image?*”.

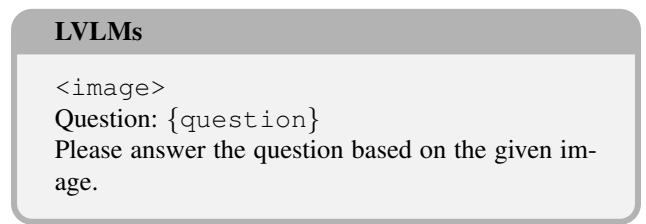


Figure 7. **The Prompt of LVLMs.** The prompt of a binary classification task for LVLMs is used in all experiments, where {question} serves as a placeholder for a specific query and <image> is the placeholder for a specific image.

We use four distinct prompts in our experiments, detailed below:

- Is there {object} in the image?

1029 • Does the image contain {object}?
 1030 • Have you noticed {object} in the image?
 1031 • Can you see {object} in the image?
 1032 The {object} is the placeholder for a detail object.

1033 **Grounding DINO 1.5 Pro Prompt:** Figure 8 shows the
 1034 prompt for Grounding DINO 1.5 Pro. For example, if an
 1035 image contains four unique objects—sports ball, person,
 1036 car, and traffic light—the corresponding prompt would be:
 1037 “sports ball.person.car.traffic light”.

Grounding DINO 1.5 Pro

{object₁} . {object₂} {object_n}

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Figure 8. **The Prompt of Grounding DINO 1.5 Pro.** The prompt used for the binary classification task in all experiments with Grounding DINO 1.5 Pro follows a dot-separated notation to specify multiple objects. Placeholders {object₁}, {object₂}, {object_n} represent unique objects in the image, where n denotes the total number of distinct objects.

1038 **OWLv2 Prompt:** Figure 9 shows the prompt for OWLv2.
 1039 An example of a specific object is: “an image of truck”.

OWLv2

an image of {object}

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077

Figure 9. **The Prompt of OWLv2.** The prompt of a binary classification task for OWLv2 used in all experiments, where {object} serves as a placeholder for a specific object.

Model	Random	Pos Only	Neg Only
DINO 1.5 Pro	95.50 / 85.50	91.60 (-3.90)	53.05 (-32.45)
GPT-5-2025-08-07	81.53 / 96.12	71.92 (-9.61)	84.45 (-11.67)
Emu3	67.25 / 97.30	48.75 (-18.50)	81.17 (-16.13)
InternVL3-9B	80.88 / 97.83	68.83 (-12.05)	81.75 (-16.08)
Qwen3-VL-8B-Instruct	82.95 / 97.15	74.28 (-8.67)	83.90 (-13.25)

Table 7. **Ablation study of ORIC-Bench.** The table evaluates three sampling setups: **Random**: A baseline using randomly selected positive and negative objects. **Pos Only**: Employs LLM-guided sampling for positives and random negatives. **Neg Only**: Uses CLIP-guided sampling for negatives and random positives. All values are reported as (yes-recall / no-recall), with parentheses indicating the performance drop relative to the Random baseline.

B.3. Supplementary Experiments and Analysis

B.3.1. ORIC-Bench Ablation Study:

We follow the ORIC-Bench experiment settings, averaging LViLM metrics over four prompts and using a default

prompt for detection models. Tab. 7 shows that both LLM-guided and CLIP-guided sampling increase question difficulty across four LViLMs and Grounding DINO Pro 1.5. LLM-guided sampling reduces yes-recall across all models, with Emu3 experiencing the largest drop (-18.50). Meanwhile, CLIP-guided sampling significantly lowers no-recall, with the most notable decline observed in DINO 1.5 Pro (-32.45). These results suggest that both positive and negative question constructions introduce challenges, though their effects differ. Notably, no-recall declines more sharply in most models. This discrepancy arises because positive questions reference real objects, aiding recognition even in incongruous backgrounds, whereas negative questions involve absent objects, leading models to over-rely on background context and hallucinate in congruous settings.

