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Abstract: Learning robot policies using imitation learning requires collecting
large amounts of costly action-labeled expert demonstrations, which fundamen-
tally limits the scale of training data. A promising approach to address this bot-
tleneck is to harness the abundance of unlabeled observations—e.g., from video
demonstrations—to learn latent action labels in an unsupervised way. However,
we find that existing methods struggle when applied to complex robot tasks requir-
ing fine-grained motions. We design continuous latent action models (CLAM)
which incorporate two key ingredients we find necessary for learning to solve
complex continuous control tasks from unlabeled observation data: (a) using con-
tinuous latent action labels instead of discrete representations, and (b) jointly
training an action decoder to ensure that the latent action space can be easily
grounded to real actions with relatively few labeled examples. Importantly, the
labeled examples can be collected from non-optimal play data, enabling CLAM
to learn performant policies without access to any action-labeled expert data. We
demonstrate on continuous control benchmarks in DMControl (locomotion) and
MetaWorld (manipulation), as well as on a real WidowX robot arm that CLAM
significantly outperforms prior state-of-the-art methods, remarkably with a 2−3×
improvement in task success rate compared to the best baseline. Videos and code
can be found at clamrobot.github.io. 1

Keywords: Latent Action Models, Self-supervised Pretraining

1 Introduction
Large pretrained foundation models in natural language processing [1, 2] and computer vision [3, 4]
have demonstrated impressive capabilities in a variety of challenging downstream tasks. A key in-
gredient to the success of foundation models has been the abundance of Internet-scale pretraining
text and image corpora, which enable foundation models to learn rich representations [5]. Unfortu-
nately, replicating this success in the context of training capable robotics policies remains an open
challenge. While many efforts have been made to create larger robotics datasets [6, 7, 8], these
efforts still rely on manual data collection and hence are unlikely to scale to datasets of the same
order of magnitude as in computer vision and NLP domains.

Videos from Internet sources such as YouTube contain information that can potentially inform robots
about the physical world and how to perform various tasks. Leveraging these data sources would
allow for more cost-effective scaling of robot policies than training workers to teleoperate robot
hardware. While in-the-wild videos are abundant and freely available, it is non-trivial how to ef-
fectively utilize them for learning robot policies. In this work, we focus on ameliorating one of the
primary issues with learning from video data: the lack of low-level action labels for supervising
modern robot learning paradigms such as reinforcement learning and imitation learning (IL).
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Figure 1: Overview of CLAM. CLAM consists of a latent inverse dynamics model, fϕ, which in-
fers the latent action between a transition and latent forward dynamics model, gψ , which predicts
the future observation conditioned on the latent action. CLAM learns a latent action space through
the self-supervised objective of future observation reconstruction. Unlike prior work, CLAM pro-
duces continuous latent actions. To ensure the learned latent space is amenable to decoding to
real-world actions, CLAM jointly trains the action decoder and the latent action model.

Prior works on learning from observation-only data either require off-the-shelf models to anno-
tate visual features, limiting the expressivity of the policy representation [9, 10], or require a large
amount of action-labeled expert data for downstream imitation learning [11, 12, 13]. Instead, we
adopt a self-supervised framework for training an inverse dynamics models (IDMs) to annotate
observation-only data with action labels which can subsequently be used for IL. Since these action
labels reside in some latent space, we propose to jointly train an action decoder that grounds these
latent actions to executable environment actions. We show that this action decoder can be trained on
a small amount of labeled play data, eliminating the need for expensive expert data collection [14].

In this work, we identify several key architectural improvements that greatly improve the paradigm
of learning from observation-only data in continuous control settings. Our contributions are:

1. We demonstrate that latent actions should not be discretized, contrary to prior works, but rather
remain continuous to be effective for fine-grained robot control tasks.

2. We propose to jointly train a latent action model and action decoder for grounding latent ac-
tions to the environment. We demonstrate that a jointly trained continuous latent action space
improves downstream policy performance by 2−3× on continuous control tasks in DMControl,
MetaWorld, and on a real WidowX robot arm.

3. We learn a performant control policy without ever training on labeled expert demonstrations,
instead leveraging a small amount of action labels from random or play data.

2 Problem Formulation
Learning from in-the-wild video data is challenging and an active area of research in robotics. In
the scope of this paper, we focus on single-task, single-embodiment settings with observation-only
data and leave the challenge of learning from real in-the-wild videos for future work.

In this setting, a large offline dataset of observation-only data of varying expertise levels, Dunlabeled,
is provided. This dataset is representative of in-the-wild video data which is not always optimal and
lacks action labels. We also assume access to a small dataset of labeled data, Dlabeled for grounding
to true robot actions. This is the only labeled data available. Crucially, Dlabeled does not necessarily
need to be expert, but rather can be random or play data. This enables CLAM to be more scalable
than the existing methods in the literature, as non-expert play data is significantly easier to collect
than expert task demonstrations [14]. Finally, we assume a subset of the unlabeled data comes
from an expert: Dunlabeled-expert ⊆ Dunlabeled. This assumption is necessary for imitation learning, as
the remaining data do not carry any information to learn the task. We note that our methods and
all baselines have access to these same datasets. However, methods differ in whether they require
labeled data in various parts of their pipeline.
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3 Continuous Latent Action Models
We introduce continuous latent action models (CLAM), a scalable approach for training continuous
control policies from unlabeled observation data. We show an overview of the CLAM architecture in
Figure 1 and summarize the training procedure in Algorithm 1 (Appendix C). CLAM consists of two
stages. In Stage 1 (Section 3.1), we train a latent action model (LAM) for relabeling observation-
only data. We then use this LAM in Stage 2 (Section 3.2) to train a latent action policy.

3.1 Latent Action Model Training

In Stage 1, we pretrain a Latent Action Model (LAM) that we will use for annotating trajectories
with pseudo-action labels. A LAM consists of two models, a forward dynamics model (FDM) that
predicts the transition dynamics of the environment, and an inverse dynamics model (IDM) that
inverts this process by inferring the action performed between two subsequent observations.

Since we train these models without any action labels, we train a latent IDM, fϕ(zt | ot, ot+1),
which predicts an unobserved latent action zt between two consecutive observations. To provide a
training signal for the latent action, we jointly train a latent FDM, gψ(ot+1 | ot, zt), to infer the next
observation conditioned on the current observation and latent action. Since observations are partial
and do not capture the full environment state, in practice, we provide the LAM with additional H
steps of context making it easier to infer the underlying state and predict a more accurate latent
action, i.e., fϕ(zt | ot−H , . . . , ot, ot+1) and gψ(ot+1 | ot−H , . . . , ot, zt).
As shown in Figure 1, the training signal comes from reconstruction of the future observation,
i.e. Lrecon = MSE(ôt+1, ot+1) where ôt+1 is the prediction from the FDM. Our encoder/decoder
architecture induces an information bottleneck that ensures learning a meaningful, compact action
representation rather than shortcut solutions. While prior works [15, 16] discretize latent actions
from the IDM using Vector Quantization [VQ; 17], our experiments show that this fails in robotics
tasks where actions are inherently continuous. We solve this shortcoming by replacing the VQ-based
discretized action space with a learned continuous action space.

Latent Action Decoder. At test time, the learned latent actions cannot be directly executed in
the environment. Consequently, we learn a latent action decoder, pω(at | zt) using Dlabeled to
ground the learned latent actions to executable environment actions. Prior work [15] trains the
action decoder independently from the latent action model. This is reasonable for environments
with discrete action spaces, where it is possible to learn the mapping from a discrete set of codes
to the environment actions. For continuous action spaces, we will show that the latent action space
learned by forward reconstruction alone is difficult to decode to real-world actions.

