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Abstract
Reward engineering has long been a challenge
in Reinforcement Learning (RL) research, as it
often requires extensive human effort and itera-
tive processes of trial-and-error to design effective
reward functions. In this paper, we propose RL-
VLM-F, a method that automatically generates
reward functions for agents to learn new tasks, us-
ing only a text description of the task goal and the
agent’s visual observations, by leveraging feed-
backs from vision language foundation models
(VLMs). The key to our approach is to query
these models to give preferences over pairs of
the agent’s image observations based on the text
description of the task goal, and then learn a re-
ward function from the preference labels, rather
than directly prompting these models to output
a raw reward score, which can be noisy and in-
consistent. We demonstrate that RL-VLM-F suc-
cessfully produces effective rewards and policies
across various domains — including classic con-
trol, as well as manipulation of rigid, articulated,
and deformable objects — without the need for
human supervision, outperforming prior methods
that use large pretrained models for reward gener-
ation under the same assumptions.

1. Introduction
One of the key challenges of applying reinforcement learn-
ing (RL) is designing an appropriate reward function that
will lead to the desired behavior. This procedure, known
as reward engineering, demands considerable human effort
and trial-and-error iterations, but is often required for good
results (Laud, 2004; Silver et al., 2016; OpenAI et al., 2019;
Gupta et al., 2022). In this work, we aim to develop a fully

*Equal contribution. †Equal advising. 1Robotics Institute,
Carnegie Mellon University 2Computer Science Department, Uni-
versity of Southern California. Correspondence to: Yufei Wang
<yufeiw2@andrew.cmu.edu>.

automated system that can generate a reward function and
use it to teach agents to perform a task with RL by using only
a language description of the task, eliminating the extensive
human effort required to craft reward functions manually.

Prior work has studied replacing human supervision by
prompting large language models (LLMs) to write code-
based reward functions (Xie et al., 2023; Ma et al., 2023b;
Wang et al., 2023). However, these methods usually as-
sume access to the environment code, rely on the low-level
ground-truth state information for reward generation, and
face challenges with scaling up to high-dimensional envi-
ronments and observations, such as manipulating complex
deformable objects.

Another related line of work obtains rewards from visual
observations by using contrastively trained vision language
models, such as CLIP (Radford et al., 2021), to align image
or video observations with task descriptions in a learned
latent space (Cui et al., 2022b; Mahmoudieh et al., 2022;
Ma et al., 2023a; Sontakke et al., 2023; Adeniji et al., 2023;
Rocamonde et al., 2023). However, the reward signals pro-
duced in these works are often high variance and noisy, as
these CLIP-style models are limited to training exclusively
on datasets where the language description directly captions
the visual input; these types of datasets are not sufficiently
large or diverse to allow the models to reason about tasks
that are visually dissimilar to the datasets they were trained
on. As a result, prior work often has to fine-tune these
CLIP-style models for their specific tasks at hand (Ma et al.,
2023a; Mahmoudieh et al., 2022).

To this end, we present RL-VLM-F, a method that automat-
ically generates reward functions for agents to learn new
task. RL-VLM-F (Figure 1) requires only a single text de-
scription of the task goal and the agent’s visual observations,
leveraging vision language foundation models (VLMs) that
are trained on diverse, general text and image corpora (e.g.,
GPT-4V (OpenAI, 2023), Gemini (Team et al., 2023)) in-
stead of the limited vision-language aligned datasets used
in CLIP-style models. The key to our approach is to query
these models to give preferences over pairs of the agent’s
image observations based on the text description of the task
goal and then learn a reward function from the preference la-
bels, rather than directly prompting these models to output a
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Figure 1. RL-VLM-F automatically generates reward functions for policy learning on new tasks, using only a text description of the task
goal and the agent’s visual observations. The key to RL-VLM-F is to query VLMs to give preferences over pairs of the agent’s image
observations based on the text description of the task goal, and then learn a reward function from the preference labels.

raw reward score, which can be noisy and inconsistent (Son-
takke et al., 2023; Rocamonde et al., 2023). This allows us
to draw from the rich literature on reinforcement learning
from human preferences (Christiano et al., 2017; Wirth et al.,
2017; Lee et al., 2021a), without requiring actual humans,
to train reward functions automatically for new tasks. We
test our method on 7 tasks involving classic control, rigid,
articulated, and deformable object manipulation. We show
that our approach can produce reward functions that lead
to policies that solve diverse tasks, and our approach sub-
stantially outperforms prior methods and alternative ways
to use VLMs to generate rewards. We also perform exten-
sive analysis and ablation studies to provide insights into
RL-VLM-F’s learning procedure and performance gains.

In summary, we make the following contributions:

• We propose RL-VLM-F, a method that automatically gen-
erates reward functions for agents to learn new tasks, us-
ing only a text description of the task goal and the agent’s
visual observations, eliminating the extensive human ef-
fort involved in manually crafting reward functions.

• We show that RL-VLM-F can be used to generate reward
functions and learn policies that can solve a series of
rigid, articulated, and deformable object manipulation
tasks, and it greatly outperforms prior methods.