B.3.2. Full Results of Comparison between POPE and ORIC

Tab. 8 presents a comparative analysis of POPE and ORIC-Bench across 19 LViLMs and 2 open-vocabulary detection models. Notably, the macro F1 scores of Llama-3.2-11B-Vision, Chameleon-7B, BLIP-3, and VILA1.5-3B in POPE are comparable to or even exceed those in ORIC-Bench. A potential explanation is that these models exhibit a high proportion of “yes” responses in both benchmarks, suggesting a tendency to answer affirmatively regardless of context. This behavior indicates limited object recognition capabilities, as their responses remain consistent across different evaluation settings. Furthermore, the macro precision and recall of other models in ORIC-Bench are significantly lower than in POPE, leading to a sharp decline in macro F1 scores. This suggests that ORIC-Bench presents a greater challenge for all tested LViLMs, highlighting their struggles with object recognition, particularly when considering contextual incongruity.

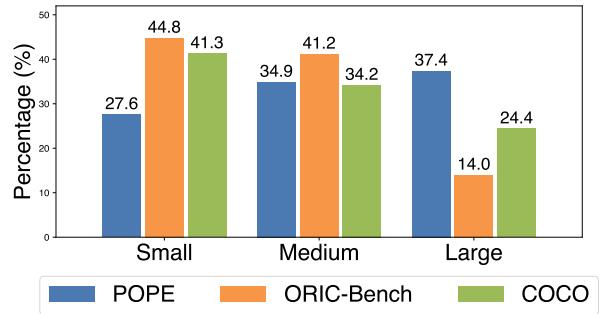


Figure 10. **Object Size Distribution across POPE, ORIC-Bench, and COCO.** Percentage distribution of small ($< 24 \times 24 \text{ pt}^2$), medium ($24 \times 24 - 96 \times 96 \text{ pt}^2$), and large ($\geq 96 \times 96 \text{ pt}^2$) objects in the POPE, ORIC-Bench, and COCO datasets, highlighting ORIC-Bench’s deliberate shift toward smaller and medium object scales.

Model	POPE				ORIC-Bench			
	Precision	Recall	F1 Score	YP (%)	Precision	Recall	F1 Score	YP (%)
Closed-source								
GPT-5-2025-08-07	89.06	88.60	88.56	44.62	79.50	78.75	78.61	42.12
Encoder-based								
Llama-3.2-11B-Vision	25.00	50.00	33.33	0.00	25.00	50.00	33.33	0.00
Chameleon-7B	47.08	50.01	33.95	99.29	59.75	50.10	34.08	99.28
BLIP-3	36.20	44.88	37.29	80.30	43.14	49.86	42.99	81.54
VILA1.5-13B	60.87	59.92	57.49	36.80	65.19	62.40	60.41	28.95
GLM-4v-9B	86.55	84.12	83.85	37.30	71.18	64.92	61.99	23.32
Phi-3.5-Vision-Instruct	86.76	86.28	86.23	44.35	68.69	68.06	67.79	40.86
InternLM-XComposer2.5-7B	84.72	83.16	82.98	39.84	73.32	70.35	69.33	33.77
SmolVLM2-2.2B-Instruct	87.57	86.89	86.83	43.56	72.87	71.44	70.95	38.01
Kimi-VL-A3B-Instruct	88.91	87.69	87.59	41.19	74.67	72.28	71.58	34.45
Molmo-7B-D-0924	83.76	81.45	81.03	61.42	78.92	73.74	71.95	69.34
LLaVA-v1.6-Vicuna-13B	88.24	88.14	<u>88.13</u>	51.39	75.29	74.56	74.37	56.94
Janus-Pro-7B	87.32	87.03	87.00	50.65	76.60	75.22	<u>74.83</u>	56.42
InternVL3-9B	88.8	88.69	88.68	47.96	77.33	76.95	<u>76.87</u>	44.60
Qwen3-VL-8B-Instruct	88.13	88.04	<u>88.03</u>	47.66	79.93	79.61	79.55	44.94
Encoder-free								
Fuyu-8B	68.39	53.47	40.48	95.70	44.83	50.16	34.16	99.29
EVE-7B-HD-v1.0	82.19	79.81	79.34	61.36	61.02	56.42	51.59	76.53
Emu3-Chat	87.43	86.72	86.66	43.25	67.74	65.79	64.78	33.41
Open-vocabulary Detection								
OWLv2	86.74	86.55	86.53	53.55	73.02	72.25	72.02	40.85
Grounding DINO 1.5 Pro	85.62	85.05	84.99	56.35	77.02	73.40	72.48	68.30

