
DynaMITE-RL: A Dynamic Model for
Improved Temporal Meta-Reinforcement Learning

Anthony Liang 1 2 Guy Tennenholtz 2 Chih-wei Hsu 2 Yinlam Chow 2 Erdem Bıyık 1 Craig Boutilier 2

Abstract
We introduce DynaMITE-RL, a meta-
reinforcement learning (meta-RL) approach to
approximate inference in environments where
the latent state evolves at varying rates. We
model episode sessions—parts of the episode
where the latent state is fixed—and propose three
key modifications to existing meta-RL methods:
consistency of latent information within sessions,
session masking, and prior latent conditioning.
We demonstrate the importance of these modifi-
cations in various domains, ranging from discrete
Gridworld environments to continuous-control
and simulated robot assistive tasks, demonstrating
that DynaMITE-RL significantly outperforms
state-of-the-art baselines in sample efficiency and
inference returns.

1. Introduction
Markov decision processes (MDPs) (Bertsekas, 2012) pro-
vide a general framework in reinforcement learning (RL),
and can be used to model sequential decision problems in a
variety of domains, e.g., recommender systems (RSs), robot
and autonomous vehicle control, and healthcare (Jannach
et al., 2021; Ie et al., 2019; Cao et al., 2020; Yu et al., 2021;
Liu et al., 2020; Biyik et al., 2019). MDPs assume a static
environment with fixed transition probabilities and rewards
(Bellman, 1957). In many real-world systems, however, the
dynamics of the environment are intrinsically tied to latent
factors subject to temporal variation. While nonstationary
MDPs are special instances of partially observable MDPs
(POMDPs) (Kaelbling et al., 1998), in many applications
these latent variables change infrequently, i.e. the latent
variable remains fixed for some duration before changing.
One class of problems exhibiting this DLCMDP structure
is recommender systems, where a user’s preferences are a
latent variable which gradually evolves over time (Jawaheer

1Viterbi School of Engineering, University of Southern Cali-
fornia Los Angeles, CA 2Google Research. Correspondence to:
Anthony Liang <anthony.liang@usc.edu>.

et al., 2014; Kim et al., 2023). For instance, a user may
initially have a strong affinity for a particular genre (e.g.,
action movies), but their viewing habits could change over
time, influenced by external factors such as trending movies,
mood, etc. A robust system should adapt to these evolving
tastes to provide suitable recommendations. Another ex-
ample is in manufacturing settings where industrial robots
may experience unobserved gradual deterioration of their
mechanical components affecting the overall dynamics of
the system. Accurately modelling the changing dynamics
caused by hardware degradation can help manufacturers
optimize performance, cost, safety and equipment lifespan.

Our goal in this work is to leverage such a temporal struc-
ture to obviate the need to solve a fully general POMDP.
To this end, we propose Dynamic Model for Improved
Temporal Meta Reinforcement Learning (DynaMITE-RL),
a method designed to exploit the temporal structure of ses-
sions, i.e., sequences of a trajectory in which the latent
state is fixed. We formulate our problem as a dynamic la-
tent contextual MDP (DLCMDP), and identify three crucial
elements needed to enable tractable and efficient policy
learning in environments with the latent dynamics captured
by a DLCMDP. First, we consider consistency of latent
information, by exploiting time steps for which we have
high confidence that the latent variable is constant. To do
so, we introduce a consistency loss to regularize the pos-
terior update model, providing better posterior estimates
of the latent variable. Second, we enforce the posterior
update model to learn the dynamics of the latent variable.
This allows the trained policy to better infer, and adapt to,
temporal shifts in latent context in unknown environments.
Finally, we show that the variational objective in contem-
porary meta-RL algorithms, which attempts to reconstruct
the entire trajectory, can hurt performance when the latent
context is nonstationary. We modify this objective to recon-
struct only the transitions within the same session (i.e., that
share the same latent context).

Closest to our work is VariBAD (Zintgraf et al., 2020), a
meta-RL (Beck et al., 2023) approach for learning a Bayes-
optimal policy, enabling an agent to quickly adapt to a new
environment with unknown dynamics and reward. VariBAD
uses variational inference to learn a posterior update model

1

DynaMITE-RL

that approximates the belief over the transition and reward
functions. It augments the state space with this belief to en-
code the agent’s uncertainty during decision-making. Never-
theless, VariBAD and the Bayes-Adaptive MDP framework
(Ross et al., 2007) assume the latent context is static across
an episode and do not address settings with latent state dy-
namics. In this work, we focus on the dynamic latent state
formulation of the meta-RL problem.

Our core contributions are as follows. (1) We introduce
DynaMITE-RL, a meta-learning approach to handle envi-
ronments with evolving latent context variables. (2) We
introduce three key elements for learning an improved pos-
terior update model: session consistency, modeling dynam-
ics of latent context, and session reconstruction masking.
(3) We validate our approach on a diverse set of challeng-
ing simulation environments and demonstrate significantly
improved results over state-of-the-art baselines.

2. Background
We begin by reviewing relevant background including
meta-RL and Bayesian RL. We also briefly summarize
the VariBAD (Zintgraf et al., 2020) algorithm for learning
Bayes-adaptive policies.

Meta-RL. The goal of meta-RL (Beck et al., 2023) is
to quickly adapt an RL agent to an unseen test environ-
ment. Meta-RL assumes a distribution p(T) over possible
environments or tasks, and learns this distribution by re-
peatedly sampling batches of tasks during meta-training.
Each task Ti ∼ p(T) is described by an MDP Mi =
(S,A,Ri,Pi, γ), where the state space S, action space A,
and discount factor γ are shared across tasks, whileRi and
Pi are task-specific reward and transition functions, respec-
tively. The objective of meta-RL is to learn a policy that
efficiently maximizes reward given a new task Ti ∼ p(T)
sampled from the task distribution at meta-test time. Meta-
RL is a special case of a POMDP in which the unobserved
variables areR and P , which are assumed to be stationary
throughout an episode.

Bayesian Reinforcement Learning (BRL). BRL
(Ghavamzadeh et al., 2015) incorporates Bayesian
inference to model agent uncertainty in decision mak-
ing. In BRL, R and P are unknown a priori and
treated as random variables with associated prior dis-
tributions. At time t, the observed history of states
and actions is τ:t = {s0, a0, r1, s1, a1, . . . , rt, st},
and the belief bt represents the posterior over task
parameters R and P given the transition history, i.e.
bt , P (R,P | τ:t). Given the initial belief b0(R,P),
the belief can be updated iteratively using Bayes’ rule:
bt+1 = P (R,P | τ:t+1) ∝ P (st+1, rt+1 | τ:t,R,P)bt.
This Bayesian approach to RL can be formalized as a

Bayes-adaptive MDP (BAMDP) (Duff, 2002). A BAMDP
is an MDP over the augmented state space S+ = S × B,
where B denotes the belief space. Given the augmented state
s+
t = (st, bt), the transition function is given by P+(s+

t+1 |
s+
t , at) = Ebt [P(st+1|st, at)δ(bt+1 = P (R,P | τ:t+1)],

and reward function is the expected reward given the belief,
R+(s+

t , at) = Ebt [R(st, at)]. The BAMDP formulation
naturally resolves the exploration-exploitation tradeoff.
A Bayes-optimal RL agent takes information-gathering
actions to reduce its uncertainty in the MDP parameters
while simultaneously maximizing its returns. However,
for most interesting problems, solving the BAMDP—and
even computing posterior updates—is intractable given the
continuous and typically high-dimensional nature of its
state space.