• We perform extensive analysis and ablation studies to
provide insights into RL-VLM-F’s learning procedure
and performance gains.

2. Related Works
Inverse Reinforcement Learning. Similar to our work,
inverse reinforcement learning (IRL) aims at learning a

reward function that can be used to learn policies for solving
a task. IRL methods usually learn a reward function from
expert demonstrations (Ng & Russell, 2000; Abbeel & Ng,
2004; Ziebart et al., 2008; Ho & Ermon, 2016; Fu et al.,
2018; Ni et al., 2021). In contrast, while RL-VLM-F also
learns a reward function to train a policy, it only requires
a text description of the task goal and does not require
collecting expert demonstrations.

Learning from Human Feedback. Another line of work
directly learns a reward function from human feedback,
in the form of pairwise trajectory preference or ranking
comparisons, to train a reward function (Christiano et al.,
2017; Wirth et al., 2017; Ibarz et al., 2018; Leike et al.,
2018; Biyik et al., 2019; 2020; Lee et al., 2021a; Myers
et al., 2021; Bıyık et al., 2022). In most cases, human
preferences and rankings of robot trajectories are easier to
collect than demonstrations of robot trajectories. However,
because each comparison conveys little information on its
own, many preference queries are needed before the reward
function is well-trained enough to train an agent to perform
the task. RL-VLM-F instead queries a VLM to perform the
comparison to train a reward function, removing the need
for extensive human labor in giving preference labels.

Large Pre-trained Models as Reward Functions. Kwon
et al. (2023) first demonstrated that large pre-trained
models—large language models (LLM) specifically—can
generate rewards for RL agents in text-based tasks. Other
works followed by demonstrating that LLMs can write struc-
tured code for training robots (Yu et al., 2023) or directly
write Python code for training many kinds of agents (Xie
et al., 2023; Ma et al., 2023b; Wang et al., 2023). However,
many tasks are challenging to write reward functions for.
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For example, cloth folding requires tracking the locations
of many individual cloth keypoints, which can change from
one folding task to another. In these instances, visual rea-
soning is better suited for understanding how to reward the
agent. RL-VLM-F queries a VLM to compare agent ob-
servation images so that it can use visual observations to
reason about how well the agent is progressing in a task.
In addition, prior methods usually assume access to the en-
vironment source code when writing the reward functions,
whereas our method does not require such assumptions.

Another line of prior works rewards agents from image ob-
servations by aligning agent trajectory images with task
language descriptions or demonstrations with contrastively
trained visual language models (Cui et al., 2022a; Fan
et al., 2022; Nottingham et al., 2023; Ma et al., 2023a;
Sontakke et al., 2023; Rocamonde et al., 2023; Nam et al.,
2023). However, experiments from these papers directly
demonstrate that contrastive alignment is noisy and its accu-
racy relies heavily on the input task specification and how
well-aligned the agent observations are to the pre-training
data (Ma et al., 2023a; Sontakke et al., 2023; Rocamonde
et al., 2023; Nam et al., 2023). These contrastively trained
models also cannot explicitly reason about the task; our ap-
proach with vision-enabled large language models is more
effective as the VLMs are trained on more extensive and
diverse vision datasets, allowing them to interpret and rea-
son about agent observation images for a broader range of
tasks. Further, CLIP-style models have thus far been limited
to outputting noisy raw scores. We demonstrate that using
preferences results in superior performance to outputting
raw scores, shown in our experiments in Section 6. Finally,
our work shares a similar idea to RLAIF (Bai et al., 2022),
which proposed to mix preference labels generated by LLM
and human in the context of fine-tuning LLMs. In contrast,
we use a VLM to generate the preference labels without any
human labeling, and focus on the domain of robotics control
and manipulation.

3. Background
We consider the standard Markov Decision Process and rein-
forcement learning setup (Sutton & Barto, 2018). At every
timestep t, the agent receives a state st from the environ-
ment and chooses an action at based on a policy π(at | st).
The environment gives a reward rt after the agents executes
action at and transitions to st+1. The goal of the agent is to
maximize the return, which is defined as discounted sum of
rewards R =

∑∞
k=0 γ

kr(sk, ak) with discount factor γ.

Preference-based reinforcement learning: Our work
builds upon preference-based RL, in which an agent learns
a reward function from preference labels over its behav-
iors (Christiano et al., 2017; Ibarz et al., 2018; Lee et al.,
2021a;b). Formally, a segment σ is a sequence of states

{s1, ..., sH}, H ≥ 1. In this paper we consider the case
where the segment is represented using a single image, i.e.,
H = 1. Given a pair of segments (σ0, σ1), an annotator
gives a feedback label y indicating which segment is pre-
ferred: y ∈ {−1, 0, 1}, where 0 indicates the first segment
σ1 is preferred, 1 indicates the second segment is preferred,
and −1 indicates they are incomparable or equally prefer-
able. Given a parameterized reward function rψ over the
states, we follow the standard Bradley-Terry model (Bradley
& Terry, 1952) to compute the preference probability of a
pair of segments:

Pψ[σ
1 ≻ σ0] =

exp
(∑H

t=1 rψ(s
1
t )
)

∑
i∈{0,1} exp

(∑H
t=1 rψ(s

i
t)
) , (1)

where σi ≻ σj denotes segment i is preferred to segment
j. Given a dataset of preferences D = {(σ0

i , σ
1
i , yi)},

preference-based RL algorithms optimize the reward func-
tion rψ by minimizing the following loss:

LReward =− E(σ0,σ1,y)∼D

[
I{y = (σ0 ≻ σ1)} logPψ[σ0 ≻ σ1]

+ I{y = (σ1 ≻ σ0)} logPψ[σ1 ≻ σ0]

]
.

