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Abstract— Motion planning involves determining a sequence
of robot configurations to reach a desired pose, subject to move-
ment and safety constraints. Traditional motion planning finds
collision-free paths, but this is overly restrictive in clutter, where
it may not be possible for a robot to accomplish a task without
contact. In addition, contacts range from relatively benign (e.g.,
brushing a soft pillow) to more dangerous (e.g., toppling a glass
vase). Due to this diversity, it is difficult to characterize which
contacts may be acceptable or unacceptable. In this paper, we
propose IMPACT, a novel motion planning framework that
uses Vision-Language Models (VLMs) to infer environment
semantics, identifying which parts of the environment can best
tolerate contact based on object properties and locations. Our
approach uses the VLM’s outputs to produce a dense 3D “cost
map” that encodes contact tolerances and seamlessly integrates
with standard motion planners. We perform experiments using
20 simulation and 10 real-world scenes and assess using task
success rate, object displacements, and feedback from human
evaluators. Our results over 3620 simulation and 200 real-
world trials suggest that IMPACT enables efficient contact-
rich motion planning in cluttered settings while outperforming
alternative methods and ablations. Supplementary material is
available at https://impact-planning.github.io/.

I. INTRODUCTION

Classical motion planning for robot manipulation [30],
[42] frames the problem as finding a path for the robot’s
end-effector to reach a target while avoiding collisions
with obstacles. This formulation is generally desirable, but
can be highly restrictive, especially in densely cluttered
environments. In such cases, some incidental contact may
be necessary to achieve a task, or to accomplish it more
efficiently than by strictly avoiding all collisions.

Consider the motivating example in Fig. 1, which shows
a robot manipulator making contact with a toy bear to
efficiently reach the target salt shaker. Due to the clutter,
a collision-free path to the salt shaker either does not exist
or would require a longer parabolic motion to go above the
obstacles (which, again, may not be feasible in cluttered
cabinets and boxes). We thus desire robots that can achieve a
task while moving through a cluttered environment, making
appropriate contact as needed. In this work, the term “con-
tacts” does not refer to when a robot uses its grippers to touch
a target object (e.g., for grasping). Instead, we consider other
types of contact: when any part of the robot touches any non-
target (or “distractor”) object in the environment. We study
this in motion planning for tasks that involve reaching to a
target in dense clutter.
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Fig. 1: An example of a reaching task and object costs. The first row
shows the difference between collision-free paths and paths with
acceptable contact. Left: Collision-free paths prevent a “straight”
path to the salt shaker because of the toy bear and the glass bottle
obstacles (each marked with a red “X”). Right: With semantically
acceptable contact, the robot can successfully reach the salt shaker
by pushing the toy bear and avoiding the fragile glass bottle. The
second row shows the cost of each object generated by GPT-4o.
Left: the original scene. Right: GPT-4o assigns different costs to
objects, with the target assigned -1 (toy bear: 4, salt shaker: -1,
glass bottle: 9).

To address this challenge, we propose Intelligent Motion
Planning with Acceptable Contact Trajectories (IMPACT),
a novel framework that leverages modern Vision-Language
Models (VLMs) such as GPT-4o [34] to infer object contact
tolerances. After analyzing object properties, IMPACT gener-
ates a 3D cost map to represent the tolerance rate of different
regions in the scene. This cost map integrates seamlessly
with standard off-the-shelf motion planning algorithms to en-
able trajectories which engage in efficient and semantically-
acceptable contact. We pair IMPACT with the RRT* motion
planning algorithm [17] as our primary method, and we
refer to this combination as IMPACT+RRT*. We perform
experiments in simulation and real-world settings, testing a
variety of contact-rich, densely cluttered reaching tasks. We
evaluate IMPACT+RRT* using multiple quantitative metrics,
including human preference rankings from a user study.
Our results indicate that users prefer IMPACT+RRT* over
alternatives, suggesting that it is a promising approach for fa-
cilitating semantically-acceptable contact-rich manipulation.

Our contributions are as follows:
• IMPACT, a framework that formalizes “acceptable con-

tact” and generates a 3D cost map to densely represent

https://impact-planning.github.io/


object tolerance information.
• A motion planning pipeline that integrates contact

cost maps with standard motion planning to find
semantically-acceptable contact-rich trajectories.