VariBAD. Zintgraf et al. (2020) approximate the Bayes-
optimal solution by modeling uncertainty over the MDP
parameters. These parameters are represented by a latent
vector m ∈ Rd, the posterior over which is p(m | τ:H),
where H is the BAMDP horizon. Their VariBAD method
uses a variational approximation, parameterized by φ, shar-
ing the same structure, qφ(m | τ:t), and is conditioned on
the observed history up to time t. Zintgraf et al. (2020)
show that qφ(m | τ:t) approximates the belief bt. In prac-
tice, qφ(m | τ:t) is represented by a Gaussian distribution
qφ(m | τ:t) = N (µ(τ:t),Σ(τ:t)) where µ and Σ are recur-
rent neural networks (RNNs). The variational lower bound
at time t is Eqφ(m|τ:t)[log pθ(τ:H | m)] − DKL(qφ(m |
τ:t) ‖ pθ(m)). Intuitively, the first term reconstructs the
trajectory and the second regularizes the variational poste-
rior to a prior over the embeddings, typically a standard
Gaussian. Importantly, the past trajectory τ:t is used in the
ELBO equation to infer the posterior belief at time t, which
then decodes the entire trajectory τ:H , including future tran-
sitions. To approximately solve the BAMDP, the policy is a
function of both the state and belief, π(at | st, qφ(m | τ:t)).
The policy is trained using policy gradient, optimizing:

J(π) = ER,PEπ
[H−1∑
t=0

γtr(st, at)

]
(1)

where the first expectation is approximated by averaging
over training environments and the RL agent is trained
jointly with the variational autoencoder qφ.

3. Dynamic Latent Contextual MDPs
A dynamic latent contextual MDP (DLCMDP) is given
by (S,A,M,R, T, ν0, H), where S is the state space,
A is the action space, M is the latent context
space, R : S ×A×M 7→ ∆[0,1] is a reward function,
T : S ×A×M 7→ ∆S×M is a transition function, ν0 ∈
∆S×M is an initial state distribution, γ ∈ (0, 1) is a dis-
count factor, and H is the (possibly infinite) horizon.

2

DynaMITE-RL

Figure 1. (Left) The graphical model for a DLCMDP. The transition dynamics of the environment follows T (st+1,mt+1 | st, at,mt).
At every timestep t, an i.i.d. Bernoulli random variable, dt, denotes the change in the latent context, mt. Blue shaded variables are
observed, whereas white shaded variables are latent. (Right) A realization of a DLCMDP episode. Each session i is governed by a latent
variable mi which is changing between sessions according to a fixed transition function, T (m′ | m). We denote li as the length of session
i. The state-action pair (sit, ai

t) at timestep t in session i is summarized into a single observed variable, xi
t. We emphasize that session

terminations are not explicitly observed.

We assume an episodic setting in which each episode be-
gins in a state-context pair (s0,m0) ∼ ν0. At time t, the
agent is at state st and context mt, and has observed history
τ:t = {s0, a0, r1, . . . , rt, st}. Given the history, the agent
selects an action at ∈ A, after which the state and latent
context transition according to T (st+1,mt+1 | st, at,mt),
and the agent receives a reward sampled fromR(st, at,mt).
Throughout this process, the context mt is latent (i.e., not
observed by the agent).

DLCMDPs embody the causal independence depicted by
the graphical model in Figure 1. Letting Ω = {dt}H−1

t=0

denote a sequence of i.i.d. Bernoulli random variables, we
assume that

T (st+1 = s′,mt+1 = m′ | st = s, at = a,mt = m)

= T (s′ | s, a,m)1{m′ = m, dt = 0}P (dt = 0)

+ ν0(s′ | m′)T (m′ | m)1{dt = 1}P (dt = 1).

Here, dt defines a random variable at which a transition oc-
curs in mt. We refer to sub-trajectories between changes in
the latent context as sessions, which may vary in length. At
the start of a new session, a new state and a new latent con-
text are sampled based on the distribution ν0. Each session
is itself an MDP governed by some unknown task parame-
ters or latent context m ∈M which changes stochastically
between sessions according to dynamics T (m′ | m). For
notational simplicity we sometimes use index i to denote the
ith session in a trajectory, and mi the respective latent con-
text of that session. We emphasize that sessions switching
times are latent random variables.

Notice that DLCMDPs are more general than latent MDPs
(Steimle et al., 2021; Kwon et al., 2021), in which the latent
context is fixed throughout the entire episode; this corre-
sponds to dt ≡ 0. Moreover, DLCMDPs are closely related

to POMDPs; letting dt ≡ 1, a DLCMDP reduces to a
POMDP with state spaceM, observation space S, and ob-
servation function ν0. As a consequence DLCMDPs are as
general as POMDPs, rendering them very expressive. That
said, the specific temporal structure of DLCMDPs allows us
to devise an efficient algorithm that exploits the transition dy-
namics of the latent context, improving learning efficiency.
Finally, DLCMDPs are also related to DCMDPs (Tennen-
holtz et al., 2023), though DCMDPs assume contexts are
observed, and focus on aggregated context dynamics.

We aim to learn a policy π(at | st,mt) which maximizes
the expected return J(π) in an unseen test environment per
Eq. (1). As in BAMDPs, the optimal DLCMDP Q-function
satisfies the Bellman equation; ∀s+ ∈ S+, a ∈ A:

Q(s+,a) = R+(s+, a) (2)

+ γ
∑

s+′∈S+

P+(s+′ | s+, a) max
a′

Q(s+′ , a).

In the following section, we present DynaMITE-RL for
learning a Bayes-optimal agent in a DLCMDP.

4. DynaMITE-RL
We detail DynaMITE-RL, first deriving a variational lower
bound for learning a DLCMDP posterior model, then out-
lining three principals for training DLCMDPs, and finally
integrating them into our training objective.

Variational Inference for Dynamic Latent Contexts.
Given that we do not have direct access to the transition
and reward functions of the DLCMDP, following Zintgraf
et al. (2020), we infer the posterior p(m | τ:t), and reason
about the latent embedding m instead. Since exact posterior
computation over m is computationally infeasible, given
the need to marginalize over task space, we introduce the

3

DynaMITE-RL

Figure 2. Qualitative behavior of one DLCMDP episode compar-
ing trained VariBAD and DynaMITE-RL. VariBAD does not model
the transition dynamics of the latent context and fails to adapt to
the changing goal location. By contrast, DynaMITE-RL correctly
infers the transition and consistently reaches the rewarding cell.

variational posterior qφ(m | τ:t), parameterized by φ ∈ Rd,
to enable fast inference at every step. Our learning objec-
tive maximizes the log-likelihood Eπ[log p(τ)] of observed
trajectories. In general, the true posterior over the latent
context is intractable, as is the empirical estimate of the
log-likelihood. To circumvent this, we derive the evidence
lower bound (ELBO) (Kingma & Welling, 2014) to approx-
imate the posterior over m under the variational inference
framework.