(2)

In preference-based RL algorithms, a policy πθ and reward
function rψ are updated alternatively: the reward function
is updated with a dataset of preferences as described above,
and the policy is updated with respect to this learned re-
ward function using standard reinforcement learning algo-
rithms. Specifically, we use PEBBLE (Lee et al., 2021a), a
preference-based RL method with unsupervised pre-training
and off-policy learning, as the underlying preference-based
RL algorithm.

4. Assumptions
We make the following assumptions on the VLMs to be
used in this paper: 1) We assume that the VLMs have been
trained on diverse text and image corpora, enabling them to
generalize well and reason across various environments and
tasks. 2) The VLMs should be capable of processing mul-
tiple images simultaneously and performing comparative
analyses on pairs of images as this is crucial for generating
preference labels. 3) RL-VLM-F is designed to operate on
static images, rather than videos. Consequently, we focus
on tasks for which the quality or success of a state can be
discerned from a single image or a sequence of images.
We consider large pretrained vision-language foundation
models, such as Gemini (Team et al., 2023) and GPT-4
Vision (OpenAI, 2023), to satisfy these assumptions.

3



Reinforcement Learning from Vision Language Foundation Model Feedback

Analysis Template
Consider the following two 
images: 

Image 1: 
[Image 1] 

Image 2: 
[Image 2] 

1. What is shown in Image 1? 
2. What is shown in Image 2? 
3. The goal is to [task 
description]. Is there any 
difference between Image 1 
and Image 2 in terms of 
achieving the goal? 

Task description

Image 1 Image 2

Observation Pair Labeling Template

VLM 
response

Based on the text below to the 
questions : 

[Repeat the 3 questions in the 
Analysis Template] 

[VLM response] 

Is the goal better achieved in 
Image 1 or Image 2? 
Reply a single line of 0 if the 
goal is better achieved in Image 
1, or 1 if it is better achieved 
in Image 2. 
Reply -1 if the text is unsure 
or there is no difference. 

Vision 
Language 

Model

“1”

Preference 
Label

Vision 
Language 

Model

( ),

“Fold the cloth 
diagonally”

Figure 2. We use a two-stage VLM-querying process for generating preference labels to train the reward function. In the analysis stage,
we query the VLM to generate free-form responses describing and comparing how well each of the two image observations achieves
the task goal. Then, in the labeling stage, we prompt the VLM with the VLM-generated text responses from the first stage to extract a
preference label between the two image observations. The template shown here is the actual entire template we use for all experiments.

Algorithm 1 RL-VLM-F
input Text description of task goal l

1: Initialize policy πθ and reward rψ
2: Initialize the preference buffer D ← ∅, RL replay buffer
B ← ∅, image observation buffer I ← ∅, policy gradient
update steps Nπ , reward gradient update steps Nr , VLM
query frequency K, number of preference queries per time
M

3: for each iteration iter do
4: // POLICY LEARNING AND DATA COLLECTION
5: for t = 1 to T do
6: Collect state st+1, image It+1 by taking at ∼ πθ(at|st)
7: Add transition B ← B ∪ {(st, at, st+1, rψ(st))}
8: Add image observation I ← I ∪ {It+1}
9: end for

10: for n = 1 toNπ do
11: Sample random batch {(st, at, st+1, rψ(st))j}Bj=1 ∼ B
12: Optimize policy πθ using the sampled batch with any

off-policy RL algorithm
13: end for
14: // PREFERENCE BY VLM AND REWARD LEARNING
15: if iter % K == 0 then
16: for m = 1 to M do
17: Randomly sample two images (σ0, σ1) from buffer I
18: Query VLM with (σ0, σ1) and task goal l for label y
19: Store preference D ← D ∪ {(σ0, σ1, y)}
20: end for
21: for n = 1 toNr do
22: Sample minibatch {(σ0, σ1, y)j}Dj=1 ∼ D
23: Optimize rψ in Equation (2) with respect to ψ
24: end for
25: Relabel entire replay buffer B using updated rψ
26: end if
27: end for

5. Method
Figure 1 provides an overview of RL-VLM-F. Unlike previ-
ous preference-based RL algorithms that require a human
annotator to give the preference labels, RL-VLM-F lever-
ages a VLM to do so based solely on a text description of
the task’s goal, thus automating preference-based RL and

mitigating the time-intensive human supervision required
in writing reward functions or providing preference labels.
RL-VLM-F works as follows: first, the policy πθ and the
reward function rψ are randomly initialized. Given a task
goal description, our method then iterates through the fol-
lowing cycle: (1) The policy πθ is updated using RL with
the reward function rψ , interacts with the environment, and
stores image observations into a buffer; (2) A batch of im-
age pairs is randomly sampled from the stored buffer and
sent to a VLM. The VLM is queried to produce preference
labels for these image pairs in terms of which one better
performs the task based on the text description of the task
goal; (3) The reward model is updated with the loss in Equa-
tion (2) using the preference labels produced by the VLM.
The full detailed procedure of RL-VLM-F can be found in
Algorithm 1.