To address this, we propose joint training of the action decoder and the latent action model to
regularize the learned latent action space, ensuring that it allows for effective decoding to real-world
actions. Importantly, we do not make any assumptions about how Dlabeled is collected. Furthermore,
we demonstrate that the Dlabeled can come from any behavioral policy, even a random policy or
task-agnostic play data, allowing CLAM to work even without access to expert teleoperated data.
During LAM pretraining, we alternate between gradient updates on batches of unlabeled data for
training the LAM and batches of labeled data for training the action decoder. The final training
objective for CLAM is LCLAM = Lrecon + βLaction-decoder where Laction-decoder = MSE(ât, at) and β
is a hyperparameter that balances the reconstruction and action decoder losses.

3.2 Latent Action Policy Training

During Stage 2, we use the latent IDM from our pretrained CLAM to annotate Dunlabeled-expert with la-
tent actions. The latent FDM only provides the learning signal for training the latent IDM and is dis-
carded at this point. We apply the latent IDM to infer the latent action zt between each consecutive
observation (ot, ot+1), i.e., Drelabeled-expert = {(oi1, zi1, oi2, zi2, . . . , ziT−1, o

i
T ) ∀τ i ∈ Dunlabeled-expert}.

Subsequently, we train a latent action policy, πθ(zt | ot), using imitation learning by optimizing
Lπ = MSE(ẑt, zt) on batches of annotated data from Drelabeled-expert. During inference time, our
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learned policy predicts the latent actions given an observation, which the action decoder will decode
into an environment action. Pseudocode of the inference loop is provided in Appendix C.

Leveraging pretrained IDM image features for policy training. A side-effect of learning a LAM
on image-based observations is that the IDM’s image encoders can be used as pretrained image
features for learning the latent action policy (Stage 2). Indeed, viewed through this lens, training the
LAM can be seen as a form of self-supervised representation learning. In DynaMo [18], it is shown
that pretraining vision encoders using an IDM/FDM self-supervised loss improves the performance
of downstream imitation learning from expert-labeled demonstrations. We will show in Section 4
that similar positive transfer also occurs for CLAM when learning latent action policies.

Avoiding trivial solutions for latent action labels. Our self-supervised reconstruction objective
for training LAM could potentially be vulnerable to locally-optimal shortcuts such as learning an
identity mapping. We provide an extensive discussion on how we mitigate these kinds of issues
along with analysis demonstrating that CLAM does not degenerate in Appendix B.

4 Experimental Setup
We compare CLAM to several state-of-the-art baselines using both state- and image-based observa-
tions. We show quantitative results in simulated locomotion tasks in DMControl [19], robot manip-
ulation tasks in MetaWorld [20], and on a real WidowX robot arm. For DMControl and MetaWorld,
Dunlabeled-expert comes from trained RL agents. In our real robot experiments, we use expert trajecto-
ries with the action labels removed for proof-of-concept. We also conduct additional experiments in
the CALVIN [21] benchmark in Appendix A.3. For more task details, we refer to Appendix E.

• DMControl. The D4RL [22] benchmark comprises of replay buffers from trained RL agents
of varying expertise. For training CLAM, we use 1000 trajectories from the medium-replay

dataset as Dunlabeled and subsample trajectories for Dlabeled. This data split contains trajectories
from the online RL replay buffer up until the policy reaches a medium level of performance.

• MetaWorld. We use TD-MPC2 [23] to train single-task RL agents and collect the replay buffer
data. We use the full dataset (1000 trajectories of mixed expertise) for training our LAM and a
separate random-medium dataset similar to DMControl for Dlabeled.

• WidowX Robot Arm. To demonstrate the scalability of CLAM to more realistic scenarios, we
evaluate on four real world manipulation tasks using a WidowX robot arm shown in Figure 2.
We collect a task-agnostic dataset of ∼50k transitions for Dunlabeled. We also have ∼30 expert
demonstrations per task without action labels for Dunlabeled-expert.

Baselines. To allow for a fair comparison, we reuse the same architectural components in our
method and all baselines, with identical network architectures. These components are an IDM,
an FDM, an action decoder/action head, and an MLP-based BC policy. We refer the reader to
Appendix G and Appendix I for implementation details of CLAM and baseline methods.

• BC-Action-Labeled (BC-AL): Behavior cloning on the small Dlabeled, which is not fully expert
data. Since BC needs action labels, it does not use Dunlabeled.

• VPT [11]: The IDM is trained only on Dlabeled via supervised learning. The IDM is used to label
Dunlabeled-expert with environment actions and a BC policy is then trained on the annotated data.

• LAPO [15]: Latent action model with discrete, vector-quantized latent actions.
• LAPA [13]: After LAM pretraining, the final layer of the IDM is replaced with an action head

and fine-tuned end-to-end on Dlabeled, which is non-expert. Because the model is fine-tuned on
this data, in the original paper, they use labeled expert data, which we do not have access to.

• DynaMo [18]: Self-supervised learning on Dunlabeled to train a vision encoder using an IDM
and FDM to predict latent embeddings of future frames. A BC policy is trained on the image
embeddings produced by the pretrained vision encoder using Dlabeled. We include this baseline
to compare what a pure image-feature pretraining approach can achieve in our problem setting,
which does not use the LAM for relabeling.
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Figure 2: WidowX Robot Arm Setup and Evaluation Tasks. We evaluate the scalability of CLAM
using four manipulation tasks (Right) on a WidowX robot arm (Left) in a toy kitchen setup [24].

• MLP-, Transformer-, ST-ViViT-CLAM (Ours): Continuous latent action model with differ-
ent parameterizations of the latent IDM and FDM with joint action decoder training.

• BC-Expert (BC-E): Privileged BC on Dunlabeled-expert with ground-truth action labels available,
which are not available to other methods.

5 Results
The aim in our experiments is to study the efficacy of CLAM as a general approach to learn from
action-less data, evaluate its ability to train robot policies without access to labeled expert data, and
analyze its design choices and limitations. We organize our experiments to answer the following:

(Q1) How effective is CLAM at learning policies without action-labeled expert demonstrations?
(Q2) How important are continuous latent actions and jointly training the action decoder?
(Q3) Can CLAM scale to learn capable robot policies in real-world scenarios?

FINDING 1: CLAM outperforms all baselines and nearly matches the performance of BC
with expert data in both state- and image-based experiments. Table 1 summarizes our results
for state-based inputs on DMControl and Figure 3 for image-based results in MetaWorld. More
results for state-based experiments are provided in Appendix A.1. CLAM improves upon the best
baseline VPT by more than 2× average normalized return on the DMControl (locomotion) tasks and
around 2−3× success rate on the MetaWorld (manipulation) tasks.

HalfCheetah Hopper

BC-AL 0.22 ±0.05 0.35 ±0.04

LAPO 0.12 ±0.05 0.24 ±0.03

LAPA 0.22 ±0.05 0.30 ±0.06

DynaMo 0.18 ±0.03 0.22 ±0.02

VPT 0.32 ±0.04 0.41 ±0.03

MLP-CLAM∗ 0.64 ±0.05 0.64 ±0.03

TF-CLAM∗ 0.72 ±0.04 0.81 ±0.05

BC-Expert 0.68 ±0.02 0.76 ±0.04

Table 1: State-Based Results on DM-
Control tasks. Maroon indicates best
performance except BC-Expert, which
uniquely has access to labeled expert
data. Our methods are denoted with ∗.

BC-AL using action-labeled data unsurprisingly does not
perform well due to imitating suboptimal demonstrations.
In several tasks, Transformer-CLAM achieves perfor-
mance close to or even better than that of BC-Expert

which uses the same amount of privileged expert action-
labeled data. In the image domain, we hypothesize that
transfer from the pre-trained IDM image encoder might
cause these improvements (cf. Section 3.2). For state-
based inputs, we hypothesize that the additional difficulty
introduced by not training on ground-truth actions could
regularize our method and reduce overfitting.