Table 8. **Full Model Performance Comparison: POPE vs. ORIC.** The table compares POPE and ORIC across various model categories: closed-source, encoder-based, encoder-free, and open-vocabulary detection models. Performance is evaluated using macro precision, recall, and F1 score. The yes proportion (YP (%)) indicates the percentage of "yes" predictions. "Prec." denotes precision, "Rec." denotes recall, and "F1." denotes the F1 score. All values are averaged across four prompts, except for detection models, which use a single prompt without averaging.

1078
1079

B.3.3. Comparison of Object Size Distribution between POPE, ORIC-Bench, and COCO:

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095

Fig. 10 compares the proportions of small ($< 24 \times 24 \text{ pt}^2$), medium ($24 \times 24\text{--}96 \times 96 \text{ pt}^2$), and large ($\geq 96 \times 96 \text{ pt}^2$) objects in POPE, ORIC-Bench, and COCO. In ORIC-Bench, small objects are the single largest category at 44.8%—yet they do not constitute a majority: medium objects follow closely at 41.2%, while large objects still make up a substantial 14.0%. Relative to POPE (27.6% small, 34.9% medium, 37.4% large) and COCO (41.3% small, 34.2% medium, 24.4% large), ORIC-Bench deliberately boosts the share of small and medium instances at the expense of large ones. This design amplifies the need for fine-grained recognition and scale-robust feature extraction in the face of context incongruity, while still retaining a substantial number of medium and large objects to ensure the benchmark is not solely focused on small instances and can assess model performance across the full spectrum of object scales.

C. Visual-RFT Experimental Details

1096

C.1. Visual-RFT Training Hyper-parameters

1097

Tab. 9 lists the full set of hyper-parameters used in our Visual-RFT training. We include all optimization, sampling, and generation settings to ensure complete reproducibility.

1098

1099

1100

1101

C.2. R1-Style Prompt for Reinforcement Fine-Tuning

1102

1103

Fig. 11 shows the R1-style prompt used in our reinforcement fine-tuning (RFT) experiments. An example of a specific question is: "Is there a cat in the image?".

1104

1105

1106

C.3. Zero-Shot CoT Prompt of LVLMs:

1107

Fig. 12 shows the zero-shot CoT prompt for LVLMs. An example of a specific question is: "Is there a person in the image?".

1108

1109

1110

Hyper-parameter	Configuration
VLM Init	Qwen3-VL-8B-Instruct
KL Penalty (β)	0
Optimizer	AdamW
Learning Rate	2×10^{-6}
Clipping Range ϵ	0.2
LR Scheduler	Cosine
Weight Decay	0
Precision	BF16
Gradient Clipping	1.0
Per-device Batch Size	1
Gradient Accumulation	4
Rollout Temperature	0.7
Rollout Top-p	0.8
Rollout Top-k	20
Group Size G	8
Max Prompt Length	1024
Max Completion Length	256
Epochs	15
GPUs	4× NVIDIA H100 80GB

Table 9. **Training Configuration.** Key hyper-parameters for GRPO-based Visual-RFT of Qwen3-VL-8B-Instruct.