5.1. Prompting VLMs to generate preference labels for
reward learning

To train the reward model rψ, we first need to generate
preference labels from the VLM. To do this, we sample two
images from the “image observation buffer” I , which stores
image observations of the policy during learning, and then
query the VLM for which of the two images better performs
the task according to the text goal description (Algorithm 1
lines 17-18).

The querying process is illustrated in Figure 2. It consists of
two stages: an analysis stage and then a labeling stage. In
the analysis stage, we query the VLM to generate free-form
responses describing and comparing how well each of the
two images achieves the task goal. Then, in the labeling
stage, we prompt the VLM with the VLM-generated text
responses from the first stage to extract a preference label
between the two images.1 Specifically, the labeling stage

1We can also use an LLM in this stage as it only requires text
inputs, but for simplicity, we use the same model as for the first
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prompt repeats the questions in the analysis prompt, fills in
the VLM’s response from the analysis stage, and then asks
the VLM to generate a preference label y ∈ {−1, 0, 1}. We
specify in the prompt that 0 or 1 indicates that the first or
second image is better, respectively, and -1 indicates no dis-
cernible differences. We do not use the image pairs to train
the reward model if the VLM returns -1 as the preference
label. Finally, as shown at line 19 of Algorithm 1, we store
the preference labels produced by the VLM into the prefer-
ence label buffer D during the training process. Standard
preference-based reward learning can then be performed
(as detailed in Section 3) to train the reward function with
Equation 2 using the preference buffer D. Reward learning
corresponds to lines 21-24 in Algorithm 1.

To minimize prompt engineering effort, we use a unified
template across all environments (the exact entire template
is shown in Figure 2). Therefore, to train a policy for a new
environment with RL-VLM-F, one only needs to provide
the task goal description; the labels and subsequently the
reward function will then be automatically trained with the
above process.

5.2. Implementation Details

For policy training, we use SAC (Haarnoja et al., 2018) as
the underlying RL algorithm. As in PEBBLE (Lee et al.,
2021a), we relabel all the transitions stored in the SAC
replay buffer once the reward function rψ is updated (line
25 in Algorithm 1). We set the policy gradient update step
Nπ to be 1. The values of all other parameters in Alg. 1 can
be found in Appendix B.

6. Experiments
6.1. Setup

We evaluate RL-VLM-F on a set of tasks, spanning from
straightforward classic control tasks to complex manipu-
lation tasks involving rigid, articulated, and deformable
objects. The tasks are as follows.

• One task from OpenAI Gym (Brockman et al., 2016):
– CartPole where the goal is to balance a pole on a mov-

ing cart.
• Three rigid and articulated object manipulation tasks from

MetaWorld (Yu et al., 2020) with a Sawyer robot:
– Open Drawer, where the robot needs to pull out a

drawer;
– Soccer, where the robot needs to push a soccer ball

into a goal; and
– Sweep Into, where the robot needs to sweep a green

cube into a hole on the table.
• Three deformable object manipulation tasks from Soft-

stage of the querying process (a VLM).

Gym (Lin et al., 2021):
– Fold Cloth, where the goal is to diagonally fold a cloth

from the top left corner to the bottom right corner;
– Straighten Rope, where the goal is to straighten a rope

from a random configuration; and
– Pass Water, where the goal is to pass a glass of water

to a target location without water being spilled out.

See Figure 3 for visualizations of these tasks. Further details
about the tasks can be found in Appendix A.

We compare to the following baselines that make similar
assumptions to us when generating the reward function, i.e.,
those requiring only a text description and image observa-
tions from the agents (without access to environment code):

• VLM Score. Instead of querying the VLM to give prefer-
ence labels over two images, this baseline directly asks
the VLM to give a raw score between 0 to 1 for a given
image based on the task goal description. We inform the
VLM in the prompt that the score should be 1 if the task
goal is perfectly achieved in the image. A reward model
is then learned to regress to the scores given by the VLM.

• CLIP Score (Rocamonde et al., 2023). Given an image,
the reward is computed as the cosine similarity score
between the embedding of the image and the text descrip-
tion of the task goal using the CLIP model (Radford et al.,
2021). Such a reward computation method has also been
explored in several other prior works (Cui et al., 2022b;
Mahmoudieh et al., 2022; Adeniji et al., 2023).

• BLIP-2 Score. Similar to the CLIP Score baseline but
uses BLIP-2 (Li et al., 2023) instead of CLIP to compute
the cosine similarity score.