All variants of CLAM outperform the best baseline VPT

[11], highlighting the fact that latent action models scale
with |Dunlabeled| while supervised IDMs only scale with
|Dlabeled|. Since our problem setup assumes |Dlabeled| ≪
|Dunlabeled|, it is likely that VPT learns a suboptimal IDM, underscoring the benefit of latent action
models which can leverage vast, unstructured observation data to learn latent actions in an unsu-
pervised manner. CLAM outperform state-of-the-art methods in our problem setting where only
play data is available as action-labeled data, and expert data is action-less. In other data settings,
the baselines will likely be competitive, and thus choosing the right method for learning is depen-
dent on the specific data regime. We emphasize that our data regime enables scalable learning from
easy-to-collect, cheap play data [21] avoiding the need for expensive task-specific data collection.
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Figure 3: MetaWorld Image-Based Experiments. Task success rate over 50 evaluation rollouts
across 3 random seeds using image-based inputs. All methods are trained using the same amount
of action-labeled data (100 trajectories) for fair comparison. Since Dlabeled is not necessarily ex-
pert data, all the baselines struggle to learn a performant downstream policy, while MLP-CLAM and
Transformer-CLAM perform significantly better, with a 3× improvement in task success over the
best baseline. We denote baselines that use a discrete latent action space with hashed markers. We
report results for BC-Expert which trains on the same amount of expert trajectories to represent the
ideal performance BC achieves with ground truth action labels.

FINDING 2: Continuous latent actions and joint action decoder greatly improve performance
for continuous control problems. Unlike VPT, the other baselines (LAPO, LAPA, and DynaMo) make
use of LAMs, as does our method. We find that we can outperform these methods, likely due to using
continuous latent actions in conjunction with jointly training an action decoder. First, baselines that
apply vector quantization [VQ; 17] to discretize the latent actions, including LAPO and LAPA, perform
poorly on continuous control tasks. In our image-based experiments, ST-ViViT-CLAM achieves an
over 3× improvement in task success rate at 76%, compared to LAPO and LAPA, which achieve
9% and 20%, respectively (cf. Figure 3). VQ discretizes the latent action space by mapping each
continuous latent action to the closest vector in a learned codebook of vector embeddings. Prior
works utilize VQ primarily to simplify the structure of the latent action space which is a reasonable
choice for discrete action environments. We hypothesize that applying quantization to the latent
space severely limits the expressivity of the latent actions for fine-grained manipulation tasks.

Assembly Bin Pick Peg Insert Shelf Place

Disc., ¬JT 0.15± 0.03 0.12± 0.02 0.18± 0.04 0.19± 0.03

Disc., JT 0.14± 0.04 0.14± 0.03 0.17± 0.03 0.16± 0.04

Cont., ¬JT 0.28± 0.04 0.18± 0.03 0.21± 0.08 0.26± 0.06

Cont., JT 0.69± 0.05 0.82± 0.04 0.57± 0.11 0.88± 0.02

Table 2: CLAM Ablation Study. Both continuous latent
actions and joint training are necessary to improve task suc-
cess. JT refers to joint action decoder training.

A potential issue with using an arbi-
trary continuous latent action space
is grounding actions in the environ-
ment. In discrete settings, LAMs can
recover an action space correspond-
ing to a permutation of the ground-
truth environment actions [16]. How-
ever, learning this mapping is more
challenging for continuous actions.
In Table 2, we present additional ex-
periments, ablating both the choice of action space (discrete vs. continuous) and joint training on
MetaWorld tasks. Using discrete latent actions, equivalent to LAPO [15], results in an average of
16% task success compared to using continuous latent actions, which achieves 23%. This indicates
that even without joint training, continuous actions improve performance. Furthermore, while joint
training does not help much in the discrete latent action case, we see a substantial improvement when
coupled with continuous latent actions, achieving 74% average success rate (over 3× improvement).

FINDING 3: CLAM successfully learns without ever accessing action-labeled expert data in
both simulation and real robot experiments. We perform our main-line experiments (Figure 3)
with action-labeled data that is not fully expert. This type of data is much cheaper to collect than
training human workers to teleoperate robot hardware with potentially many degrees of freedom
[14]. LAPA circumvents the issues of learning a separate action-grounding model by directly fine-
tuning the pretrained LAM with an uninitialized action prediction head on Dlabeled. However, if
only partially-optimal or play data is available, the fine-tuned BC model struggles to learn a good
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Figure 4: CLAM Design Choices (a) There are diminishing returns as we increase the latent action
dimension. However, setting it too small limits the model’s expressivity. (b) Policy performance
continues to scale with |Dunlabeled-expert|. (c) Latent action policy performance improves with more
non-expert Dlabeled while BC plateaus. (d) CLAM is robust to expertise level of Dlabeled.

policy, since it does not label the unlabeled data. In this regard, LAPA is similar to BC-AL with a
better initialization as a result of the LAM pretraining, (20% vs. 16% success rate). Despite the
action-labeled data not being fully optimal, CLAM is still able to achieve high success rates.

To further investigate this capability of our method, we experiment with various data compositions
composed of varying expertise levels. We filter our offline dataset for 100 trajectories below a pre-
defined threshold return value and manually verify that the policy does not achieve the downstream
task and acts randomly. We show in Figure 4d that even with random policy data we can achieve
similar performance as on the random/medium data regime. When expert data is available, we
can recover a policy that always solves the task.

Block Button Microwave Slide Pot

BC-AL 0/10 0.5/10 1/10 0/10
LAPA 2/10 3/10 3/10 0/10
VPT 2.5/10 4/10 5/10 2/10
ST-CLAM 7/10 8.5/10 8/10 4/10

Table 3: Real Robot Results. ST-CLAM significantly
outperforms baseline methods across all tasks.

Real WidowX Robot Arm Experiments.
We evaluate the scalability of CLAM to
more realistic applications on a physical
WidowX robot arm shown in Figure 2 (Left).
Even though Dlabeled comprises of task-
agnostic, mixed expertise play data, we
demonstrate that CLAM is still able to learn
to solve the tasks while baseline methods
struggle to leverage this data to train a task-
specific policy. As in the simulated experiments, we find that VPT is the closest baseline, but still
struggles as it can only scale with the limited amount of labeled data, while BC-AL and LAPA are
unable to learn from play data entirely. Remarkably, CLAM learns a policy to solve new tasks,
without having explicitly collected action-labeled, expert demonstrations.

5.1 CLAM Design Choices

We conduct a comprehensive analysis of various design choices such as the latent action dimension,
the amount of unlabeled data (|Dunlabeled-expert|) for latent policy training, and the amount of labeled
data (|Dlabeled|) for action decoder training. Appendix A.2 contains more ablation results.

Latent action dimension directly affects the model’s expressivity. In Figure 4a, we vary the
latent action dimension |z| ∈ {2, 4, 8, 16} for the MetaWorld Assembly task. We find that setting
|z| to the true action dimension (4 in the case of MetaWorld) is insufficient, likely because our LAM
is not guaranteed to learn the same compact action representation the environment uses. We find
that having a slight overparameterization for the latent action space makes learning easier. Between
|z| of 4 and 8, there is a significant improvement. However, further increasing |z| to 16 does not
yield any additional gains. This suggests that a latent dimension of 8 is sufficient to capture the
representational capacity needed for policy learning. Higher action dimensions are likely more
difficult to learn by the action decoder, potentially requiring more labeled data.