Let Z = {mi}K−1
i=0 be the latent contexts for each of the

K sessions in an episode (K is an a priori unknown ran-
dom variable—we do not observe the number of sessions
in an episode). As defined previously, Ω is the collection
of the session terminations. We use a parametric generative
distribution model for the state-reward trajectory, condi-
tioned on the action sequence: pθ(s0, r1, s1, . . . , rH , sH |
a0, . . . , aH−1). In what follows, we drop the conditioning
on a:H−1 for brevity.

The variational lower bound can be expressed as:

log pθ(τ) ≥ Eqφ(Z,Ω|τ:t)
[

log pθ(τ | Z,Ω)
]︸ ︷︷ ︸

reconstruction

(3)

−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω))︸ ︷︷ ︸
regularization

= LELBO,t,

which can be estimated via Monte Carlo sampling over
a learnable approximate posterior qφ. In optimizing the
reconstruction loss of session transitions and rewards, the
learned latent variables should capture the unobserved MDP

parameters. The full derivation of the ELBO for a DLCMDP
is provided in Appendix A.

Figure 2 depicts a (qualitative) didactic GridWorld example
with varying goals. The VariBAD agent does not account for
latent goal dynamics and gets stuck after reaching the goal
in the first session. By contrast, DynaMITE-RL employs
the latent context dynamics model to capture goal changes,
and adapts to the changes across sessions.

Consistency of Latent Information. In the DLCMDP for-
mulation, each session is itself an MDP with a latent context
fixed across the session. This within-context stationarity
means new observations can only increase the information
the agent has about this context. In other words, the agent’s
posterior over latent contexts gradually hone in on the true
latent distribution. Although this true distribution remain
unknown, this insight suggest the use of a session-based con-
sistency loss, which penalizes an increase in KL-divergence
between the current and final posterior belief within a ses-
sion. Let dH−1 = 1 and ti ∈ {0, . . . ,H} be a random vari-
able denoting the last timestep of session i ∈ {0, . . . ,K−1},
i.e., ti = min{t′ ∈ Z≥0 :

∑t′

t=0 dt = i+ 1}. At each time
t in session i, we define this loss as

Lconsistency,t = (4)

max{DKL(qφ(mi | τ:t+1) ‖ qφ(mi | τ:ti))
−DKL(qφ(mi | τ:t) ‖ qφ(mi | τ:ti)), 0}

where qφ(mi | τ:ti) is the final posterior in session i. Us-
ing temporal consistency to regularize inference introduces
an explicit inductive bias that allows for better posterior
estimation.
Remark 4.1. We introduce session-based consistency for
DLCMDPs, though it is also relevant in single-session set-
tings with non-dynamic latent context. Indeed, as we discuss
below, while VariBAD focuses on single sessions, it does
not constrain the latent’s posterior to be identical to final pos-
terior belief. Consistency may be useful in settings where
the underlying latent variable is stationary, but may hurt
performance when this variable is indeed changing. Since
our modeling approach allows latent context changes across
sessions, incorporating consistency regularization does not
generally hurt performance.

Latent Belief Conditioning. Unlike the usual BAMDP
framework, DLCMDPs allow one to model temporal
changes of latent contexts via dynamics T (m′ | m) across
sessions. To incorporate this model into belief estimation,
in addition to the history (τ:t, d:t), we condition the pos-
terior on the final latent belief qφ(m′, d′ | m, d, τ:t) from
the previous session, and impose KL-divergence matching
between this belief and the prior distribution pθ(m′ | m).

Reconstruction Masking. When the agent is at time t,
Zintgraf et al. (2020) encode past interactions to obtain

4

DynaMITE-RL

Algorithm 1 DynaMITE-RL
1: Input: env, policy, critic, encoder, decoder
2: for iter = 1 to N do
3: Collect DLCMDP episode
4: Train VAE by maximizing ELBO using Eq. (6)
5: Train policy and critic with any online RL algorithm
6: end for

the current posterior qφ(m | τ:t) since this is all the in-
formation available for inference about the current task
(see Eq. (3)). They use this posterior to decode the en-
tire trajectory—including future transitions—from different
sessions to optimize the lower bound during training. The
insight is that decoding both the past and future allows the
posterior model to perform inference about unseen states.
However, we observe that when the latent context is stochas-
tic, reconstruction over the full sequence is detrimental to
training efficiency. The model is attempting to reconstruct
transitions outside of the current session that may be irrele-
vant or biased given the latent-state dynamics, rendering it a
more difficult learning problem. Instead we reconstruct only
the transitions within the session defined by the termination
indicators, i.e.,

Lsession-ELBO,t = (5)

Eqφ(Z,Ω|τ:t)
[

log pθ(τti−1+1:ti | Z,Ω)
]

−DKL(qφ(Z,Ω | τ:t)) ‖ pθ(Z,Ω))

if time t is in session i.

DynaMITE-RL. By incorporating the three modifications
above, we obtain at the following training objective for our
variational meta-RL approach:

LDynaMITE-RL(θ, φ) = (6)
H−1∑
t=0

[
Lsession-ELBO,t(θ, φ) + βLconsistency,t(φ)

]
where β is a hyperparameter for the consistency loss. We
present simplified pseudocode for training DynaMITE-RL
in Algorithm 1 and a detailed algorithm in Appendix B.

Implementation Details. We use proximal policy optimiza-
tion (PPO) (Schulman et al., 2017) for online RL training.
We introduce a posterior inference network that outputs a
Gaussian over the latent context for the i-th session and the
session termination indicators, qφ(mi, d:t | τ:t,mi−1), con-
ditioned on the history and posterior belief from the previous
session. We parameterize the inference network as an RNN,
specifically a uni-directional gated recurrent unit (Cho et al.,
2014), with shared parameters, but different multi-layer per-
ceptron (MLP) output heads: one head for predicting the
logits for session termination, and another for the posterior
belief. In practice, the posterior MLP outputs the parameters

Figure 3. Model architecture of DynaMITE-RL.

of a Gaussian qφm(mi | τ:t,mi−1) = N (µ(τ:t),Σ(τ:t)).
The session termination network applies a sigmoid activa-
tion function σ(x) = 1

1+e−x to the MLP output. A decoder
network, also parameterized using MLPs, reconstructs tran-
sitions and rewards given the session’s latent context mi,
current state st, and action at, i.e., pTθ (st+1 | st, at,mt)
and pRθ (rt+1 | st, at,mt).