• RoboCLIP (Sontakke et al., 2023). This baseline uses a
pre-trained video-language model, S3D (Xie et al., 2018),
to compute the reward as the similarity score between the
embedding of the video of the policy trajectories and a
demonstration video. Since we do not assume to have
access to demonstrations of the task in our method, we
use the text version of RoboCLIP for a fair compari-
son. RoboCLIP-Text uses the pre-trained video-language
model to generate rewards as the similarity score between
the video embedding of the trajectory and the text embed-
ding of the task description.

• GT Preference. We use the original ground-truth reward
function (provided by the authors of each benchmark) to
give the preference label. This should in theory serve as
an oracle and upper bound on the learning performance.

Further details on the baselines, including all the text
prompts we use, can be found in Appendices C and D.

For MetaWorld tasks, we use the author-defined task suc-
cess rate of the policy as the evaluation metric (Yu et al.,
2020). For all other tasks, we report the episode return of
the learned policy. For all methods, the policy is learned
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 a)  Classic Control  b)  Rigid & Articulated Object Manipulation  c)  Deformable Object Manipulation 

Figure 3. We evaluate RL-VLM-F on 7 tasks including classic control, rigid and articulated object manipulation, as well as deformable
object manipulation. For Pass Water, the red dot represents the target location.

Figure 4. Learning curves of all compared methods on 7 tasks. RL-VLM-F outperforms all baselines in all tasks, and matches or surpasses
the performance of GT preference on 6 of the 7 tasks. Results are averaged over 3 seeds, and shaded regions represent standard error.
RoboCLIP is only evaluated on the MetaWorld tasks, as this is the set of tasks where the original method is evaluated.

with state observations, and we use the same policy learning
hyper-parameters for all methods, i.e., the only difference
between all compared methods is the reward function. For
methods where a reward function needs to be learned (RL-
VLM-F and VLM Score), the reward function is learned
using image observations. For RL-VLM-F and the VLM
Score baseline, we use Gemini-Pro (Team et al., 2023) as the
VLM for all tasks except Fold Cloth. We find Gemini-Pro
to perform poorly on Fold Cloth, so we instead use GPT-
4V (OpenAI, 2023) as the VLM for this task for these two
methods (see Appendix E for a comparison of Gemini-Pro
and GPT-4V on this specific task). We did not run GPT-4V
on all tasks due to its quota limitations. For all methods
except RoboCLIP, we remove the robot from the image for
the MetaWorld tasks, as these tasks are all object-centric
and removing the robot allows the VLM to focus on the
target object when analyzing the images. We keep the robot
within the image for RoboCLIP following the original pa-
per’s setup. We test RoboCLIP only on the MetaWorld
tasks, as this is the set of tasks where the original method is
evaluated.

6.2. Does RL-VLM-F learn effective rewards and
policies?

We first examine if RL-VLM-F leads to useful rewards and
policies that can solve the tasks. The learning curves of all
compared methods on all tasks are shown in Figure 4. As
shown, RL-VLM-F outperforms all other baselines in all
tasks. We find that prior approaches using CLIP or BLIP-2
score can only solve the easiest task – CartPole, and strug-
gle for more complex environments, such as the rigid object
manipulation tasks in MetaWorld and the deformable object
manipulation tasks in SoftGym. The text version of Robo-
CLIP performs poorly on all three MetaWorld tasks, align-
ing with the original paper’s results, as RoboCLIP works
the best with video demonstrations available. RL-VLM-F
also outperforms VLM Score in all tasks, which indicates
that prompting VLMs to output a preference label for re-
ward learning results in better task performance in contrast
to treating the VLM as a reward function that outputs raw
reward scores. We also observe that RL-VLM-F is able to
match the performance of using GT preference in all tasks
except Cloth Fold, which suggests we can use a single text

6



Reinforcement Learning from Vision Language Foundation Model Feedback

Fo
ld

 C
lo

th
St

ra
ig

ht
en

 R
op

e
Pa

ss
 W

at
er

GT Preference Ours VLM Score CLIP Score BLIP-2 Score

Figure 5. Comparison of the achieved final state of different methods on SoftGym deformable object manipuation tasks: Fold Cloth (Top),
Straighten Rope (Middle), and Pass Water (Bottom). RL-VLM-F achieves better final states compared to all the baselines.

description with RL-VLM-F to mitigate human efforts in
writing complex reward functions for these tasks.

Interestingly, for the task of Sweep Into, the performance of
RL-VLM-F actually surpasses that of using GT preference.
We suspect the reason could be as follows: the ground-truth
reward function written by the authors for this task includes
terms that are not directly correlated to task success. This
includes a reward term for grasping the cube, which is not
critical for pushing the cube into the hole. In contrary, RL-
VLM-F simply uses a text description of the task goal as
“minimize the distance between the cube and the hole”, thus
the learned reward is less prone to bias in human-written
reward functions and may better reflect the true task goal,
leading to better performance.

We show the final states achieved by the policies learned
with different methods on the three SoftGym deformable ob-
ject manipulation tasks in Figure 5. As shown, for all three
tasks, RL-VLM-F achieves a final state that is quantifiably
better than the baselines. For Fold Cloth, RL-VLM-F is
closest to a diagonal fold. For Straighten Rope, RL-VLM-F
is able to fully straighten the rope and match the perfor-
mance of GT preference, where all other baselines failed to
fully straighten it. For Pass Water, RL-VLM-F is able to
transport the water to the target location without any water
being spilled, and the baselines either do not move the glass,
or move it in a way that spills large amounts of water.