• Simulation and real-world experiments of
IMPACT+RRT* for reaching-based tasks in dense
clutter, and evaluation of contact-rich trajectories using
quantitative task-based and human feedback metrics.

II. RELATED WORK

A. Robot Motion Planning

Classical motion planning algorithms can be broadly
characterized as optimization-based or sampling-based.
Optimization-based methods, such as TrajOpt [39], frame the
problem as minimizing a cost function subject to kinematic,
dynamics, and obstacle avoidance constraints. Sampling-
based methods, such as PRM [18], RRT [24], and RRT* [17],
incrementally build a graph or tree of feasible paths. While
there are numerous variants of these methods, a common
underlying theme is the constraint of avoiding any collisions.
This is generally desirable, but means motion planning under
this standard formulation has limitations. In densely cluttered
scenarios where contact is inevitable, these motion planners
might not find a solution, even though one might exist if
the robot engages in light contact. Our method seamlessly
integrates with prior motion planning algorithms for flexible
contact-rich manipulation.

Some motion planning works modify cost functions so
that certain obstacles, such as leaves, are permeable [20],
[33] and thus allow for some contact. However, these meth-
ods have been in domain-specific foliage settings and not
tested in common cluttered scenarios with rigid objects. In
closely-related work, [47] proposes to use semantic language
commands to enable semantically-acceptable contact. Un-
like [47], we do not require explicit language instructions
about which contacts are acceptable or not, since we utilize
VLMs to automate this process.

B. Contact-Rich Robot Manipulation

Dealing with contacts is challenging in manipulation [42].
This may refer to frequent contact between an object (that
the robot grips/holds) and an environment, such as tight
placement tasks like connector and peg insertion as explored
in robotic reinforcement learning works [25], [26], [38].
Another method for contact-rich problems is extrinsic dex-
terity [4], [50], which takes advantage of contacts between
an object and rigid parts of the environment (such as walls)
to reorient the object to improve subsequent manipulation.
Other works consider contact-rich interactions in different
applications such as assistive robots that incorporate human
feedback and touch [15]. In contrast, we consider the rel-
atively less-explored “contact-rich” setting, where “contact”
refers to robot parts touching the environment’s obstacles.

C. Vision-Language Models (VLMs) for Robotics

VLMs such as GPT-4o [34] and Gemini [10] are trained
on broad Internet-scale data and have remarkable semantic

and spatial knowledge. Thus, the research community has
explored numerous applications of VLMs in robotics [8],
[11], [19]. One way to use VLMs in robotics is to generate
high-level task plans, in the form of natural language [1],
[7], [12] or executable code [27], [40]. Another way to use
VLMs is for reward [31], [41], [49] or task design [13], [43],
[44]. VLMs can also aid low-level affordance reasoning [22],
[28] which, in an extension of this direction, can involve
generating full trajectories [23]. In contrast to these works,
we use VLMs for a complementary objective: to infer object
contact tolerances to guide contact-rich motion planning.

In closely-related work, VoxPoser [14] exploits VLMs for
open-world reasoning and visual grounding to compose a
3D value map to guide robotic interactions. As in [14], we
use VLMs to construct a 3D value map (equivalently, a cost
map). However, unlike VoxPoser, which requires the user
to explicitly specify which objects to avoid with language,
e.g., “get the item, but watch out for that vase!” we do not
require explicit language commands. Instead, we leverage
the improving spatial and semantic knowledge of recent
VLMs [5] to determine object contact tolerances, and show
manipulation in more densely cluttered environments. Other
recent work relies on VLMs for semantically-safe manipu-
lation [2] but assumes that any collisions are undesirable.

III. PROBLEM STATEMENT AND ASSUMPTIONS

We assume a single robot arm with a standard gripper
operates in a densely cluttered environment that contains n
objects, denoted as O = {o1, o2, . . . , on}. The robot must
reach a given target object otarg ∈ O while minimizing
unwanted contact with other objects (i.e., obstacles) in
O \ otarg. In environments with significant clutter, otarg may
be behind or close to multiple objects and thus reaching
it may be infeasible with a collision-free trajectory. To
reduce occlusions, at least two cameras provide respective
RGBD images at the start of the task. Given these image
observations, the objective is to compute a trajectory τ for
the robot, defined as a sequence of gripper poses, such
that its gripper ultimately touches otarg. Thus, among the
dynamically feasible trajectories, our objective is to select
one that reaches the target while engaging in “semantically-
acceptable” contact with obstacles when needed.