R1-Style Prompt for Visual RFT

```
<image>
Prompt: Is there a/an {object} in the image?
Please first provide your reasoning or working out
on how you would go about solving the question
between <REASONING> and </REASONING>
and then your final answer between <SOLUTION>
and (put yes or no here) </SOLUTION>.
```

Figure 11. **The R1-style prompt used for reinforcement fine-tuning.** The prompt elicits explicit reasoning (<REASONING>...</REASONING>) and a verifiable final answer (<SOLUTION>...</SOLUTION>) to enable reward evaluation.

Zero-Shot CoT of LVLMs

```
<image>
Question: {question}
Let's think step-by-step and then answer the question
based on the given image.
```

Figure 12. **The zero-shot CoT Prompt of LVLMs.** The prompt of a binary classification task for LVLMs using zero-shot CoT prompting strategy.

D. CLIPScore as a Proxy for Contextual Alignment

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

While CLIPScore is not a perfect object detector and has known limitations in capturing compositional semantics [32, 80], we use it solely as an external probe to assess the contextual alignment of replaced objects. Specifically, CLIP-guided sampling is applied only to “no”-label cases to select ground-truth nonexistent yet contextually plausible objects with higher CLIPScores, thereby constructing more challenging negatives. Our ablation study B.3 confirms this strategy by showing a significant reduction in negative recall, indicating increased contextual incongruity.

Importantly, CLIPScore is never used for model evaluation but serves as a heuristic signal of object–context compatibility. To ensure robustness, we validate our findings across three independent CLIP variants in A.3, all consistently showing that ORIC “yes” or “no” pairs exhibit higher visual similarity than those in POPE, thus increasing task difficulty. While CLIP’s co-occurrence bias may contribute to high scores for out-of-context objects, we argue this reflects its tendency to associate such objects with plausible scenes—precisely the kind of confounding signal our benchmark targets. Despite its limitations, CLIPScore remains a useful proxy for semantic alignment, as supported by recent work [29, 74].

E. Visualization of ORIC Examples

1136

E.1. Error Questions from Human Evaluation

1137

Fig. 13 presents six error cases from 300 sampled questions (150 “yes” and 150 “no” labels) in ORIC using the MSCOCO dataset. We assess two key aspects: accurate object labeling and the appropriateness of visual backgrounds, ensuring incongruous context in both “yes” and “no” questions. The identified errors fall into two categories:

- **Inaccurate Object Labeling:** The presence of objects does not match the actual image content due to errors in human annotation within the MSCOCO dataset.
- **Not Causing the Incongruous Context:** In “yes”-label questions, the visual context aligns with the target object, making the questions less challenging. In “no”-label questions, the visual context does not create incongruity for the nonexistent object.

E.2. ORIC Question Examples

1152

Fig. 14 presents various examples from ORIC. In “yes”-label and “no”-label questions, visual contexts are incongruous with the question-related objects. Our LLM-guided and CLIP-guided sampling method effectively generates challenging questions considering contextual incongruity.