Latent action policy scales with |Dunlabeled-expert|. In Figure 4b we demonstrate that CLAM’s per-
formance on the Assembly task improves as we increase |Dunlabeled|. This result suggests that we
can improve robot policies without the need for expensive, manually collected expert teleoperated
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demonstrations. We note that the returns start diminishing after a certain number of trajectories,
likely because the action decoder’s data remains unchanged.

Increasing |Dlabeled| improves the action decoder accuracy and downstream performance. In
Figure 4c we analyze the effect of varying |Dlabeled| for training the action decoder. Unsurprisingly,
as we increase |Dlabeled|, the learned action decoder becomes more accurate and better generalizes
to new unseen states. With only a handful of trajectories, it is difficult to ground the latent actions
to the environment explaining the poor performance. On the contrary, BC trained using the same
amount of labeled non-expert data quickly plateaus in performance and fails to scale with more
data. In our problem setting, with 50 non-expert labeled trajectories, CLAM outperforms baselines,
including BC, trained on more than 100. With enough labeled trajectories, our latent action space is
expressive enough to achieve perfect performance on the task.

6 Related Work
Imitation from Observation. Learning robot policies from sequences of observations is often
called imitation from observation [IfO; 25]. IfO poses the problem of learning from sequences
that do not necessarily provide egocentric imitation learning data. Consequently, the observed data
does not contain action labels and might differ in ways such as embodiment, environment, objects,
and viewpoint. The goal is to mimic ways in which humans can learn, for example, by watching
someone else demonstrate a task on video.

In this paper, we focus on the lack of action-labels in these observation sequences. Some approaches
to IfO learn a policy directly from the observations, for example, by learning to translate and align
observation sequences [25, 26, 27]. Alternatively, it is possible to estimate future observations and
use learned or off-the-shelf methods for predicting robot control signals from observations [9, 10].
These methods often require the ability to perform online rollouts or use off-the-shelf computer
vision tools. With CLAM, we aim to develop a general method without making any limiting. For
example, methods that learn to directly predict keypoint movements [9], may fail when the action
representation cannot easily be translated from these deltas. CLAM, on the contrary, is trained in an
offline fashion and minimizes the assumptions about the ground-truth action space.

Supervised Learning of Inverse Dynamics Models. Assuming access to some amount of action-
labeled data, it is possible to learn an inverse dynamics model in a supervised way. VPT [11] uses
this IDM to label a larger unlabeled dataset. UniPi [12] finetunes a video prediction model and
uses the IDM to predict robot actions from synthesized observations. One fundamental limitation of
these approaches is that the IDM predicts actions in the real action space, and hence must be trained
using action-labeled data. Consequently, these methods are bottlenecked by the number of labeled
demonstrations or the budget required to collect them.

Latent Action Models. Prior works have shown that IDMs can be learned in an unsupervised
way [28, 16, 15, 18, 13]. Both LAPA [13] and DynaMo [18] use unlabeled in-domain robotics
demonstrations to train a latent action model that learns useful representations for downstream robot
tasks. We find that these approaches have limited success in fine-grained manipulation due to the use
of discrete latent actions reducing the expressivity of the learned latent space. Additionally, since
these approaches learn an initial representation, but do not use the pre-training data to train a policy,
every new task requires collecting action-labeled expert trajectories and running imitation learning.

Recent works LAPO [15] and Genie [16] combine a VPT-style approach with latent action models.
Instead of learning the latent action model only for expressive representations, they directly use the
IDM to label the unlabeled observations. Both works perform experiments only in video game-
based environments with a small number of discrete actions. Our work finds the key architectural
decisions to make this type of training feasible in fully continuous high-dimensional action spaces.

7 Conclusion
We proposed CLAM, a scalable solution for learning continuous control tasks from unlabeled video
data. We demonstrate with real robot experiments that CLAM, using continuous latent actions and
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joint training, can learn policies for unseen tasks without requiring any expert teleoperated demon-
strations. We hope CLAM further advances the scalable training of robot policies from action-less
data, alleviating the need for expensive, manual data collection.
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8 Limitations and Future Work
Data Regime. We emphasize that the findings in this paper consider a setting where practitioners
want to reduce the cost of human labor by not needing expert teleoperated data. In regimes where
this data is cheaply available for all tasks, other state-of-the-art methods could possibly achieve
competitive or better results.

Data Efficiency. One limitation of CLAM is that it still requires diverse, labeled data—albeit non-
expert—to capture the full action space for learning an accurate grounding model. In subsequent
work, we plan to investigate solutions to improve the data-efficiency of CLAM. One potential direc-
tion is to experiment with different parameterizations of our latent action model, to further reduce
the data needed to learn an accurate action decoder. Another possible solution is to impose structure
on the learned latent action space by using a hybrid discrete and continuous latent action space.
We could also use auxiliary training objectives such as multi-step forward prediction [29] or prior
regularization like in variational autoencoders [30]. By enforcing a better latent structure, we can
improve learning the mapping between latent and environment actions.We leave the investigation of
these alternatives for future work.

In-the-Wild Internet Videos. To train large-scale foundation policies from in-the-wild Internet
scale video data, a number of longstanding challenges still need to be addressed. Some of these
include the embodiment gap between the human hand and robot end-effector, the visual domain gap
in real-world scenes, and different camera angles, which are all beyond the scope of this work. As
a result of these various challenges, we do not currently experiment with in-the-wild Internet videos
of humans performing the same task. Instead, we demonstrate the efficacy of our approach by using
real robot observation sequences without the action labels.

Embodiment Gap. We plan to address the embodiment challenge in future work. Most prior
approaches to generalizing between different robot embodiments are limited to a fixed set of em-
bodiments seen during training. Prior works such as CrossFormer [31] train fine-tuned action heads
for different embodiments. For future work, we aim to apply the action-less learning capabilities of
CLAM to the cross-embodiment problem, to allow learning for various robot embodiments in a scal-
able way. To tackle the embodiment differences, one potential solution is to learn an embodiment
model via contrastive learning and condition our latent action model on the learned embodiment
embedding.

Latent Action Policy Architecture. In this work, we focus on learning a useful latent action space
and use simple fully-connected layers to parameterize our latent action policy. In future work, we
aim to explore more powerful policy architectures, such as ACT [32] and diffusion policies [33], to
further maximize the performance of the downstream policy.
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A Additional Results
A.1 State-based Results MetaWorld

We present additional state-based results for the MetaWorld tasks. We experiment with using both 50
and 100 trajectories for Dlabeled. In both data regimes, CLAM significantly outperforms the baseline
across all tasks by +12% and +35% task success rate to the next best baseline respectively. We find
that in more fine-grained manipulation tasks like Shelf Place, CLAM struggles to accurately pick up
the block with lower amounts of action-labeled data. However, as we increase the amount of labeled
data and hence coverage in the state-action space for training our action decoder, the performance
improves dramatically, from 28% to 93% task success with TF-CLAM.