6.3. What is the accuracy of VLM preference labeling?

Given that RL-VLM-F can learn effective rewards and poli-
cies that solve the tasks, we perform further analysis on the
accuracy of the preference labels generated by a VLM. To
compute accuracy, the VLM outputs {−1, 0, 1} (no prefer-
ence, first image preferred, second image preferred) which
we compare to a ground truth preference label defined ac-
cording to the environment’s reward function. Note that we
discard the image pairs with a label -1 (no preference) when
training the reward model.

Our intuition is that, like humans, it would be hard for the
VLM to give correct preference labels when comparing two
similar images, and easier to produce correct preference la-
bels when the two images are noticeably dissimilar in terms
of achieving the goal. Figure 6 presents the accuracy of
the VLM at various levels of differences between the two
images. The “difference” between two images is measured
as the difference between the ground-truth task progress
associated with the images. We discretize the differences
into 10 bins along the x axis in Figure 6, where a larger
number indicates a greater difference between two images
in terms of task progress. On the y axis, the green, orange,
and blue bars represent the ratio where the VLM preference
label is correct, incorrect, or when there is no preference.
For all tasks, we observe a general trend of increasing ac-
curacy, decreasing uncertainty, and decreasing error as the
differences between the images increase, which aligns with
intuition. This trend is most clear and consistent for the
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Figure 6. We provide analysis of the accuracy of the VLM preference labels, compared to ground-truth preference labels defined according
to the environment’s reward function. The x-axis represents different levels of differences between the image pairs, discretized into 10
bins, where the difference is measured as the difference between the ground-truth task progress associated with the image pairs. The
y-axis shows the ratio where the VLM preference labels are correct, incorrect, or when it does not have a preference over the image pairs.

Figure 7. We compare how well the learned reward by RL-VLM-F and VLM Score align with the ground-truth task progress on 3
MetaWorld tasks along an expert trajectory. As shown, RL-VLM-F generates rewards that align better with the ground-truth task progress.
The learned rewards are averaged over 3 trained reward models with different seeds, and the shaded region represents the standard error.

CartPole, Open Drawer and Soccer tasks. Overall, for all
tasks, we find that the VLM is able to generate more correct
preference labels than incorrect ones, and as shown in Fig-
ure 4, the accuracy of VLM-generated preference labels is
sufficient for learning a good reward function and policy.

6.4. How does the learned reward align with the task
progress?

Figure 7 plots the learned rewards (averaged over 3 trained
reward models with different random seeds) as well as the
true task progress on three MetaWorld environments along
an expert trajectory that fully solves the task. Note the
ground-truth task progress is not the same as the author-
provided reward function: the author provided reward is a
shaped version of the task progress. For Open Drawer, the
task progress is measured as the distance the drawer has
been pulled out; For Soccer, it is measured as the negative
distance between the soccer ball and the goal; For Sweep
Into, it is measured as the negative distance between the

cube and the hole. We normalize both the ground-truth task
progress and the learned reward into the range of [0, 1] for
a better comparison between them. An ideal learned reward
should increase as the time step increases along the expert
trajectory, as like the ground-truth task progress. As shown,
the reward learned by RL-VLM-F aligns better with the
ground-truthtask progress compared with the VLM Score
baseline. We do notice the learned reward tends to be noisy;
but it is sufficient for deriving useful policies for solving the
task, as shown by earlier experiments. For Open drawer,
we notice that the reward produced by VLM Score remains
zero. This is likely because, during training, most of the
scores given by the VLM are 0, and the model learns to
predict 0 at all time steps to minimize the regression loss.
We find the CLIP and BLIP-2 scores on these environments
are generally noisy; the corresponding plots can be found in
Appendix F.
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7. Conclusion and Future Work
In this work, we present RL-VLM-F, a method that auto-
matically generates reward functions via querying VLMs
with preferences given a task descriptions and image ob-
servations for a wide range of tasks. We demonstrate our
proposed method’s effectiveness on rigid, articulated, and
deformable object manipulation tasks.

Future work could extend RL-VLM-F to an active learning
context, exploring both easy and informative VLM queries
for more efficient reward learning. The adaptable nature
of our method allows for the integration of more advanced
VLMs when they become available, potentially addressing
more complex tasks. Additionally, our approach offers a
practical pathway to applying RL in real-world settings,
where obtaining reward functions is often difficult.

Impact Statement
As we use pre-trained Vision Language Models for gener-
ating the reward functions, the bias presented in the VLMs
might be inherited into the reward function and subsequently
the learned policy. As a result, one might want to examine
the behavior of the learned policy before deploying it to
safety critical applications. Other than this point, we do not
anticipate any societal consequences of our work that must
be specifically highlighted here.
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Appendix

A. Details on Tasks and Environments
We run our method and baselines on CartPole from openAI
Gym (Brockman et al., 2016), three rigid and articulated
object manipulation tasks from MetaWorld (Yu et al., 2020),
and three deformable object manipulation tasks from Soft-
Gym (Lin et al., 2021). We describe the observation space
and action space for those tasks as follows:

A.1. Observation Space

For policy learning with SAC, we use state-based observa-
tions; for reward learning, we use high dimensional RGB
image observations, rendered by the simulator. We now
detail the state-based observation space for each task.