The final objective is to maximize:

L(θ, φ, ψ) = E
[
Jπ(ψ) + λLDynaMITE-RL(φ, θ)

]
(7)

where J is the expected return and λ trades off this return
with the variational inference objective. Following PPO
(Schulman et al., 2017), the actor loss Jπ and critic loss
Jω are, respectively, Jπ = Eτ∼πψ [log πθ(a | s,m)Â] and
Jω = Eτ∼πψ [(Q(s, a,m) − (r + V (s′,m))2] where V is
the target network and Â is the advantage function. We
also add an entropy bonus to ensure sufficient exploration in
more complex domains. Figure 3 depicts the implemented
model architecture above.

5. Experiments
We present experiments that demonstrate, while VariBAD
and other meta-RL methods struggle to learn good policies
given nonstationary latent contexts, DynaMITE-RL exploits
the causal structure of a DLCMDP to more efficiently learn
performant policies. We compare our approach to several
state-of-the-art meta-RL baselines, showing its significantly
better performance.

Environments. We test DynaMITE-RL on a suite of tasks
including gridworld navigation, continuous control, and
human-in-the-loop robot assistance as shown in Figure 4.
Several of these environments are commonly used in the
meta-RL literature. For example, gridworld navigation and
MuJoCo (Todorov et al., 2012) locomotion tasks are con-
sidered by Zintgraf et al. (2020) and Choshen & Tamar
(2023). We modify these environments to incorporate tem-
poral shifts in the reward and/or environment dynamics. To
achieve good performance under these conditions, a learned

5

DynaMITE-RL

1

2

Figure 4. The environments considered in evaluating DynaMITE-RL. Each environment exhibits some change in reward and/or dynamics
between sessions including changing goal locations (left and middle left), changing target velocities (middle right), and evolving user
preferences of itch location (right).

Figure 5. Learning curves for DynaMITE-RL and baseline methods. Shaded areas represent standard deviation over 5 different random
seeds for each method and 3 for ScratchItch. In each of the evaluation environments, we observe that DynaMITE-RL exhibits better
sample efficiency and converges to better environment returns than the baseline methods.

policy must adapt to the latent state dynamics. More details
about the environments and hyperparameters can be found
in Appendix D and E.

Gridworld. We modify the Gridworld environment used by
Zintgraf et al. (2020). In a 5 × 5 gridworld, two possible
goals are sampled uniformly at random in each episode.
One of the two goals has a +1 reward while the other has
0 reward. The rewarding goal location changes after each
session according to a predefined transition function. Goal
locations are provided to the agent in the state—the only
latent information is which goal has positive reward.

Continuous Control. We experiment with two tasks from
OpenAI Gym (Brockman et al., 2016): Reacher and
HalfCheetah. Reacher is a two-jointed robot arm and its
task is to reach a 2D goal location that moves along a cir-
cular path according to some unknown transition function.
HalfCheetah is a locomotion task which we modify to in-
corporate changing latent contexts w.r.t. the target direction
(HalfCheetah-Dir), target velocity (HalfCheetah-Vel), and
additionally magnitude of opposing wind forces on the agent
(HalfCheetah-Wind+Vel). The results for HalfCheetah-Dir
and HalfCheetah-Wind+Vel can be found in Appendix C.

Assistive Itch Scratching (Erickson et al., 2020). The en-
vironment consists of a human and a wheelchair-mounted

7-degree-of-freedom (DOF) Jaco robot arm. The human has
limited-mobility and requires robot assistance to scratch an
itch. We simulate stochastic latent context by moving the
itch location—unobserved by the agent—along the human’s
right arm.

Baselines. We compare DynaMITE-RL to several state-of-
the-art (approximately) Bayes-optimal meta-RL methods
including RL2 (Duan et al., 2016), VariBAD (Zintgraf et al.,
2020), and ContraBAR (Choshen & Tamar, 2023). RL2

(Duan et al., 2016) is an RNN-based policy gradient method
which encodes environment transitions in the hidden state
and maintains them across episodes. VariBAD reduces to
RL2 without the decoder and the variational reconstruction
objective for environment transitions. ContraBAR employs
a contrastive learning objective to discriminate future ob-
servations from negative samples to learn an approximate
sufficient statistic of the history. As Zintgraf et al. (2020)
already demonstrate better performance by VariBAD than
posterior sampling methods (e.g., PEARL (Rakelly et al.,
2019)) we exclude such methods from our comparison.

DynaMITE-RL outperforms prior meta-RL methods in
a DLCMDP. In Figure 5, we show the learning curves for
DynaMITE-RL and baseline methods. We first observe
that DynaMITE-RL significantly outperforms the baselines

6

DynaMITE-RL

Figure 6. Average test-time performance on MuJoCo tasks and ScratchItch task, trained separately with 5 seeds for MuJoCo tasks and 3
for itching task. The meta-trained policies are rolled out for 5 episodes to show how they adapt to the task. The returns averaged across the
task with 95% confidence intervals shaded. We demonstrate that in our DLCMDP setting, the baseline methods struggle to adapt to the
changing dynamics of the environment while our method learns the latent transitions and achieves good performance across all domains.

across all domains in terms of sample efficiency and average
environment returns. RL2, VariBAD, and ContraBAR all
perform poorly in the DLCMDP, converging to a subopti-
mal policy. By contrast, DynaMITE-RL accurately models
the latent dynamics and consistently achieves high rewards
despite the nonstationary latent context. We also evaluate
an oracle with access to ground-truth session terminations
and find that DynaMITE-RL with learned session termina-
tions effectively recovers session boundaries and matches
oracle performance with sufficient training. Following Zint-
graf et al. (2020), we measure test-time performance of
meta-trained policies by evaluating per-episode return for
5 consecutive episodes, see Figure 6. DynaMITE-RL and
all of the baselines are designed to maximize reward within
a single rollout hence they generally plateau after a single
episode. Our empirical results validate that DynaMITE-RL
learns a policy robust to changing latent contexts at infer-
ence time, while the baseline methods fail to adapt and get
stuck in suboptimal behavior. The full set of evaluation
results for all environments can be found in Appendix C.

Each component of DynaMITE-RL contributes to effi-
cient learning in a DLCMDP: We ablate the three key
components of DynaMITE-RL to understand their impact
on the resulting policy. We compare full DynaMITE-RL to:
(i) DynaMITE-RL w/o Consistency, which does not include
consistency regularization; (ii) DynaMITE-RL w/o Condi-
tioning, which does not include latent conditioning; and
(iii) DynaMITE-RL w/o SessRecon, which does not include
session reconstruction. In Figure 7, we report the learn-
ing curves for each of these ablations and vanilla VariBAD
for reference. First, we observe that without prior latent
belief conditioning, the model converges to a suboptimal
policy slightly better than VariBAD, confirming the im-
portance of modeling the latent transition dynamics of a
DLCMDP. Second, we find that session consistency regular-
ization reinforces the inductive bias of changing dynamics
and improves the sample efficiency of learning an accurate

posterior model in DLCMDPs. Finally, session reconstruc-
tion masking also improves the sample efficiency by not
reconstructing terms that are irrelevant and potentially bi-
ased.