Assembly Bin Picking Peg Insert Side Shelf Place Average

BC-AL 0.19 ±0.03 0.21 ±0.12 0.23 ±0.09 0.00 ±0.00 0.16
LAPO 0.05 ±0.06 0.00 ±0.00 0.06 ±0.03 0.02 ±0.02 0.03
LAPA 0.07 ±0.04 0.02 ±0.01 0.09 ±0.01 0.04 ±0.02 0.05
DynaMo 0.08 ±0.02 0.04 ±0.02 0.08 ±0.04 0.06 ±0.02 0.06
VPT 0.24 ±0.06 0.02 ±0.02 0.34 ±0.06 0.00 ±0.00 0.15
MLP-CLAM∗ 0.68 ±0.03 0.54 ±0.08 0.44 ±0.03 0.26 ±0.04 0.48
TF-CLAM∗ 0.81 ±0.03 0.74 ±0.04 0.55 ±0.12 0.28 ±0.02 0.60
BC-Expert 0.84 ±0.03 0.76 ±0.03 0.80 ±0.07 0.93 ±0.05 0.83

Table 4: State-Based Input Results (50 action-labeled trajectories)

Assembly Bin Picking Peg Insert Side Shelf Place Average

BC-AL 0.34 ±0.05 0.27 ±0.12 0.29 ±0.07 0.00 ±0.00 0.24
LAPO 0.15 ±0.04 0.02 ±0.03 0.17 ±0.04 0.06 ±0.08 0.13
LAPA 0.24 ±0.07 0.15 ±0.01 0.25 ±0.02 0.12 ±0.02 0.21
DynaMo 0.10 ±0.03 0.06 ±0.03 0.12 ±0.04 0.08 ±0.02 0.13
VPT 0.40 ±0.08 0.05 ±0.02 0.49 ±0.06 0.02 ±0.00 0.28
MLP-CLAM∗ 0.53 ±0.04 0.68 ±0.05 0.58 ±0.04 0.72 ±0.04 0.63
TF-CLAM∗ 0.91 ±0.03 0.82 ±0.03 0.79 ±0.07 0.93 ±0.02 0.83
BC-Expert 1.00 ±0.00 0.94 ±0.05 0.91 ±0.03 0.93 ±0.00 0.87

Table 5: State-Based Input Results (100 action-labeled trajectories). We report average task
success rate for MetaWorld tasks. Maroon represents the best method in that environment except
for BC-Expert which is trained with expert, labeled data. Our method TF-CLAM which uses a
transformer IDM/FDM, outperforms the baselines on all tasks. ∗Methods with an asterisk are ours.

A.2 CLAM Ablations

Assembly Bin Picking Peg Insert Side Shelf Place

Discrete, No Joint Training 0.15± 0.04 0.13± 0.04 0.16± 0.04 0.15± 0.06
Discrete, Joint Training 0.18± 0.05 0.18± 0.02 0.12± 0.03 0.21± 0.03
Continuous, No Joint Training 0.32± 0.06 0.24± 0.05 0.15± 0.04 0.32± 0.04
Continuous, Joint Training (Ours) 0.91± 0.03 0.82± 0.03 0.79± 0.07 0.93± 0.02

Table 6: CLAM Ablation Study State-Based. We ablate both discrete v.s. continuous actions and
with/without joint training. We find that both are critical for achieving a performant policy with
both state- and image-based observations. In particular, joint training significantly improves results
across all tasks.

Analysis of the action decoder weight β. We conduct a study where we vary the weight on the
action decoder loss during joint training across β ∈ [0, 0.001, 0.01, 1, 5]. When β = 0, this is
equivalent to no action decoder training which will result in a random action decoder. Since the
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action decoder is not trained at all, we do not expect the model to be able to perform the task at
all. As we increase the loss coefficient, we observe improved performance as the decoder is now
able to ground latent actions to environment actions. We find that an equal weighting between the
reconstruction and action decoder training yields the best result, although CLAM is still quite robust
to the value of β. Results for different β coefficients on the MetaWorld Assembly task are shown in
Table 7.

Action Decoder Weight (β) Task Success

0 0.00± 0.00
0.001 0.42± 0.04
0.01 0.52± 0.03

1 0.58± 0.04
5 0.53± 0.03

Table 7: Varying Action Decoder Loss Weight. Increasing the decoder weight improves down-
stream task performance.

A.3 Additional Transfer Experiments in CALVIN

Close Drawer Slider Left

BC-AL 0.06 ±0.01 0.06 ±0.01

VPT 0.29 ±0.04 0.11 ±0.03

TF-CLAM (Ours) 0.33 ±0.08 0.26 ±0.08

Table 8: CALVIN Generalization Results.
CLAM achieves better generalization than VPT
on target tasks without any labeled demonstra-
tions for those particular tasks.

We present additional experiments to study the
transferability of our methods. In particular,
we conduct experiments in the CALVIN bench-
mark [21], which provides a dataset of ∼ 24
hours of task-agnostic play data. We use trajec-
tories from 10% of the full dataset (13170 tra-
jectories across 30 different tasks) as Dunlabeled
to pretrain CLAM and sample data from five
different tasks for Dlabeled.

Notably, we find that CLAM can transfer to tar-
get tasks for which it has seen unlabeled but no
action-labeled data, similar to our real robot ex-
periments. In this study, the target task has only unlabeled expert data. Specifically, we evaluate
on the Close Drawer and Slide Left tasks. We include the unlabeled dataset for these tasks in the
LAM pre-training. However, we do not have access to action-labeled data for these tasks. Instead,
we select action-labeled data from other tasks that are likely to span the complete state space.

Table 8 shows that BC-AL fails in this task because the action-labeled training data is from different
tasks and thus out-of-distribution. Occasionally, BC-AL is able to solve the task by random chance.
In the Close Drawer task, VPT performs comparably to Transformer-CLAM. However, the motions
of the robot arm in successful rollouts are much more visually similar to the expert trajectories
indicating that Transformer-CLAM learns a more meaningful latent action space. For reference, we
attach videos of each method’s behavior on our website. In the Slider Left task, which requires
more precision, Transformer-CLAM achieves more than 2× the success rate of VPT without ever
seeing the target task in the action-labeled dataset.
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B Avoiding Trivial Solutions for Latent Action Labels
Our method aims to learn an IDM-based labeler that provides latent action labels with two goals: 1)
the labels can be used in place of ground truth action labels to learn a behavioral cloning policy and
2) the labels can be mapped to ground truth actions using a learned action decoder. Any labeling
that can satisfy these requirements is useful to our method and non-trivial. We do not impose any
specific prior structure on the latent labels, as long as they satisfy these requirements. However, we
agree that regularizing priors might improve the performance of our method, which is a promising
direction for future work.

To verify no trivial shortcuts occur, we compare the reconstruction loss of our FDM output ôt+1 (the
predicted next observation) with a trivial baseline FDM that always outputs the previous observation
ot. We find that our method achieves lower loss than is possible by trivially outputting the previous
observation, which indicates that our model does not resort to this shortcut. Table 9 below shows
these results.

Additionally, the action decoder only receives the label zt that is output by our learned policy. Thus,
in order for a policy to achieve a task, the labels need to meaningfully correspond to correct actions.
If the LAM solves the reconstruction and action decoding outputs in a trivial way using shortcuts in
such a way that the labels don’t hold any useful information, the action decoder would have no way
of knowing what actions to output that correctly solve the task. The positive results of our method
are strong indicators that our IDM/FDM structure has not reached a trivial solution.

Task Reconstruction Loss Cheat Loss
Assembly 0.0004 0.0007
Bin-Picking 0.0005 0.0008
Peg Insert Side 0.0005 0.0008
Shelf Place 0.0003 0.0009

Table 9: Image Reconstruction Loss v.s. Cheating Loss
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C Detailed Algorithm
Below, we provide a detailed algorithm of training CLAM and latent action policy in Algorithm 1.
We also provide the pseudocode for inference rollouts in Algorithm 2.