IV. METHOD: IMPACT

Our framework consists of two main steps (see Fig. 2).
First, it uses a VLM to obtain object costs in a cluttered
scene (Sec. IV-A), and then uses those costs for contact-rich
motion planning (Sec. IV-B).

A. Obtaining Object Costs using GPT

A key technical challenge is defining the notion of an
“acceptable” contact. This depends heavily on semantics, or
the general-purpose commonsense knowledge that humans
have about the behavior of diverse objects. Different objects
with varying materials, geometries, sizes or purposes have
different tolerances to potential contact. Furthermore, toler-
ance to contact should also depend on an object’s proximity



3D Cost Map Motion Planning

There is {(1) a toy bear, (2) a coffee cup and 
(3) a tomato can}. Please assign safety scores.

Original Scene ExecutionAnnotated Image

1

2
3

-1

10
3

8
Vision
Language
Model

Fig. 2: Overview of IMPACT. There is a toy bear, a coffee cup and a tomato can on the table. The objective is to reach the tomato can.
We use SAM2 [36] to segment the image and label the objects using “1,” “2,” and “3” to assist GPT’s visual reasoning. GPT also receives
a language template prompt ℓ with object information from SAM2. GPT produces costs for the three objects, which are projected into a
voxel grid C indicating the cost for the robot end-effector to enter each voxel. The costs are high for the coffee cup (GPT-assigned cost:
8) and the tabletop (a fixed cost of 10). We use a cost of -1 for the target object. Finally, an off-the-shelf motion planner (RRT*) uses
this to guide the robot, which avoids the coffee cup but makes contact with the toy bear to successfully reach the tomato can.

to nearby objects. Therefore, we leverage the commonsense
knowledge in VLMs to estimate the tolerance rate for contact
of each object. We encode this information by assigning each
object to an integer in {0, 1, . . . , 10} as the cost, where a
higher cost indicates lower tolerance to contact with any part
of the robot arm as it executes a trajectory. For example,
the cost of a fragile object (e.g., wine glass) should be
significantly higher compared to the cost of an object that
can better absorb contact (e.g., foam rubber).

We use GPT-4o (hereafter, GPT) as the VLM to generate
the cost of all objects in the scene due to its strong spatial rea-
soning capabilities [5], but our approach is compatible with
other VLMs. The input to GPT includes both an annotated
image and a text prompt. To get the image input, we mount
an RGBD camera between the scene and the robot to capture
a front-view image I in simulation, while in the real world
setup, we mount a camera at the right front of the scene to
get I . Cluttered scenes may contain too many objects for
GPT to accurately recognize all of them. Consequently, we
use SAM2 [36] to segment the objects. Then, we use Set-of-
Mark prompting [48] to annotate the image with numerical
indices over the objects. The segmented and annotated image
I ′ is ultimately provided as part of the input to GPT.

We also design a text prompt template ℓ which includes the
list of objects in the scene (but is otherwise task-agnostic),
and some general principles related to the concept of contact
tolerance. Objects are labeled with the same numbers as in
the input image, marked by SAM2. We include Chain-of-
Thought prompting [45] in ℓ to improve GPT’s reasoning.
The full text prompt can be found on our website. The output
of GPT is a dictionary with the cost of all queried objects.
Fig. 1 (second row) shows an example of generated object
costs, suggesting that GPT can accurately reason about object
properties. For example, it understands that a glass bottle is
fragile, and thus assigns it a high cost of 9. In contrast, other
objects have a lower cost (i.e., better contact tolerance) such
as the toy bear with a cost of 4.