MetaWorld Tasks. For MetaWorld tasks, we follow the
setting in the original paper (Yu et al., 2020). The state
observation always has 39 dimensions. It consists of the
position and gripper status of the robot’s end-effector, the
position and orientation of objects in the scene, and the
position of the goal.

CartPole. The state observation has 4 dimensions, including
the position and velocity of the cart, as well as the angle and
angular velocity of the pole.

Cloth Fold. The state observation is the position of a subset
of the particles in the cloth mesh. The cloth is of size 40 x
40, and we uniformly subsample it to be of size 8 x 8. The
state is then the position of the picker, and the positions of
all those subsampled particles.

Straighten Rope. The state observation is the positions of
all particles on the rope and has 36 dimensions.

Pass Water. The state observation includes the size (width,
length, height) of the container, the target container position,
height of the water in the container, amount of water inside
and outside of the container. The state observation has 7
dimensions.

A.2. Action Space

For all environments, we normalize the action space to be
within [−1, 1]. Below we describe the action space for each
environment.

MetaWorld Tasks. For MetaWorld tasks, the action space
always has four dimensions. It includes the change in 3D
position of the robot’s end-effector followed by a normalized
torque that the gripper fingers should apply.

CartPole. The original action space is a discrete value in
0, 1, indicating the direction of the fixed force the cart is
pushed with. We modified it to be continuous within range
[0, 1] such that SAC can be used as the learning algorithm.

The continuous action represents the force applied to the
pole.

Cloth Fold. For this task, we use a pick-and-place action
primitive. We assume that the corner of the cloth is grasped
when the task is initialized. The action is the 2D target place
location.

Straighten Rope. For this task, we use two pickers, one at
each end of the rope, to control the rope. Therefore, the
action space is the 3D delta positions for each picker and
has 6 dimensions in total.

Pass Water. The motion of the glass container is constrained
to be in one dimension. Therefore, the action also has a
dimension of 1 and is the delta position of the container
along the dimension.

B. Hyper-parameters and Network
Architectures

B.1. Image-based Reward Learning

For the image-based reward model, we use a 4-layer Con-
volutional Neural Network for MetaWorld tasks and Cart-
Pole and a standard ResNet-18 (He et al., 2016) for the
three deformable object manipulation tasks. Following PEB-
BLE (Lee et al., 2021a), we also use an ensemble of three
reward models and use tanh as the activation function for
outputting reward. For RL-VLM-F, we train the model by
optimizing the cross-entropy loss, defined in Equation 2. For
VLM Score, we train the mode by optimizing the MSE loss
between the predicted score and ground-truth score output
by the VLM. For both methods, we use ADAM (Kingma &
Ba, 2014) as the optimizer with an initial learning rate of
0.0003.

B.2. Policy Learning

Following PEBBLE (Lee et al., 2021a), we use SAC as the
off-policy learning algorithm. We follow the network archi-
tectures for the actor and critic and all the hyper-parameter
settings in the original paper for policy learning.

B.3. Training details

Our implementation is based on PEBBLE (Lee et al., 2021a).
Below we describe the feedback collection schedule for
each task. For all tasks, we use a segment size of 1. We
summarize the number of queries per feedback session (M
in Algorithm 1), the frequency at which we collect feedback
in terms of environment steps (K in Algorithm 1), and the
maximum budget of queries (N ) for each task in Table 1.
For Cloth Fold, we have to use a small number of maximum
budget of queries due to the quota limitation of GPT-4V.
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M K N
Open Drawer 40 4000 20000

Soccer 40 4000 20000
Sweep Into 40 4000 20000
CartPole 50 5000 10000

Cloth Fold 50 1000 500
Straighten Rope 100 5000 12000

Pass Water 100 5000 12000

Table 1. Hyper-parameters for feedback learning schedule.

Figure 8. On the Fold Cloth task, we find the performance of GPT-
4V to be better than Gemini-Pro, possibly due to the complex
visual appearance of the cloth.

C. Baselines
C.1. VLM score

For this baseline, we use the same amount of queries (K)
at the same frequency (M ) as in our method to ask VLM to
directly output a score between 0 to 1. The reward model’s
architecture is the same as our method, except that the model
is trained with regression loss to regress to VLM’s output
score instead of classification loss as done in our method.

C.2. RoboCLIP

In RoboCLIP, the backbone video-language model is
S3D (Xie et al., 2018), trained on clips of human activi-
ties paired with textual descriptions from the HowTo100M
dataset (Miech et al., 2019). Given the assumption that the
model generalizes to unseen robotic environments, we ap-
plied this baseline solely to the three MetaWorld tasks that
contain a robot in the scene. We obtain the implementation
directly from the authors. To maintain uniform assumptions
across methods, we compare against the RoboCLIP variant
that only uses a text description instead of a video demon-
stration to compute the similarity score with the agent’s
episode rollout for reward computation. According to the
original paper, this text-only variant of RoboCLIP under-
performs the video-based method, corroborating the lower
performance observed in our tasks.