Algorithm 1 CLAM w/ Joint Action Decoder Training

1: Input: Dunlabeled, Dlabeled, Dunlabeled expert, IDM fϕ, FDM gψ , Action Decoder pω , Latent Ac-
tion Policy pθ
NC : number of CLAM update steps
NP : number of policy update steps
K: train action decoder every
# Stage 1:Train CLAM and Action Decoder

2: for iter = 1 to NC do
3: Sample (ot, ot+1) from Dunlabelled
4: zt = fϕ(· | ot, ot+1) ▷ infer latent action
5: ôt+1 = gψ(· | ot, zt) ▷ predict next observation
6: LMSE(ϕ, ψ) = ||ot+1 − ôt+1||22 ▷ update IDM and FDM

# Jointly Train Action Decoder

7: if iter % K == 0 then
8: Sample {(ot, at, ot+1)}Bi=1 from Dlabeled ▷ get batch for action decoder training
9: zt = fϕ(· | ot, ot+1) ▷ infer latent action

10: ât = pω(· | zt) ▷ decode latent action
11: Laction decoder(ϕ, ω) = MSE(ât, at) ▷ update action decoder and IDM
12: end if
13: end for

# Stage 2:Train Latent Action Policy

14: for iter = 1 to NP do
15: Sample ND demos from Dunlabeled expert, {τi}ND

i=0
16: τ∗i = {o1, fϕ(o1, o2), o2, . . . , fϕ(oT−1, oT ), oT } ▷ annotate transitions with latent actions
17: LMSE(θ) = ||ẑ1:T − z1:T ||22 ▷ update latent policy
18: end for

Algorithm 2 Inference Time Rollout

1: Input: Action Decoder pω , Latent Policy πθ
2: ot = env.reset()
3: while not done do
4: zt = πθ(· | ot) ▷ infer latent action
5: at = pω(· | zt) ▷ decode latent action
6: ot, done = env.step(at)
7: end while
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D Hyperparameters
We provide detailed hyperparameters for training baseline methods and CLAM.

Hyperparameter Value
Batch Size 64
Num training updates 150,000
MLP Hidden dims [1024, 1024]
Number of eval rollouts 40
Clip grad norm 1.0
Optimizer Adam
Learning Rate (LR) 3e-4
Epsilon 1e-5
Weight decay 0.01
Num of warmup updates 25,000
LR Scheduler ConstantLR

Table 10: BC Hyperparameters

Hyperparameter Value
Num updates 500,000
Train action decoder every 2
Action Decoder batch size 128
Action Decoder loss weight 1
Action Decoder hidden dim [1024, 1024, 1024]
Action Decoder embedding dim 512
Reconstruction loss weight 1
Latent action dim 16
Context len 2
Embedding dim 128

Table 11: CLAM Pretraining Hyperparameters

Hyperparameter Value
Num encoder layers 3
Num decoder layers 3
Model dimension 256
Feedforward dimension 2048
Num attention head 4
Dropout 0.1
Pre norm False
Feedforward activation GeLU
Position Encoding Learned

Table 12: Transformer CLAM Model Hyperparameters
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Hyperparameter Value
Num encoder layers 6
Num decoder layers 6
Model dimension 512
Feedforward dimension 2048
Num attention head 8
Dropout 0.1
Pre norm False
Feedforward activation GeLU
Position Encoding Learned

Table 13: CALVIN Transformer CLAM Model Hyperparameters

Hyperparameter Value
Max episode steps 100
State dim 39
Action dim 4
Image shape [84, 84, 3]
Num frame stack 3
Action repeat 2

Table 14: MetaWorld Environment Hyperparameters

Hyperparameter Value
Max episode steps 200
State dim 39
Action dim 7
Image shape [84, 84, 3]
Num frame stack 1
Action repeat 7

Table 15: CALVIN Environment Hyperparameters
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Figure 5: Evaluation environments in simulation. We evaluate our approach on both locomotion
tasks from the DMControl benchmark (Hopper and HalfCheetah) and manipulation tasks (Assem-
bly, Bin Picking, Peg Insert Side, and Shelf Place) from the MetaWorld benchmark. We also evaluate
in CALVIN with the Close Drawer and Slider Left tasks.

E Simulation Environments and Tasks
We benchmark our method on DMControl [19], Meta-World [20], and CALVIN [21] without modi-
fication. All domains are continuous control environments and we use a fixed episode length and no
termination conditions. Figure 5 provides illustrations of each task we evaluate on.

For DMControl tasks, we report normalized return following [22] which normalizes the
scores for each environment against an expert score between 0 and 1: normalized score =

(score−random score)
(expert score−random score) . In MetaWorld and CALVIN, we evaluate based on task success rate and
we consider an episode successful if the task is completed at any step in a given episode.

MuJoCo Locomotion. We evaluate on two continuous control tasks from the MuJoCo locomo-
tion benchmark [19]: Hopper and HalfCheetah. Hopper is a single-legged robot, and HalfCheetah
is a planar bipedal robot with a torso and two articulated legs. The action space for these tasks
represents joint torques applied at the robot’s actuators. The action space is a 3-dimensional and
6-dimensional respectively for Hopper and HalfCheetah. The state space is a 11-dimensional vector
and 17-dimensional vector respectively comprising joint angles, joint velocities, and the global po-
sition of the robot’s torso. The goal in both tasks is to maximize forward velocity while minimizing
a control cost for taking large actions and maintaining stability. Each episode is 1000 timesteps.

MetaWorld. We evaluate on four continuous control task from the MetaWorld benchmark [20].
The MetaWorld benchmark is designed for multitask and meta-reinforcement learning research.
Each task shares the same embodiment (a 6-DOF Sawyer robot arm), observation space, and action
space. The action space represents end-effector deltas, (∆x,∆y,∆z, β) where β is a binary value
(0, 1) for the gripper action. The state space is a 39-dimensional vector which comprises of a
framestack of [curr obs, prev obs, pos goal] where curr obs and prev obs are both 18-dimensional
and pos goal is a 3-dimensional vector representing the goal position. The observation is a single
vector consisting of the end effector position, gripper’s distance apart, and each object’s position and
quaternion.

CALVIN is an open-source simulated benchmark to learn long-horizon language-conditioned tasks.
For our experiments, we employ scene D consisting of a 7-DOF Franka Emika Panda robot arm
with a gripper and a desk with a sliding door and a drawer that can be opened and closed. CALVIN
provides 6 hours of teleoperated data for each of the 4 environments for a total of 24 hours of
play data, 35% of which contains crowd-sourced language annotations. To maximize the use of the
available play data, we employ the provided language annotation tool and divide the dataset with
respect to these annotations. For our experiments, we use the 15-dimensional proprioceptive state
appended with the 24-dimensional scene observation along with the 7-dimensional relative cartesian
actions.
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Task Observation Dim Action Dim

Hopper 11 3
HalfCheetah 17 6

Assembly 39 4
Bin Picking 39 4
Shelf Place 39 4
Peg Insert Side 39 4

Close Drawer 39 7
Slider Left 39 7

DMControl Meta-World CALVIN

Episode Length 1000 200 200
Action Repeat 2 2 8
Effective Length 500 100 200
Performance Metric Normalized Return Task Success Task Success
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F Real Robot Experimental Setup
Hardware Setup. We evaluate CLAM on a real-world multi-task kitchen environment using the
WidowX robot arm. The WidowX is a 7-DoF robot arm with a two-fingered parallel jaw gripper.
Our robot environment setup is shown in Figure 2. We use an Intel Realsense D435 RGBD camera
as a fixed external camera and a Logitech webcam as an over-the-shoulder camera view. We use a
Meta Quest 2 VR headset to teleoperate the robot.

Task-agnostic play dataset. Our play dataset contains a total of 50k transitions collected at 5hz. To
encourage diverse behaviors and broad state-action coverage, human teleoperators were instructed
to freely interact with the available objects in the scene without being bound to specific task goals.
Note, we do not require that the play trajectories be optimal, but that it provide diverse coverage of
the state-action space.