B. Motion Planning with Contacts

We use motion planning algorithms to synthesize robot
trajectories in the cluttered environment. Inspired by the 3D
value map in VoxPoser [14], we propose to construct a 3D
cost map C to guide the motion planner. The cost map is
represented as a voxel grid of dimension (L×W×H), where

each voxel C[x, y, z] denotes the cost at position (x, y, z).
We initialize C to be all zero. Then, for each object in the
scene, we identify the occupied voxels in 3D space and
assign them the corresponding object cost from GPT (see
Sec. IV-A). During planning, we further assign the cost of the
target to -1 instead of using the cost generated by GPT. This
encourages the planning algorithm to find a path towards the
target. We visualize cost maps in Fig. 2 and Fig. 3.

Once we construct the 3D cost map, we use a standard
motion planning algorithm to compute a trajectory that
minimizes cost. Each trajectory consists of a sequence of
robot end-effector positions. The total cost of a trajectory τ
is the sum of costs of obstacles the robot arm collides with:

Cost(τ) =

|τ |∑
i=1

C[τi]. (1)

In Equation 1, |τ | denotes the length of the trajectory τ and τi
is the position of the i-th waypoint. By combining the cost
map and the motion planning algorithm, we can compute
a trajectory that minimizes contact with high-cost obstacles
while permitting acceptable contact when necessary. Notably,
we only use Equation 1 during motion planning. For evalu-
ation, we also compute the cost based on the obstacles the
robot arm makes contact with, but we do not count the same
obstacle multiple times (see Sec. V-D).

As our main method, we use IMPACT with the RRT* [17]
motion planner, and denote this as IMPACT+RRT*.

V. SIMULATION EXPERIMENTS

A. Experiment Setup in Simulation

We build and test our pipeline using PyBullet simula-
tion [6]. In simulation, we create 20 scenes designed to test
contact-rich manipulation. These use a hybrid object dataset,
which includes tall and bulky items (e.g., sugar boxes and
water pitchers) from the YCB [3] data and fragile objects
(e.g., wine glasses and stacked bowls) using 3D models
generated from TRELLIS [46]. TRELLIS allows construct-
ing delicate object meshes from single-view images and
introduces fragility constraints not present in YCB objects.
All objects are on a shelf so that the robot cannot reach the
target object from above. See Fig. 3 for an example scene.

We use three cameras which capture the scene for cost map
generation: one in front of the shelf and two on the sides. The



Original Scene 3D Cost Map

Fig. 3: Our simulation setup in PyBullet simulation [6]. In this
example scene, there is a box which contains a wine glass, a sugar
box, and a mug. The objective is to reach the mug. The yellow and
green regions (e.g., for the wine glass and the larger box) indicate
higher costs. For visual clarity, we show the original scene I , before
it is annotated for GPT. See Sec. V for more details.

camera in front of the shelf also captures the scene image I
used as input to GPT. To prevent interactions with the shelf
or tabletop, we explicitly assign their costs to be 10. We set
the maximum allowed path cost to 10 to balance efficiency in
path planning and contact avoidance. To quantify the benefit
of using GPT-generated costs, we compare with two control
groups: (i) with the maximum path cost set to 0 to obtain
a collision-free path, which we test in our “Collision-Free
Planning” baseline (see Sec. V-C), and (ii) with the cost of
all objects set to 0 to see how the planner will plan the path
if all collisions are allowed (see Sec. V-F).

B. Motion Planning Methods

As reviewed in Sec. IV-B, our method is IMPACT+RRT*.
In simulation, we also test IMPACT with RRT [24] and
MPC [9] as the motion planners, and thus call the respective
methods IMPACT+RRT and IMPACT+MPC. We slightly
modify these planning algorithms to improve their effec-
tiveness for manipulation in dense clutter. For example, to
encourage the robot to avoid high-cost obstacles, we define
a threshold for object cost. During planning, we check the
distance to each obstacle exceeding this cost threshold to
make sure the nodes close to them are not considered as
waypoints of the trajectory. We apply this modification to
both RRT and RRT*. For MPC, the cost of a state is defined
as the sum of (i) the distance to the target object, (ii) the cost
of the current end effector position decided by the cost map
and (iii) a penalty for collisions with high-cost obstacles.

C. Baseline Methods

We evaluate IMPACT against the following baselines.
1) Collision-Free Planning: This avoids all collisions,

and serves as a baseline to demonstrate that in cluttered
environments, a collision-free path may not exist. We test
this with MPC, RRT, and RRT*.