DynaMITE-RL is robust to varying levels of latent
stochasticity. We study the effect of varying the number of
sessions—in effect the number of latent context switches—
over an episode of a fixed time horizon. For the HalfCheetah-
Vel environment, we fix the episode horizon H = 400, dis-
tributing it across K sessions such that the lengths of the
first K − 1 sessions are sampled from a Poisson distribu-
tion, li ∼ Poisson(HK) > 0 and the final session has length
H −

∑K−1
i=1 li.1 As we increase the number of sessions,

session length decreases and there will be more latent con-
text switches. Setting the number of context switches to 1
is equivalent to a latent MDP episode with a static latent
variable. As shown in Figure 8, DynaMITE-RL performs
better, on average, than VariBAD, with lower variance
in a latent MDP. We hypothesize that, in the case of la-
tent MDP, consistency regularization helps learn a more
accurate posterior model by enforcing the inductive bias
that the latent is static. Otherwise, there is no inherent ad-
vantage in modeling the latent dynamics if it is stationary.
As we gradually increase the number of context switches,
the problem becomes more difficult and closer to a gen-
eral POMDP. VariBAD performance decreases drastically
because it is unable to model the changing latent dynam-
ics while DynaMITE-RL is less affected, highlighting the
robustness of our approach. When we set the number of
contexts equal to the episode horizon length, we recreate a
fully general POMDP and again the performance between
VariBAD and DynaMITE-RL converges.

1We resample if the length of any session is not positive.

7

DynaMITE-RL

Figure 7. Ablating components of DynaMITE-RL. We observe
that prior latent conditioning is crucial in achieving good perfor-
mance in a DLCMDP. Additionally, consistency regularization and
session reconstruction improve the sample efficiency and conver-
gence to a better performing policy.

6. Related Work
POMDPs provide a general framework modeling non-
stationality and partial observability in sequential decision
problems. Many model variants have been introduced, defin-
ing a rich spectrum between episodic MDPs and POMDPs.
The Bayes-adaptive MDP (BAMDP) (Duff, 2002) and the
hidden parameter MDP (HiP-MDP) (Killian et al., 2017) are
special cases of POMDPs in which environment parameters
are unknown and the goal is to infer these parameters online
during an episode. However, neither framework addresses
the dynamics of the latent parameters across sessions, but
instead assume the latent context is constant throughout the
episode. By contrast, DLCMDPs allow one to model the dy-
namics of the latent state, allowing better posterior updates
at inference time.

DynaMITE-RL shares conceptual similarities with other
meta-RL algorithms. Firstly, optimization-based techniques
(Finn et al., 2017; Clavera et al., 2018; Rothfuss et al., 2018)
learn neural network policies that can quickly adapt to new
tasks at test time using policy gradient updates. However,
these methods do not optimize for Bayes-optimal behav-
ior and generally exhibit suboptimal test-time adaptation.
Context-based meta-RL techniques aim to learn policies that
directly infer task parameters at test time, conditioning the
policy on the posterior belief. Such methods include recur-
rent memory-based architectures (Duan et al., 2016; Wang
et al., 2016; Lee et al., 2018) and variational approaches
(Humplik et al., 2019; Zintgraf et al., 2020; Dorfman et al.,
2021). VariBAD, closest to our work, uses variational infer-
ence to approximate Bayes-optimal policies. However, we
have demonstrated above the limitations of VariBAD in DL-
CMDPs, and have developed several crucial modifications
to drive effective learning a highly performant policies in

Figure 8. Ablation studying the effect of number of latent con-
text switches in an episode with fixed horizon on VariBAD and
DynaMITE-RL in HalfCheetah-Vel. The boxplot shows the dis-
tribution over evaluation returns for 25 rollouts of trained policies.
The rollout length is fixed to be 400 timesteps divided across ses-
sions. When the number of context switches is 1 we have a latent
MDP and when it is 400 this is equivalent to a general POMDP.

our setting.

7. Conclusion
We have developed DynaMITE-RL, a meta-RL method to
approximate Bayes-optimal behavior using a latent variable
model. We presented the dynamic latent contextual Markov
Decision Process (DLCMDP), a model in which latent con-
text information changes according to an unknown transition
function, that captures many natural settings. We derived a
graphical model for this problem setting and formalized it
as an instance of a POMDP. DynaMITE-RL is designed to
exploit the causal structure of this model, and in a didactic
GridWorld environment and several challenging continuous
control tasks, we demonstrated that it outperforms exist-
ing meta-RL methods w.r.t. both learning efficiency and
test-time adaptation.

There are a number of directions for future research. While
we only consider Markovian latent dynamics here (i.e. fu-
ture latent states are independent of prior latent states given
the current latent state), we plan to investigate richer non-
Markovian latent dynamics. In real-world applications like
RSs, in which an agent interacts with users over long peri-
ods of time, an RNN architecture may not have sufficient
capacity to capture long histories of user interaction. It
would be interesting to explore transformers to model long
interaction histories in addition to complex non-Markovian
latent dynamics.

8

DynaMITE-RL

8. Broader Impacts
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf,

L. M., Finn, C., and Whiteson, S. A survey of meta-
reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Bellman, R. A markovian decision process. Journal of
Mathematics and Mechanics, 6(5):679—-84, 1957.

Bertsekas, D. Dynamic programming and optimal control:
Volume I, volume 4. Athena scientific, 2012.

Biyik, E., Margoliash, J., Alimo, S. R., and Sadigh, D. Effi-
cient and safe exploration in deterministic markov deci-
sion processes with unknown transition models. In Amer-
ican Control Conference, pp. 1792–1799. IEEE, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI gym.
arXiv preprint arXiv:1606.01540, 2016.

Cao, Z., Bıyık, E., Wang, W. Z., Raventos, A., Gaidon,
A., Rosman, G., and Sadigh, D. Reinforcement learn-
ing based control of imitative policies for near-accident
driving. Robotics: Science and Systems, 2020.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder-decoder for
statistical machine translation. In Conference on Em-
pirical Methods in Natural Language Processing, pp.
1724–1734, 2014.

Choshen, E. and Tamar, A. Contrabar: Contrastive bayes-
adaptive deep rl. In International Conference on Machine
Learning, volume 202, pp. 6005–6027, 2023.

Clavera, I., Rothfuss, J., Schulman, J., Fujita, Y., Asfour,
T., and Abbeel, P. Model-based reinforcement learning
via meta-policy optimization. In Conference on Robot
Learning, pp. 617–629. PMLR, 2018.

Dorfman, R., Shenfeld, I., and Tamar, A. Offline meta
reinforcement learning–identifiability challenges and ef-
fective data collection strategies. Neural Information
Processing Systems, 34:4607–4618, 2021.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever,
I., and Abbeel, P. Rl2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

Duff, M. O. Optimal learning: computational procedures
for bayes-adaptive markov decision processes. PhD the-
sis, University of Massachusetts Amherst, 2002.

Erickson, Z., Gangaram, V., Kapusta, A., Liu, C. K., and
Kemp, C. C. Assistive gym: A physics simulation frame-
work for assistive robotics. In IEEE International Con-
ference on Robotics and Automation. IEEE, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135.
PMLR, 2017.