Evaluation protocol. The agent is allocated a 100 timestep budget to complete each task. For each
task, we collect a total of 30 expert demonstrations demonstrations, except for the long-horizon task
for which we use 50 expert demonstrations. For training the latent action policy, we remove the
collected action labels and replace them with the latent actions learned by our LAM. Furthermore,
we introduce distractor objects in the scene that are not part of the task so that the policy does not
just memorize the expert demonstrations. Moreover, movable task object positions are randomized
in a fixed region if applicable. We evaluate on four manipulation tasks described below:

• Reach Block. This task requires the arm to reach to the position of the block and hover above it.
The task is considered successful if the robot gripper is above the green block. We provide partial
success if the gripper end effector touches the block.

• Push Button. This task requires the robot arm to reach the right button on the stovetop and press
it. Partial success is given if the robot is within range of the button but does not touch it.

• Close Microwave. This task requires the robot to close the microwave door. The angle at which
the microwave door is open varies between evaluation rollouts. Partial success is given if the
robot pushes the microwave, but does not completely close the microwave, which upon closing
properly will produce a click sound.

• Put Green Block in Pot and Slide Pot Right. This task requires the robot to first pick up the
green block, drop it off at the pot, and then slide the pot right with its gripper. Partial success is
provided for successfully completing a subtask of picking up the green block.
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Figure 6: Real Robot BC Policy. (Left) Learnable image embeddings following [34]. (Right)
The learned image embeddings for each modality are concatenated and provided to a transformer
decoder similar to [32]. We also perform action chunking with a chunk size of 5 timesteps for 1
second of execution.

Robot Policy. For our policy, we are inspired by the architectural components introduced in Wang
et al. [34] and Zhao et al. [32]. A diagram of our policy architecture is shown in Figure 6. For
both external and over-the-shoulder RGB images, we use a pretrained ResNet to first extract ×7 ×
7 feature maps and flatten these features across the spatial dimension to create a sequence of dv
dimension tokens where dv is the output dimension of ResNet. In particular, we use ResNet18
where dv = 512. We feed as input to a causal transformer decoder a sequence learnable action
tokens with dimension d. We use the flattened image feature map as the keys and values and apply a
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cross-attention between the image features and learnable tokens. We concatenate all modality tokens
and add additional modality-specific embeddings and sinusoidal positional embeddings.

The policy base is a transformer decoder similar to the one used in ACT [32]. The input sequence to
the transformer is a fixed position embedding, with dimensions k×512 where k is the chunk size and
the keys and values are the combined image tokens from the stem. Given the current observation,
we predict a chunk of 5 actions, which corresponds to 1 second of execution. During inference time,
we also apply temporal ensembling similar to [32] with m = 0.5, which controls how much we
consider older actions.

We train the policy for 20k update steps with batch size of 256 and a learning rate of 3e−4 (around
2 hours of wall time). For behavior cloning policies, the action dimension is 7 comprising of the
robot joint pose and the gripper state. For CLAM, we predict latent actions which we then decode
to robot actions using the learned action decoder. Figure 7 shows example real-world task rollouts
for the learned policies.

Time

Reach 
Green

Push 
Button

Close 
Microwave

Put Block 
in Pot and 

Slide Right

Figure 7: Real Robot Evaluation Rollouts. We evaluate CLAM on four manipulation tasks. Each
row is an example evaluation rollout and we subsample representative frames interpolated between
the first and last timestep.
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G Model Architecture Details
We summarize the model architectures below using PyTorch-like notation. We also summarize the
parameter counts of individual components for each method. Note, we share the same architecture
between baseline and CLAM when possible to compare only the algorithms.

Method Parameter Count (State/Image)

BC 1.6M
Latent Action Policy 1.4M
LAPO Action Decoder (1M), LAM (9M/13M)
LAPA IDM/FDM (9M/13M), Action Head (1M)
VPT IDM (5M), Action Head (1M)
DynaMo IDM/FDM (9M/13M)
State/Image Transformer CLAM Action Decoder (1M), LAM (9M/13M)

G.1 Behavior Cloning Policy

We use an MLP for our latent action policy in simulation and [33] in our real robot experiments. We
use the same policy architecture across all the baseline methods to keep the results comparable. For
state-based experiments, we implement the policy as a 3-layer MLP with LeakyRELU activations.
For image-based experiments, we additionally embed the image observation with a IMPALA-CNN
[35] which is inputted into the MLP head to predict the final action. Finally, we apply a Tanh output
activation to the model output to clip the action into a valid range, [−1, 1].

Total parameters: 1602567
Architecture: BC MLP Policy(

(input_embedding): Linear(in_features =39, out_features =512, bias=
True)

(policy): Sequential(
(0): Linear(in_features =512, out_features =1024, bias=True)
(1): LeakyReLU(negative_slope =0.2)
(2): Linear(in_features =1024, out_features =1024, bias=True)
(3): LeakyReLU(negative_slope =0.2)
(4): Linear(in_features =1024, out_features =4, bias=True)

)
(action_activation): Tanh()

)
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G.2 Space Time CLAM
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Figure 8: Space-Time Attention Encoder
Block Model architecture for the Space-Time At-
tention Encoder Block.
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Figure 9: Space-Time Attention Decoder
Block Model architecture for the Space-Time At-
tention Decoder Block. Additional multihead at-
tention to condition the learned representation on
the latent action outputs from the IDM.
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Figure 10: Space-Time CLAM. Model architecture for the Space-Time Latent Action Model.
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G.3 Latent Action Model.

For state-based experiments, we experiment with both an MLP-based and Transformer-based LAM.
In the MLP-based variant, both the IDM and FDM are 3-layer MLPs with 1024 hidden dimensions.
We use a context length of 1, thus the input to the IDM is 3∗T, (ot−1, ot, ot+1) and the input to the
FDM is 2 ∗ T + LA, (ot−1, ot, zt) where T is the maximum number of episode steps, A is the action
space dimension, S is the state space dimension, and LA is the latent action dimension.

For the transformer encoder, we first project the state input with a linear layer followed by several
multihead self-attention layers and a final linear layer to predict the latent actions.

ht−1:t+1 = TransformerEncoder([ot−1, ot, ot+1])

zt−1:t = LatentActionHead(ht:t+1)

ot:t+1 = TransformerDecoder(ht−1:t, zt−1:t)

The transformer decoder is architecturally similar to the encoder, except we apply a causal mask
on the self-attention to prevent attending to the future states for the reconstruction. We additionally
apply cross-attention to the latent actions predicted by the encoder without any masking such that
each embedding can attend to each latent action, even ones in a future timestep.

SpaceTime CLAM. For image observations, we model after the Space-Time(ST) Transformer [36].
We first patchify a 64 × 64 × 3 image with a patch size of 16 for a total of 16 patches. Each patch
is embedded through a linear layer into the hidden dimension. The encoder consists of NE layers of
Space-Time (ST) Attention blocks. Each ST block consists of spatial attention followed by temporal
attention and a feedforward layer with skip connection, LayerNorm, and dropout applied between
each attention.

The decoder ST block also applies a cross-attention with the latent actions generated by the encoder.
A detailed illustration of an ST encoder/decoder block is shown in Figure 8 and Figure 9. We use
a learned positional encoding which applies an nn.Embedding layer on the timestep indices and
another to encode the index of each patches. We add an additional token in the sequence of patch
embeddings as a CLS token for the whole image. From the CLS token for each timestep, we apply a
linear layer to predict the latent actions. Figure 10 summarizes the full architecture diagram for our
Space-Time CLAM.

Below we provide pseudocode detailing how we apply ST attention to the patchified images.

patches = einops.rearrange(patches , "BTND ->(BT)ND")
embedding = spatial_attn(patches)
embedding = einops.rearrange(embedding , "(BT)ND ->(BN)TD")
embedding = temporal_attn(embedding)

Transformer CLAM.