D. Prompts
D.1. RL-VLM-F and VLM Score

For both RL-VLM-F and VLM Score, we use a unified
query template combined with specific task goal descrip-
tions. The templates for RL-VLM-F and VLM Score are
shown in Figure 9 and Figure 10:

The only task-specific part in both prompts is the task goal
description. We use the same set of descriptions for both
methods. We summarize the textual description for each
task in Table 2.

D.2. CLIP Score and BLIP-2 Score

The task descriptions for both CLIP Score and BLIP-2 Score
baselines are summarized in Table 3. The semantic meaning
is almost identical to those used by RL-VLM-F and VLM
Score, except that the description is structured differently.
For CartPole, we used the exact same prompt as in (Roca-
monde et al., 2023), since they reported successful learning
of this task using that prompt.

D.3. RoboCLIP

For the task descriptions for the RoboCLIP baseline, we
followed the format used in the original paper (Sontakke
et al., 2023). We summarize the text descriptions in Table 4.

E. Ablation Study: Influence of Using
Different VLMs

For RL-VLM-F and the VLM score baseline, we use
Gemini-Pro (Team et al., 2023) as the VLM for all tasks
except Fold Cloth. We find Gemini-Pro to perform poorly
on Fold Cloth, so we instead use GPT-4V (OpenAI, 2023) as
the VLM for this task for both methods. Figure 8 compares
the learning performance of Gemini-Pro versus GPT-4V on
the task of Fold Cloth. We do observe GPT-4V to achieve
much better performance on this task than Gemini-Pro. The
poorer performance of Gemini-Pro on this task could be
possibly due to the more complex visual reasoning required
for deformable cloth.

F. More Visualization of the Learned Reward
Here we show the learned reward from RL-VLM-F and the
VLM Score baseline, as well as the CLIP and BLIP-2 score
along an expert trajectory on three MetaWorld tasks. We
compare the learned reward from RL-VLM-F and the VLM
Score / CLIP and BLIP-2 score to the ground-truth task
progress. The results are shown in Figure 11. For all three
tasks, the reward learned by RL-VLM-F aligns the best with
the ground-truth task progress.
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Prompt Template for RL-VLM-F (ours)

Analysis Template
Consider the following two images:
Image 1:
[Image 1]
Image 2:
[Image 2]
1. What is shown in Image 1?
2. What is shown in Image 2?
3. The goal is to [task description]. Is there any difference between Image 1 and Image 2 in terms of achieving the goal?
Labeling Template
Based on the text below to the questions:
[Repeat the 3 questions in the Analysis Template]
[VLM response]
Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the goal is better achieved in Image 1, or 1 if
it is better achieved in Image 2.
Reply -1 if the text is unsure or there is no difference.

Figure 9. Prompt Template for RL-VLM-F.

Prompt Template for VLM Score

Analysis Template Consider the following image:
[Image]
1. What is shown in the image?
2. The goal is [task description]. On a scale of 0 to 1, the score is 1 if the goal is achieved. What score would you give
the image in terms of achieving the goal?
Labeling Template
Based on the text below to the questions:
[Repeat the 3 questions in the Analysis Template]
[VLM response]
Please reply a single line of the score the text has given. Reply -1 if the text is unsure.

Figure 10. Prompt Template for VLM Score.
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Task Name Goal Description
Open Drawer to open the drawer
Soccer to move the soccer ball into the goal
Sweep Into to minimize the distance between the green cube and the hole
CartPole to balance the brown pole on the black cart to be upright
Cloth Fold to fold the cloth diagonally from top left corner to bottom right corner
Straighten Rope to straighten the blue rope
Pass Water to move the container, which holds water, to be as close to the red circle as possible without causing

too many water droplets to spill

Table 2. Goal description used in RL-VLM-F and VLM Score baseline.

Task Name Goal Description
Open Drawer The drawer is opened.
Soccer The soccer ball is in the goal.
Sweep Into The green cube is in the hole.
CartPole pole vertically upright on top of the cart.
Cloth Fold The cloth is folded diagonally from top left corner to bottom right corner.
Straighten Rope The blue rope is straightened.
Pass Water The container, which holds water, is as close to the red circle as possible without causing too many

water droplets to spill.

Table 3. Goal description used in CLIP Score and BLIP-2 Score.

Task Name Goal Description
Open Drawer robot opening green drawer
Soccer robot pushing the soccer ball into the goal
Sweep Into robot sweeping the green cube into the hole on the table

Table 4. Goal description used in RoboCLIP.
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Figure 11. Comparison of learned reward functions from RL-VLM-F and VLM Score, as well as CLIP and BLIP-2 score to the ground-
truth task progress along a trajectory rollout on three MetaWorld tasks. From left column to right: reward learned by RL-VLM-F, reward
learned by VLM Score, CLIP Score, BLIP-2 Score. From top row to bottom: Open Drawer, Soccer, and Sweep Into. The reward learned
by RL-VLM-F aligns the best across all compared methods.
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