Model	Overall				Label Yes			Label No		
	Pre.	Rec.	F1	YP (%)	Pre.	Rec.	F1	Pre.	Rec.	F1
Closed-source										
GPT-5-2025-08-07	79.50	78.75	78.61	42.12	84.14	70.88	76.92	71.84	88.62	79.35
Vision-encoder-based										
Llama-3.2-11B-Vision	25.00	50.00	33.33	0.00	0.00	0.00	0.00	50.00	100.00	66.67
Chameleon-7B	59.75	50.10	34.08	99.28	50.05	99.38	66.57	69.45	0.82	1.59
BLIP-3	43.14	49.86	42.99	81.54	45.36	51.22	47.02	40.92	48.50	38.96
VILA1.5-13B	65.19	62.40	60.41	28.95	71.44	41.35	51.86	58.92	83.45	68.96
GLM-4v-9B	71.18	64.92	61.99	23.32	82.41	38.25	51.61	59.94	91.60	72.35
Phi-3.5-Vision-Instruct	68.69	68.06	67.79	40.86	72.12	58.92	64.85	65.27	77.20	70.73
InternLM-XComposer2.5-7B	73.32	70.35	69.33	33.77	80.96	54.12	64.17	65.67	86.58	74.49
SmolVLM2-2.2B-Instruct	72.87	71.44	70.95	38.01	78.30	59.45	67.38	67.44	83.42	74.52
Kimi-VL-A3B-Instruct	74.67	72.28	71.58	34.45	82.32	56.73	67.13	67.02	87.83	76.02
Molmo-7B-D-0924	78.92	73.74	71.95	69.34	68.22	93.08	76.61	89.62	54.40	65.59
LLaVA-v1.6-Vicuna-13B	75.29	74.56	74.37	56.94	71.76	81.50	76.19	78.82	67.62	72.55
Janus-Pro-7B	76.60	75.22	<u>74.83</u>	56.42	73.30	81.65	<u>76.71</u>	79.90	68.80	72.95
InternVL3-9B	77.33	76.95	<u>76.87</u>	44.60	80.27	71.55	75.60	74.39	82.35	<u>78.13</u>
Qwen3-VL-8B-Instruct	79.93	79.61	79.55	44.94	82.96	74.55	78.51	76.91	84.68	80.59
Vision-encoder-free										
Fuyu-8B	44.83	50.16	34.16	99.29	50.08	99.45	66.61	39.59	0.88	1.71
EVE-7B-HD-v1.0	61.02	56.42	<u>51.59</u>	76.53	54.82	82.95	<u>65.27</u>	67.22	29.90	<u>37.90</u>
Emu3-Chat	67.74	65.79	64.78	33.41	73.58	49.20	58.90	61.91	82.38	70.67
Open-vocabulary Detection										
OWLv2	73.02	72.25	72.02	40.85	77.23	63.10	69.46	68.81	81.40	74.58
Grounding DINO 1.5 Pro	77.02	73.40	72.48	68.30	67.13	91.70	77.51	86.91	55.10	67.44

Table 10. **Full Experimental Results on ORIC-Bench.** Performance is broken down by model category and label type (Yes/No). We report macro precision (Prec.), recall (Rec.), F1 score, and the proportion of “yes” predictions (YP). Results for LVLMs are averaged over four prompts, while detection models use a single prompt.

POPE: Is there a mouse in the image?
Label: No
Inaccurate Object Labeling: The keyboard is present while labeling errors.

Question: Is there a **mouse** in the image?
Label: Yes
Not Causing The Incongruous Context: The office area provides a congruous context for a mouse.

Question: Is there a **remote** in the image?
Label: Yes
Not Causing The Incongruous Context: The conference room provides a congruous context for a remote.

Question: Is there a bed in the image?
Label: No
Not Causing The Incongruous Context: The living room doesn't provide an incongruous context for a nonexistent bed.

Question: Is there an orange in the image?
Label: No
Not Causing The Incongruous Context: The tennis court doesn't provide an incongruous context for a nonexistent orange .

Question: Is there a **skateboard** in the image?
Label: Yes
Not Causing The Incongruous Context: The skatepark doesn't provide an incongruous context for a nonexistent skateboard.

Figure 13. **Error Examples of ORIC from Human Evaluation.** There are six error cases among the **300** sampled questions in ORIC using the MSCOCO dataset, resulting in an error rate of 2%. These errors can be classified into two categories. **Inaccurate Object Labeling** occurs when the labeled object's presence does not match the actual content of the image. **Not Causing the Incongruous Background** includes cases where the visual context aligns with an existent object in a “yes”-label question or does not introduce incongruity for a nonexistent object in a “no”-label question.