Total Parameters: 8 ,874,551
Architecture: TransformerCLAM(

(idm): TransformerIDM(
(input_embed): Linear(in_features=S, out_features =256, bias=True)
(activation): LeakyReLU(negative_slope =0.2)
(encoder): Encoder(

(layers): ModuleList(
(0-2): 3 x EncoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features =256, out_features =256, bias=True
)

)
(linear1): Linear(in_features =256, out_features =2048 , bias=

True)
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(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features =2048 , out_features =256, bias=

True)
(norm1): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=

True)
(norm2): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=

True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)

)
)
(norm): Identity ()

)
(latent_action): Linear(in_features =256, out_features=LA , bias=

True)
(pos_embed): Embedding(T, 256)

)
(fdm): TransformerFDM(
(activation): LeakyReLU(negative_slope =0.2)
(input_embed): Linear(in_features=S, out_features =256, bias=True)
(la_embed): Linear(in_features=LA , out_features =256, bias=True)
(decoder): Decoder(

(layers): ModuleList(
(0-2): 3 x DecoderLayer(

(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(

in_features =256, out_features =256, bias=True
)

)
(multihead_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features =256, out_features =256, bias=True

)
)
(linear1): Linear(in_features =256, out_features =2048 , bias=

True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features =2048 , out_features =256, bias=

True)
(norm1): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=True)
(norm3): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)

)
)
(norm): LayerNorm ((256 ,), eps=1e-05, elementwise_affine=True)

)
(decoder_pos_embed): Embedding(T, 256)
(encoder_pos_embed): Embedding(T, 256)
(to_observation): Linear(in_features =256, out_features=S, bias=True)

)

Space-Time CLAM

Total Parameters: 12163344
(idm): SpaceTimeIDM(

(input_embed): Linear(in_features =768, out_features =256, bias=True
)

(encoder): STTransformer(
(layers): ModuleList(

(0-2): 3 x STBlock(
(spatial_attn): MultiheadAttention(
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(out_proj): NonDynamicallyQuantizableLinear(in_features
=256, out_features =256, bias=True)

)
(temporal_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(in_features
=256, out_features =256, bias=True)

)
(cross_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(in_features
=256, out_features =256, bias=True)

)
(linear1): Linear(in_features =256, out_features =2048 , bias=

True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features =2048 , out_features =256, bias=

True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
(dropout4): Dropout(p=0.1, inplace=False)

)
)
(norm): Identity ()

)
(activation): LeakyReLU(negative_slope =0.2)
(spatial_pos_embed): Embedding (200, 256)
(temporal_pos_embed): Embedding (200, 256)
(la_head): Linear(in_features =256, out_features=LA , bias=True)

)
(fdm): SpaceTimeFDM(

(decoder): STTransformer(
(layers): ModuleList(

(0-2): 3 x STBlock(
(spatial_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features =256, out_features =256, bias=True
)

)
(temporal_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features =256, out_features =256, bias=True
)

)
(cross_attn): MultiheadAttention(

(out_proj): NonDynamicallyQuantizableLinear(
in_features =256, out_features =256, bias=True
)

)
(linear1): Linear(in_features =256, out_features =2048 ,

bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(linear2): Linear(in_features =2048 , out_features =256,

bias=True)
(dropout1): Dropout(p=0.1, inplace=False)
(dropout2): Dropout(p=0.1, inplace=False)
(dropout3): Dropout(p=0.1, inplace=False)
(dropout4): Dropout(p=0.1, inplace=False)

)
)
(norm): Identity ()

)
(patch_embed): Linear(in_features =768, out_features =512, bias=True)
(la_embed): Linear(in_features =16, out_features =512, bias=True)
(spatial_pos_embed): Embedding (200, 512)
(temporal_pos_embed): Embedding (200, 512)
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(cond_pos_embed): Embedding (200, 512)
(to_recon): Linear(in_features =512, out_features =768, bias=True)

)

H MetaWorld Dataset Generation
TD-MPC [23] is a model-based reinforcement learning (RL) algorithm that performs local trajectory
optimization in the latent space of a learned world model. TD-MPC2 [37] provides a series of
improvements over TD-MPC2 including architectural modifications and other design choices. All
components of TD-MPC2 are implemented as MLPs with linear layers followed by LayerNorm and
Mish activations. TD-MPC2 uses an ensemble of 5 Q-functions to to reduce bias in the TD-targets.
It learns a closed-loop control policy by planning using a learned world model.

For our dataset collection, we train a TD-MPC2 agent for each MetaWorld environment from scratch
with the default hyperparameter settings which can be found in Appendix H of the original paper.
We report the episode returns as a function of environment steps in Figure 11. We train each agent
for 1M environment steps as we find that to be sufficient for the agent to learn to solve the task
consistently. We store the low-dimensional state and RGB image observations from the replay
buffer, which consist trajectories of varying expertise from a random uninitialized policy to a fully
trained performant policy. Our final offline dataset consists of 1000 trajectories of 100 timesteps
across four different MetaWorld tasks.
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Figure 11: Task Success Rate for Single-Task TD-MPC2 Agents. We train single-task agents
using TD-MPC2 [37] to generate an offline dataset with different levels of behavior. All four agents
exhibit expert performance on their respective tasks by the end of training.

I Baseline Details
We use the following official implementation repos for reference:

• Vector Quantization: https://github.com/lucidrains/vector-quantize-pytorch
• LAPO: https://github.com/schmidtdominik/LAPO
• LAPA: https://github.com/LatentActionPretraining/LAPA
• GENIE: https://github.com/myscience/open-genie

We base our transformer encoder/decoder implementation on the robot-transformers repository
at https://github.com/KhaledSharif/robot-transformers/tree/main.

We keep the architectures consistent across each method for fair comparison.

LAPO experiments on the Procgen [38] benchmark, which is a suite of 2D platformer games all of
which have discrete action spaces. LAPO uses an EMA-based update for the vector quantization
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embedding and also a single step of additional context H = 1. We use the same hyperparameters
for implementing VQ. Furthermore, they use a IMPALA-CNN for the encoder and decoder of the
IDM and FDM respectively when working with image-based inputs. Refer to Appendix A.4 in their
paper for a complete list of hyperparameters.

LAPA follows a similar implementation as LAPO. We reuse the same VQ implementation to dis-
cretize the learned latent actions. Unlike LAPA, we do not train our latent policy with language-
conditioned data, which we will reserve for future work. After latent policy training, LAPA discards
the latent action prediction head and fine-tunes the backbone model with a new action prediction
head/ We implement the action head as an additional linear layer on top of the pretrained backbone.
LAPA requires finetuning on expert trajectories.

DynaMo. We implement DynaMo’s dynamics loss on the future latent embedding prediction and
covariance regularization objectives following their open-sourced codebase. We tried both using
a frozen ResNet-18 and training the image encoder from scratch. Following the paper, we apply
causal masking in both the transformer encoder and decoder. Note for CLAM, we do not apply
causal masking in the encoder and we allow the model to attend to the full sequence of input.

MLP experiments use Tesla V100s and Transformer experiments use NVIDIA A100.

Compute used for training on MetaWorld:

• BC (states): 2 hours, (images): 4 hours

• LAPA pretraining: (states): 2 hours, (images): 4.5 hours

• LAPO pretraining: (states): 3 hours pretraining, (images): 4.5 hours

• VPT IDM pretraining: (states): 1 hour, (images): 4.5 hours

• DynaMO: (states) 2 hours, (images) 4.5 hours

• Transformer CLAM (states): 2 hours

• SpaceTime Transformer CLAM (images): 4.5 hours

• Latent Policy Training (states): 2 hours, (images): 4 hours

All experiments use NVIDIA RTX A6000.

Compute used for training on CALVIN:

• BC (states): 1 hour

• VPT IDM pretraining (states): 4 hours

• Transformer CLAM (states): 4.5 hours

• Latent Policy Training (states): 2 hours
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