2) Language-Conditioned Path Planning (LAPP): We use
LAPP [47] as a strong baseline, because (like IMPACT) it
also allows robots to make collisions with specific objects
in the environment. LAPP trains a language-conditioned
collision function that predicts whether a robot will collide

Fig. 4: Our user study evaluation website interface. For each
question, the human evaluates two videos of robot trajectories
without knowing the underlying robotics method that caused each
robot motion. For each video pair, they select which video is more
preferable to them. To aid comparisons, we enable the users to sync
the videos. We also allow the option of “Cannot Decide.”

with objects other than the one specified in a language
instruction (which the robot is permitted to collide with).
The collision function has three inputs: (i) CLIP [35] image
embeddings of the scene, (ii) CLIP text embeddings of the
language instruction (e.g., “can collide with toys”), and (iii)
joint configurations of the robot arm. We build directly upon
the official open-source LAPP code.

D. Evaluation Metrics

To evaluate the quality of trajectories in our densely clut-
tered environments, we compute the following metrics. The
robot’s trajectory terminates when the robot’s end-effector
reaches the target, or if a time limit is reached.

• reach target: whether the robot reaches the target
object at any point during the trajectory:

reach target = ∥p′
e − p′

otarg∥ < 0.01.

• path cost: the sum of the cost of all collided obsta-
cles during execution:

path cost =
∑

o∈O\otarg
co.

• contact duration: the sum of duration for which
the robot is in contact with any obstacle:

contact duration =
∑

o∈O\otarg
to.

• displacement: displacement of each object:

displacemento = ∥p′
o − po∥, o ∈ O.

Here, e is the robot end effector. For each object o ∈ O,
po and p′

o denote its initial and final position, respectively;
the final position considers early termination. The cost of
object o is represented by co while to is the contact duration
between the robot and o. After calculating these metrics,
we define a trajectory as a success if the following are all
true: (i) the robot reaches the target with path cost < 10,
(ii) contact duration < 100 and (iii) for all high-cost
obstacles, we have displacement < 0.1. To decide on
which objects are “high-cost” in a given scene, a skilled



Category Path Planning Reach Path Contact High Cost Object Success
Algorithm Target ↑ Cost ↓ Duration (s) ↓ Displacement (cm) ↓ Rate ↑

Collision Free
MPC 76.93% - 12.5 8.05 20.75%
RRT 78.92% - 9.39 6.36 34.75%
RRT* 83.12% - 7.57 6.32 37.75%

IMPACT
MPC 81.45% 11.59 12.0 7.97 41.00%
RRT 84.67% 8.52 7.64 6.11 58.75%
RRT* (Ours) 82.50% 8.85 7.50 6.08 63.25%

- LAPP 41.18% - 9.53 10.58 35.00%

TABLE I: Comparison of path planning algorithms and results in PyBullet simulation. We report 5 quantitative metrics (see Sec. V-D).
“Reach Target” reports when the robot’s end effector reaches the target after executing the trajectory, and where collisions are allowed.
“Success Rate” only counts the trajectories that strictly contain no collisions to (human-designated) high-cost obstacles. The arrow ↑
indicates larger values of the metric correspond to better performance, and ↓ represents the opposite. Collision-Free baselines and LAPP
do not use GPT to generate object costs, so they do not have values for “Path Cost” in this table.

human annotator pre-selects the 1-2 highest-cost objects in
a scene, and those are set for all methods evaluated.

1) User Study Evaluation: While the prior quantitative
metrics evaluate trajectory cost, they may not fully capture
whether a trajectory is “acceptable” to humans. For example,
if all collisions with objects are counted and penalized
equally, a trajectory where the robot solidly collides with
only one object has a lower cost compared to one where
it gently contacts multiple objects. Thus, motion planning
algorithms optimize to select the former trajectory, even
though the latter trajectory may be more acceptable to
humans due to the gentle contacts. Furthermore, tolerance
for contact may vary from person to person.

To better assess IMPACT’s ability to generate semantically
acceptable behavior, we conduct a user study. We develop
a website to collect human feedback, where participants
evaluate robot trajectories by watching videos. Each question
presents two videos of robot trajectories in the same scene
with the same target object. One video is generated from our
algorithm, and the other by a baseline algorithm. Users are
not informed which algorithm produced each trajectory. Fol-
lowing a similar approach as Mirjalili et al. [32], participants
are asked to select the trajectory they find most acceptable.
See Fig. 4 for a visualization of the website interface. Our
study has been approved by the Institutional Review Board
(IRB) at the University of Southern California. None of the
human evaluators is an author of this paper.