Freeman, C. D., Frey, E., Raichuk, A., Girgin, S., Mordatch,
I., and Bachem, O. Brax - a differentiable physics engine
for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Ghavamzadeh, M., Mannor, S., Pineau, J., and Tamar, A.
Bayesian reinforcement learning: A survey. Foundations
and Trends in Machine Learning, 8(5-6):359–483, 2015.

Huang, S., Dossa, R. F. J., Raffin, A., Kan-
ervisto, A., and Wang, W. The 37 imple-
mentation details of proximal policy optimiza-
tion. In ICLR Blog Track, 2022. URL https:
//iclr-blog-track.github.io/2022/03/
25/ppo-implementation-details/.

Humplik, J., Galashov, A., Hasenclever, L., Ortega, P. A.,
Teh, Y. W., and Heess, N. Meta reinforcement learning as
task inference. arXiv preprint arXiv:1905.06424, 2019.

Ie, E., Hsu, C., Mladenov, M., Jain, V., Narvekar, S., Wang,
J., Wu, R., and Boutilier, C. RecSim: A configurable
simulation platform for recommender systems. arXiv
preprint arXiv:1909.04847, 2019.

Jannach, D., Manzoor, A., Cai, W., and Chen, L. A survey
on conversational recommender systems. ACM Comput-
ing Surveys (CSUR), 54(5):1–36, 2021.

Jawaheer, G., Weller, P., and Kostkova, P. Modeling user
preferences in recommender systems: A classification
framework for explicit and implicit user feedback. ACM
Transactions on Interactive Intelligent Systems, 4(2):1–
26, 2014.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-Velez,
F. Robust and efficient transfer learning with hidden pa-
rameter markov decision processes. Neural Information
Processing Systems, 2017.

9

http://github.com/google/brax
http://github.com/google/brax
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

DynaMITE-RL

Kim, C., Park, J., Shin, J., Lee, H., Abbeel, P., and Lee,
K. Preference transformer: Modeling human preferences
using transformers for rl. International Conference of
Learning Representations, 2023.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Kwon, J., Efroni, Y., Caramanis, C., and Mannor, S. Rl for
latent mdps: Regret guarantees and a lower bound. Neural
Information Processing Systems, 34:24523–24534, 2021.

Lee, G., Hou, B., Mandalika, A., Lee, J., Choudhury, S.,
and Srinivasa, S. S. Bayesian policy optimization for
model uncertainty. International Conference on Learning
Representations, 2018.

Liu, S., See, K. C., Ngiam, K. Y., Celi, L. A., Sun, X., and
Feng, M. Reinforcement learning for clinical decision
support in critical care: comprehensive review. Journal
of Medical Internet Research, 22(7):e18477, 2020.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D.
Efficient off-policy meta-reinforcement learning via prob-
abilistic context variables. In International Conference
on Machine Learning, pp. 5331–5340. PMLR, 2019.

Ross, S., Chaib-draa, B., and Pineau, J. Bayes-adaptive
pomdps. Neural Information Processing Systems, 2007.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. International
Conference on Learning Representations, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Steimle, L. N., Kaufman, D. L., and Denton, B. T. Multi-
model markov decision processes. IISE Transactions, 53
(10):1124–1139, 2021.

Tennenholtz, G., Hallak, A., Dalal, G., Mannor, S., Chechik,
G., and Shalit, U. On covariate shift of latent confounders
in imitation and reinforcement learning. International
Conference of Learning Representations, 2022.

Tennenholtz, G., Merlis, N., Shani, L., Mladenov, M., and
Boutilier, C. Reinforcement learning with history de-
pendent dynamic contexts. In Krause, A., Brunskill, E.,
Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 34011–34053. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/tennenholtz23a.html.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H.,
Leibo, J. Z., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Yu, C., Liu, J., Nemati, S., and Yin, G. Reinforcement learn-
ing in healthcare: A survey. ACM Computing Surveys
(CSUR), 55(1):1–36, 2021.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hof-
mann, K., and Whiteson, S. VariBAD: A very good
method for bayes-adaptive deep rl via meta-learning.
International Conference of Learning Representations,
2020.

10

https://proceedings.mlr.press/v202/tennenholtz23a.html
https://proceedings.mlr.press/v202/tennenholtz23a.html

DynaMITE-RL

A. Full ELBO Derivation for DLCMDP
We will define a full trajectory τ = {s0, a0, r1, s1, a1, . . . , rH−1, sH} where H is the horizon. τ:t is the history of
interactions up to a global timestep t, i.e. τ:t = {s0, a0, r1, s1, a1, . . . rt−1, st}.

Let Z = {m0, . . . ,mK−1} be the collection of latent contexts in a trajectory where K is a random variable representing
the number of switches the latent variable will have until time H , i.e., K =

∑H−1
t=0 dt. Additionally, we denote dt as the

session termination prediction at timestep t but dH−1 ≡ 1.

We divide a full trajectory into sessions and define a discrete random variable ti ∈ {0, . . . ,H − 1} be a random variable
denoting the last timestep of session i ∈ {0, . . . ,K−1}, i.e., ti = min{t′ ∈ Z≥0 :

∑t′

t=0 dt = i+ 1}, with t−1 ≡ −1 . We
also denote the next session index i′ = i+ 1.

An arbitrary session i′ can then be represented as, {sti+1, ati+1, rti+1, sti+2, . . . , sti′−1, ati′−1, rti′}.

At any time-step t, we want to maximize the log-likelihood of the full dataset of trajectories, D, collected following policy
π, e.g. Eπ[log pθ(τ)]. However, with the presence of latent variables, whose samples cannot be observed in the training
data, estimating the empirical log-likelihood is generally intractable. Instead, we optimize for the evidence lower bound
(ELBO) of this function with a learned approximate posterior, qφ.

We then define the posterior inference model, qφ(Z, d:H | τ:t), which outputs the posterior distribution for the latent context
and session termination predictions conditioned on the trajectory history up until timestep t.

Below we provide the derivation for the variational lower bound of the log-likelihood function log pθ(τ) for a single
trajectory:

log pθ(τ) = log

∫
Z,Ω

pθ(τ,Z,Ω)

= log

∫
Z,Ω

pθ(τ,Z,Ω)
qφ(Z,Ω | τ:t)
qφ(Z,Ω | τ:t)

= logEqφ(Z,Ω|τ:t)

[
pθ(τ,Z,Ω)

qφ(Z,Ω | τ:t)

]
= logEqφ(Z,Ω|τ:t)

[
pθ(τ | Z,Ω) pθ(Z,Ω)

qφ(Z,Ω | τ:t)

]
≥ Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω) + log pθ(Z,Ω)− log(qφ(Z,Ω | τ:t))

]
= Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω)

]︸ ︷︷ ︸
reconstruction

−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))︸ ︷︷ ︸
regularization

= ELBOt(θ, φ)

We extend this to derive the lower bound for all trajectories in dataset D.