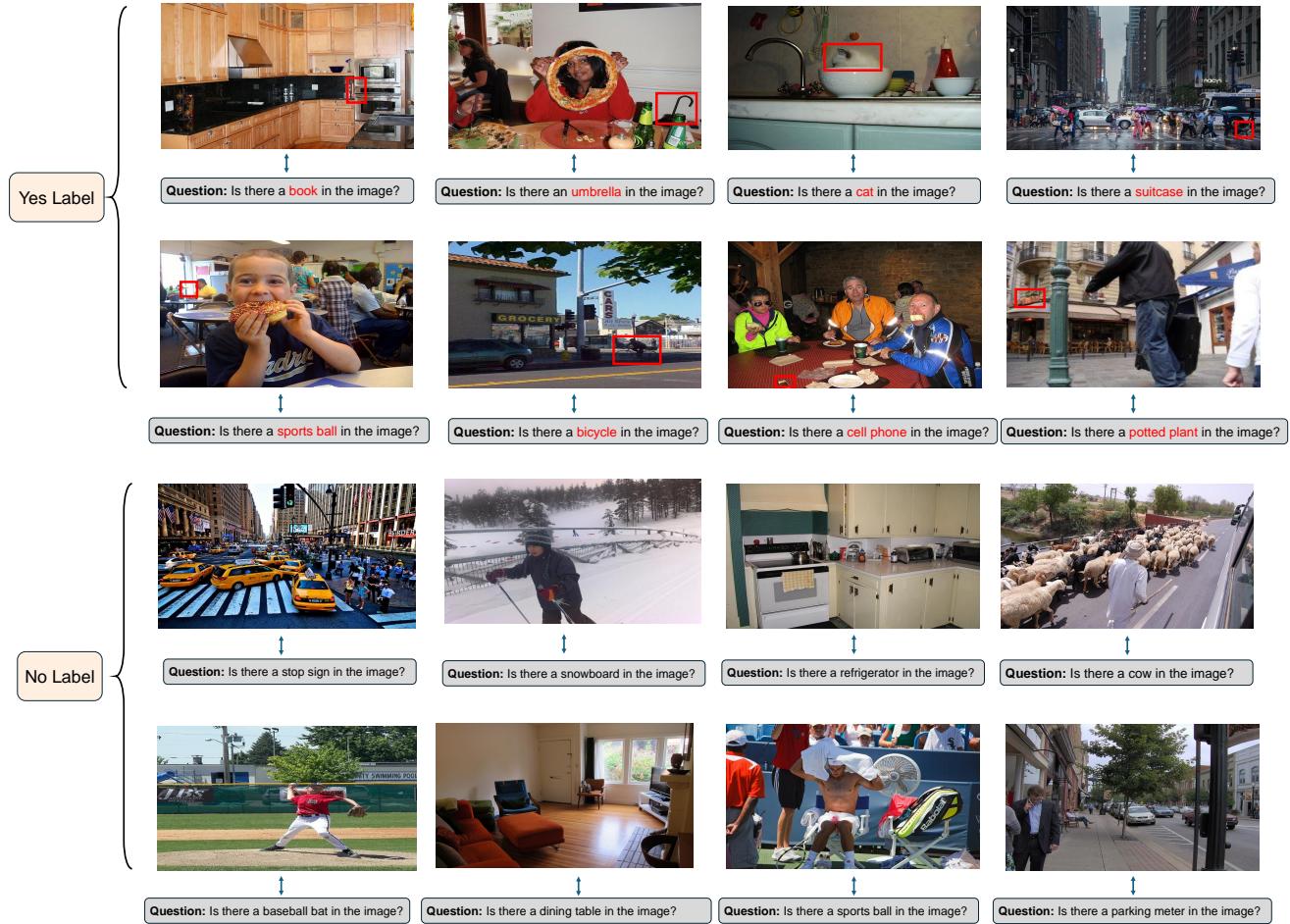


Figure 14. **Question Examples of ORIC.** The figure shows sampled question examples from ORIC using the MSCOCO dataset. The first and second rows contain questions labeled “yes,” while the third and fourth rows contain questions labeled “no.” The red box highlights the bounding boxes of existing objects in “yes”-label questions.