E. Simulation Results

Table I reports our simulation results. IMPACT+RRT*
achieves the highest success rate with lower path cost,
shorter contact duration, and smaller displacement of high-
cost objects. IMPACT significantly improves the success
rate of different motion planning algorithms compared to
collision-free planning, while reach target is similar.
This indicates that IMPACT can guide motion planning
algorithms to plan trajectories with more acceptable contacts.
Furthermore, RRT* achieves the best performance compared
to other planning methods. The other baseline, LAPP, has a
lower reach target rate and success rate, mainly because
it fails to find a path in some scenes.

Fig. 5 shows trajectories planned by different methods
in the same scene. Our method IMPACT+RRT* finds a

Path Planning Algorithm Cost Success Rate

RRT* IMPACT (Ours) 63.25%
Same Cost for All 42.75%

RRT IMPACT (Ours) 58.75%
Same Cost for All 45.50%

MPC IMPACT (Ours) 41.00%
Same Cost for All 39.50%

TABLE II: Results of our ablation study on object costs. “Same
cost for all” refers to assigning all object costs the same value 0
instead of querying GPT to generate costs. See Sec. V-F for details.

trajectory that makes contact with the spray bottle. However,
the path planned by Collision-free+RRT* intends to avoid
all the obstacles, but the robot collides with the fragile wine
glass during execution. This happens because the Collision-
Free baseline prioritizes moving through the gap between the
obstacles and brings the robot too close to the wine glass,
increasing the risk of collision. LAPP also guides the robot
to make contact with the spray bottle while avoiding the
wine glass, but the spray bottle is pushed along the path,
preventing the robot from reaching the target. As shown in
Table I, this common behavior leads to a higher average
high-cost object displacement.

Fig. 6 shows the human evaluation results of simulation
experiments. We collect feedback from 27 participants, each
of them answering 43 questions. Each question compares
a video pair that contrasts our method with some baseline.
The results show that IMPACT+RRT* is the most preferred
method across all scenes, suggesting that our method pro-
duces motion plans that better align with human preferences
by leveraging commonsense knowledge in GPT.

F. Ablation Study

To investigate the benefit of IMPACT, we conduct an
ablation study by setting all object costs to 0, so all col-
lisions are allowed during path planning. Results in Table II
demonstrate that IMPACT improves the trajectory success
rate (see Sec. V-D) of reaching tasks. For all three motion
planning algorithms, IMPACT takes properties of obstacles
into account and assigns object costs based on different
scenes. This encourages motion planning algorithms to avoid
obstacles and generate trajectories with reduced contact.



IMPACT + RRT*

Collision-free + RRT*

LAPP

Fig. 5: Examples of trajectories planned using different motion planning algorithms and cost configurations in PyBullet simulation [6];
our method is IMPACT+RRT* (top row). The scene contains three obstacles: a spray bottle, a power drill and a wine glass. The target
object is the jar behind the obstacles. The paths planned by different methods are shown in an overlaid green curve in each image. We
also provide LAPP with a language instruction “Can collide with the spray bottle and the power drill.” See Sec. V-E for more details.
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Fig. 6: Human evaluation results of simulation experiments. Each
bar represents the results of comparing IMPACT+RRT* (i.e., our
method) versus one baseline. It is divided into three segments:
IMPACT+RRT*, the baseline method, and “Cannot decide.” Each
segment counts the number of questions where people prefer the
trajectory generated by the corresponding method. For example, the
top row reports eight questions that compare the trajectory from
LAPP and IMPACT+RRT*. Among six of these questions, more
participants prefer the trajectory planned by IMPACT+RRT*. In one
question, they prefer the trajectory generated by LAPP. In another
question, most people do not have a strong preference.