Eτ∼D
[

log pθ(τ)

]
= Eτ∼D

[
Eqφ(Z,Ω|τ:t)

[
log pθ(τ | Z,Ω)

]
−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))

]

Prior:

pθ(Z,Ω) = pθ(m
0 | d:t0)pθ(d:t0)

K−2∏
i=0

pθ(m
i′ | mi, dti+1:ti′)pθ(dti+1:ti′)

11

DynaMITE-RL

Variational Posterior:

qφ(Z,Ω | τ:t) = qφ(m0 | τ:t0 , d:t0)qφ(d:t0)

K−2∏
i=−1

qφ(mi′ | τti+1:ti′ ,m
i, dti+1:ti′)qφ(dti+1:ti′)

Reconstruction Term:

log pθ(τ | Z,Ω) = log pθ(s0, r1, . . . , rH−1, sH | Z,Ω, a:H−1)

= log

K−2∏
i=−1

pθ({(st, rt)}ti′t=ti+1 | Z,Ω, a:H−1)

= log

K−2∏
i=−1

[
pθ(sti+1)

ti′∏
t=ti+1

pθ(st+1 | st, at,Z, dt) pθ(rt+1 | st, at,Z, dt)
]

=

K−2∑
i=−1

[
log pθ(sti+1) +

ti′∑
t=ti+1

log pθ(st+1, rt+1 | st, at,Z, dt)
]

Putting it all together:

log pθ(τ) ≥ Eqφ(Z,Ω|τ:t)
[

log pθ(τ | Z,Ω)
]︸ ︷︷ ︸

reconstruction

−DKL(qφ(Z,Ω | τ:t)) || pθ(Z,Ω))︸ ︷︷ ︸
regularization

= Eqφ(Z,Ω|τ:t){
K−2∑
i=−1

[
log pθ(sti+1 | Z, dti) +

ti′∑
t=ti+1

log pθ(st+1, rt+1 | st, at,Z, dt)
]
}

−DKL(qφ(m0 | τ:t0 , d:t0) ‖ pθ(m0 | d:H)

−
K−2∑
i=0

DKL(qφ(mi′ | τti+1:ti′ ,m
i, dti+1:ti′) ‖ pθ(m

i′ | mi, dti+1:ti′))

−
K−2∑
i=0

DKL(qφ(dti+1:ti′) ‖ pθ(dti+1:ti′))

B. Pseudocode for DynaMITE-RL
Here we provide the pseudocode for training DynaMITE-RL and for rolling out the policy during inference time.

Algorithm 2 DynaMITE-RL
1: Input: env, αψ, αω
2: Randomly initialize policy πψ(a | s,m), critic Qω(s, a,m) decoder pθ(s′, r′ | s, a,m), encoder qφ(m′|·), and replay

buffer D = ∅
3: for i = 1 to N do
4: D[i]← COLLECT TRAJECTORY(πψ, qφ, env)
5: . Train VAE
6: Sample batches of trajectories from D
7: Compute ELBO with Eq. 6 and update pθ, qφ
8: . Update actor and critic using PPO
9: ψ ← ψ − αψ∇ψJπ

10: ω ← ω − αω∇ωJQ
11: end for

12

DynaMITE-RL

Algorithm 3 COLLECT TRAJECTORY

1: Input: πθ, qφ, env
2: (s0,m0) ∼ ν0 {sample initial state and belief}
3: k = 0 {session index}
4: for t = 0 to H − 1 do
5: at ∼ πψ(at | st,mt) {get action}
6: (st+1, rt+1) = env.step(at) {env step}
7: . Posterior update
8: if k == 0 then
9: mt+1, dt+1 ∼ qφ(· | τ:t+1)

10: else
11: mt+1, dt+1 ∼ qφ(· | τ:t+1,mtk−1

)
12: end if
13: if session-terminate(dt+1) then
14: k += 1 {increment session index}
15: (st+1,mt+1) ∼ ν0 {reset the state}
16: end if
17: end for

C. Additional Experimental Results
Here, we provided the full set of unnormalized experimental results.

RL2 ContraBAR VariBAD DynaMITE-RL
Gridworld 33.4± 1.6 34.5± 0.9 31.8± 1.9 42.9± 0.5
Reacher −150.6± 1.2 −101.6± 3.2 −102.4± 4.2 −8.4± 5.1
HalfCheetah-Dir −420± 4.6 −256.5± 3.2 −242.5± 5.6 −68.5± 2.3
HalfCheetah-Vel −513.2± 8.7 −312.3± 4.8 −363.5± 3.2 −146.0± 8.1
HalfCheetah-Wind+Vel −493.5± 1.8 −243.4± 2.6 −188.5± 4.4 −42.8± 6.9
ScratchItch 50.4± 16.8 114.6± 24.4 81.8± 6.9 231.2± 23.3

Table 1. Average single episode returns for DynaMITE-RL and other benchmark algorithms across all environments. Results for all
environments is averaged across 5 seeds beside ScratchItch which has 3 seeds. Algorithm with the highest average return are shown in
bold. DynaMITE-RL achieves the highest return on all of the evaluation environments.

D. Evaluation Environment Description
In this section, we describe the details of the domains we used for our experiments. We provide visualizations of each
simulation environment in Figure 4.

D.1. Gridworld Navigation with Alternating Goals

Following (Zintgraf et al., 2020), we extend the 5× 5 gridworld environment as shown in Figure 2. For each episode, two
goal locations are selected randomly. However, only one of the goal locations provide a positive reward when the agent
arrives at the location. The rewarding goal location changes between sessions according to some transition dynamics. In our

experiments, we simulate latent dynamics using a simple transition matrix:
[
0.2 0.8
0.8 0.2

]
. Between each session, the goal

location has a 20% chance of remaining the same as the previous session and 80% chance of switching to the other location.
The agent receives a reward of -0.1 on non-goal cells and +1 at the goal cell, e.g.

rt =

{
1 if st = g

−0.1 otherwise

13

DynaMITE-RL

where st is the current state and g is the current rewarding goal cell. Similar to (Zintgraf et al., 2020), we set the horizon
length to 15 and train on episodes with 4 sessions.

D.2. MuJoCo Continuous Control

For our study, we use the Brax (Freeman et al., 2021) simulator, a physics engine for large scale rigid body simulation written
in JAX. We use JAX [2], a machine learning framework which has just-in-time (jit) compilation that perform operations on
GPU and TPU for faster training and can optimize the execution significantly. We evaluate the capacity of our method to
perform continuous control tasks with high-dimensional observation spaces and action spaces.

D.2.1. REACHER

Reacher is a two-joint robot arm task part of OpenAI’s MuJoCo tasks (Brockman et al., 2016). The goal is to move the
robot’s end effector to a target 2D location. The goal locations change between each session following a circular path defined
by: [x, y] = [rcos(α · i), rsin(α · i)] where i is the session index, α ∼ U(0, 2π) is the initial angle, and r ∼ U(0.1, 0.2) is
the circle’s radius. The observation space is 11 dimensional consisting of information about the joint locations and angular
velocity. We remove the target location from the observation space. The action space is 2 dimension representing the torques
applied at the hinge joints. The reward at each timestep is based on the distance from the reacher’s fingertip to the target:
rt = −||sf − sg||2 − 0.05 · ||at||2 where sf is the (x, y) location of the fingertip and sg for the target location.