VI. PHYSICAL EXPERIMENTS

A. Experiment Setup

We evaluate IMPACT on a real robotic system to validate
our findings from simulation. This does not involve sim2real
transfer, as we provide real-world images directly to GPT
for IMPACT. The hardware setup consists of a Franka Panda

arm with a standard parallel-jaw gripper, and a flat tabletop
surface of size 68 cm×56 cm. A human operator arranges
multiple objects in close proximity on top of the surface.
For reasonably fair comparisons among methods, the human
tries to place objects in consistent locations for each scene.

We mount two Intel RealSense L515 cameras on both
sides of the scene to capture RGBD images and generate
voxel grids. In the real world, we need to get the position
of each object to assign the associated object cost to those
voxels. Unlike in simulation, we use Grounded SAM 2 [16],
[21], [29], [36], [37] to generate the segmented point cloud
of each object as we build the 3D cost map. Each image,
along with the object list, is provided as input to Grounded
SAM 2, to predict the segmentation mask of the objects.
We then generate a multi-view segmented point cloud and
convert it to the 3D cost map. The motion planning part is
the same as in simulation.

For physical experiments, we test IMPACT+RRT* and
LAPP. To adapt LAPP for real-world experiments, we fine-
tune it on a small dataset containing 20 real-world RGB
images, manually annotated with collision scores. The im-
ages are captured by an Intel RealSense D435 camera that
faces both the robot and the scene. The annotations explicitly
label which objects are safe to collide with (for example,
“can collide with plastic bottle”). Objects not mentioned
in the language prompts are treated as unsafe by default,
aligning with LAPP’s methodology of explicit collision rules.
Human operators pair each scene with joint configurations
and task-aligned prompts, reflecting the original work’s use
of free-form language constraints [47]. This retains LAPP’s



Fig. 7: Examples of successful trajectories with acceptable contact in the real world. The targets in each scene (from top to bottom) are
the tomato can, the tomato, and the matcha can, respectively.

Method Success Rate

IMPACT+RRT* (Ours) 63%
LAPP 54% (Seen Obj.) 50% (Unseen Obj.)

TABLE III: Results of our method versus LAPP in the real world.
Seen objects refers to objects seen during fine-tuning of LAPP while
unseen objects are novel objects to LAPP. Our method is zero-shot,
so all the objects can be considered unseen to it.

pre-trained reasoning while grounding predictions in real-
world spatial relationships and safety priorities. Of the 10
test scenes, 9 use objects seen during fine-tuning, while 1
scene contains novel objects to evaluate generalization.

B. Real World Results

Table III shows real world results of different methods.
IMPACT+RRT* outperforms LAPP in all scenes. Further-
more, the performance gap is larger in the scene with unseen
objects (70% versus 50% success). The results suggest the
strong generalization ability of our method since it does not
need sim2real transfer. However, LAPP requires fine-tuning
on unseen real world objects to achieve comparable results.

Failure Cases. While IMPACT generates semantically-
acceptable trajectories in most trials, failures can happen
during execution. Fig. 8 shows two examples of failed
trajectories. The main failure cases are as follows: (i) part of
the robot gets stuck on an obstacle, (ii) the target is displaced
when the robot pushes an obstacle, and (iii) GPT predicts
object costs that are misaligned with human preferences.

VII. LIMITATIONS

While promising, IMPACT has several limitations that
point to interesting directions for future work. First, after
selecting the most semantically-acceptable trajectory, the
robot follows it open-loop. This means it cannot react to

Fig. 8: Examples of real-world failures. In the left image, the robot
gets stuck on the box while reaching the target toy dinosaur. In
the right image, the robot collides with the glass bottle. The glass
bottle hits the target tomato as it falls and the tomato rolls away.

unexpected disturbances in real-time. Second, IMPACT relies
on having relatively complete RGBD observations to provide
to the VLMs. Thus, it may be less effective under partial
observability with severe occlusions. Developing a closed-
loop procedure that can actively perceive the environment
may address these limitations.

VIII. CONCLUSION

In this work, we introduce IMPACT, a framework for
motion planning in cluttered environments that leverages
the broad knowledge in vision-language models (VLMs)
to assess object contact tolerance. IMPACT represents this
information in a 3D cost map for motion planning. Our
results in simulation and in real-world experiments demon-
strate that robots can efficiently reach targets while making
semantically-acceptable contact when needed. We hope that
this work inspires future work towards flexible and contact-
rich robot manipulation in densely cluttered environments.
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