D.2.2. HALF-CHEETAH

This environment builds off of the Half-Cheetah environment from OpenAI gym (Brockman et al., 2016), a MuJoCo
locomotion task. In these tasks, the challenge is to move legged robots by applying torques to their joints via actuators. The
state space is 17-dimensional, position and velocity of each joint. The initial state for each joint is randomized. The action
space is a 6-dimensional continuous space corresponding to the torque applied to each of the six joints.

Half-Cheetah Dir(ection): In this environment, the agent has to run either forward or backward and this varies between
session following a transition function. At the first session, the task is decided with equal probability. The reward is
dependent on the goal direction:

rt =

{
vt + 0.5 · ||at||2 if task = forward
−vt + 0.5 · ||at||2 otherwise

where vt is the current velocity of the agent.

Half-Cheetah Vel(ocity): In this environment, the agent has to run forward at a target velocity, which varies between
sessions. The task reward is: rt = −||vs − vg||2 − 0.05 · ||at||2, where vs is the current velocity of the agent and vg is the
target velocity. The second term penalizes the agent for taking large actions. The target velocity varies between session
according to: vg = 1.5 + 1.5sin(0.2 · i).

Half-Cheetah Wind + Vel: The agent is additionally subjected to wind forces which is applied to the agent along the
x-axis. Every time the agent takes a step, it drifts by the wind vector. The force is changing between sessions according to:
fw = 10 + 10 sin(0.3 · i).

D.3. Assistive Gym

Our assistive itch scratching task is adapted from Assistive Gym (Erickson et al., 2020), similar to (Tennenholtz et al., 2022).
Assistive Gym is a simulation environment for commercially available robots to perform 6 basic activities of daily living
(ADL) tasks - itch scratching, bed bathing, feeding, drinking, dressing, and arm manipulation. We extend the itch scratching
task in Assistive Gym.

The itch scratching task contains a human and a wheelchair-mounted 7-DOF Jaco robot arm. The robot holds a small
scratching tool which it uses to reach a randomly target scratching location along the human’s right arm. The target location
gradually changes along the right arm according to a predefined function, x = 0.5 + sin(0.2 · i) where x is then projected
onto a 3D point along the arm. Actions for each robot’s 7-DOF arm are represented as changes in joint positions, R7. The
observations include, the 3D position and orientation of the robot’s end effector, the 7D joint positions of the robot’s arm,

14

DynaMITE-RL

forces applied at the robot’s end effector, and 3D positions of task relevant joints along the human body. Again, the target
itch location is unobserved to the agent.

The robot is rewarded for moving its end effector closer to the target and applying less than 10 N of force near the target.
Assistive Gym considers a person’s preferences when receiving care from a robot. For example, a person may prefer the
robot to perform slow actions or apply less force on certain regions of the body. Assistive Gym computes a human preference
reward, rH(s), based on how well the robot satisfies the human’s preferences at state s. The human preference reward is
combined with the robot’s task success reward rR(s) to form a dense reward at each timestep, r(s) = rR(s) + rH(s).

The full human preference reward is defined as:

rH(s) = −α · ω[Cv(s), Cf (s), Chf (s), Cfd(s), Cfdv(s), Cd(s), Cp(s)]

where α is a vector of activations in {0, 1} depicting which components of the preference are used and ω is a vector of
weights for each preference category. C•(s) is the cost for deviating from the human’s preference.

Cv(s) for high end effector velocities. Cf (s) for applying force away from the target location. Chf (s) for applying high
forces near the target (> 10 N). Cfd(s) for spilling food or water. Cfdv(s) for food / water entering mouth at high velocities.
Cd(s) for fabric garments applying force to the body. Cp(s) for applying high pressure with large tools.

For our itch-scratching task, we set α = [1, 1, 1, 0, 0, 0, 0] and ω = [0.25, 0.01, 0.05, 0, 0, 0, 0].

E. Implementation Details and Training Hyperparameters
In this section, we provide the hyperparameter values used for training each of the baselines and DynaMITE-RL. We also
provide more detailed explanation of the model architecture used for each method.

We used Proximal Policy Optimization (PPO) training. The details of important hyperparameters use to produce the
experimental results are presented in Table 2.

Gridworld Reacher HalfCheetah ScratchItch
Max episode length 60 400 400 200
Number of parallel processes 16 2048 2048 32
Value loss coefficient 0.5 - - -
Entropy coefficient 0.01 0.05 0.05 0.1
Learning rate 3e-4 - - -
Discount factor (γ) 0.99 - - -
GAE lambda (λGAE) 0.95 - - -
Max grad norm 0.5 - - -
PPO clipping epsilon 0.2 - - -
Latent embedding dimension 5 16 16 16
ELBO loss coefficient 1.0 - - -
Policy learning rate 3e-4 - - -
VAE learning rate 3e-4 - - -
State/action/reward FC embed size 8 32 32 32
Consistency loss weight (β) 0.5 - - -
Variational loss weight (λ) 0.01 - -

Table 2. Training hyperparameters. Dashed entries means the same value is used across all environments.

We also employ several PPO training tricks detailed in (Huang et al., 2022), specifically normalizing advantage computation,
using Adam epsilon 1e− 8, clipping the value loss, adding entropy bonus for better exploration, and using separate MLP
networks for policy and value functions.

We use the same hyperparameters as above for RL2 and VariBAD if applicable. For RL2, the state and reward are embedded
through fully connected (FC) layers, concatenated, and then passed to a GRU. The output is fed through another FC layer
and then the network outputs the actions.

15

DynaMITE-RL

ContraBAR: Code based on the author’s original implementation: https://github.com/ec2604/ContraBAR. ContraBAR
uses contrastive learning, specifically Contrastive Predictive Coding (CPC) (Oord et al., 2018), to learn an information
state representation of the history. They use CPC to discriminate between positive future observations o+

t+k and K negative
observations {o−t+k}Ki=1 given the latent context ct. The latent context is generated by encoding a sequence of observations
through an autoregressive model. They apply an InfoNCE loss to train the latent representation.

DynaMITE-RL: The VAE architecture consists of a recurrent encoder, which at each timestep t takes as input the tuple
(at−1, rt, st). The state, action, and reward are each passed through a different linear layers followed by ReLU activations
to produce separate embedding vectors. The embedding outputs are concatenated, inputted through an MLP with 2 fully-
connected layers of size 64, and then passed to a GRU to produce the hidden state. Fully-connected linear output layers
generate the parameters of a Gaussian distribution: (µ(τ:t),Σ(τ:t)) for the latent embedding m. Another fully-connected
layer produces the logit for the session termination. The reward and state decoders are MLPs with 2 fully-connected layers of
size 32 with ReLU activations. They are trained my minimizing a Mean Squared Error loss against the ground truth rewards
and states. The policy and critic networks are MLPs with 2 fully-connected layers of size 128 with ReLU activations. For
the domains where the reward function is changing between sessions, we only train the reward-decoder. For HalfCheetah
Wind + Vel, we also train the transition decoder.

16

