
PEEK: Guiding and Minimal Image Representations
for Zero-Shot Generalization of Robot Manipulation Policies

Jesse Zhang⋆1,2,3, Marius Memmel⋆1,2, Kevin Kim3,
Dieter Fox1,4, Jesse Thomason3, Fabio Ramos2, Erdem Bıyık3, Abhishek Gupta†1, Anqi Li†2

Abstract— Robotic manipulation policies often fail to gener-
alize because they must simultaneously learn where to attend,
what actions to take, and how to execute them. We argue that
high-level reasoning about where and what can be offloaded to
vision-language models (VLMs), leaving policies to specialize
in how to act. We present PEEK (Policy-agnostic Extraction
of Essential Keypoints), which fine-tunes VLMs to predict
a unified point-based intermediate representation: (1) end-
effector paths specifying what actions to take, and (2) task-
relevant masks indicating where to focus. These annotations
are directly overlaid onto robot observations, making the
representation policy-agnostic and transferable across architec-
tures. To enable scalable training, we introduce an automatic
annotation pipeline, generating labeled data across 20+ robot
datasets spanning 9 embodiments. In real-world evaluations,
PEEK consistently boosts zero-shot generalization, including a
41.4× real-world improvement for a 3D policy trained only in
simulation, and 2–3.5× gains for both large VLAs and small
manipulation policies. By letting VLMs absorb semantic and
visual complexity, PEEK equips manipulation policies with the
minimal cues they need—where, what, and how. Website at
https://peek-robot.github.io.

I. INTRODUCTION

Imagine walking through a crowded store when your child
suddenly cries out, “I want the Labubu!” Though you’ve
never heard the word before, context clues guide your eyes
to the fuzzy toy on the shelf, and you effortlessly weave
through the crowd to grab it. What makes this possible is not
raw perception ability, but the ability to interpret ambiguous
instructions and distill them into just the right cues—where to
focus, what actions to take, and how to perform these actions
at the low level. Similarly, if given where to focus and what
motions to take, a robot manipulation policy should be able
to achieve the visual robustness and semantic generalization
necessary for open-world deployment by focusing only on
how to perform actions.

A common tactic for training manipulation policies
is through imitation learning of human-collected robotics
data [1]–[4], which attempts to learn the where, what, and
how all at the same time. Yet their performance degrades
on novel objects, clutter, or semantic variations [5], [6],
since the policy alone bears the burden of handling task,
semantic, and visual complexity. Such failures often entangle
the axes of where, what, and how—for example, grasping
a distractor simultaneously reflects misplaced attention, an
incorrect object choice, and a wrong motion.

⋆Co-first authors, †Equal Advising, 1University of Washington,
2NVIDIA, 3University of Southern California, 4Allen Institute for AI

Draw 2D Path ✏
+ Mask Image ◼

PEEK
❓🤖

✓🤖
💡

Path: [(0.25, 0.1), ...]
Mask: {(0.30,0.57), ...}

Put Spiderman in the
lunch box

Put the Labubu in the
shopping bag

Give the banana to
Jensen Huang

Fig. 1: PEEK enables policy generalization by modulating minimal
representations of where to focus and what to do for robust policy learning.

Our key idea is to offload high-level reasoning to vision-
language models (VLMs), which can excel at semantic and
visual generalization [7], [8], leaving the policy to determine
how low-level behavior should be executed. Instead of forc-
ing the policy to directly parse raw images and instructions,
a high-level VLM modulates the input representation to the
low-level policy by providing: (1) a path that encodes what
the policy should do, and (2) masks showing where to attend.
By “absorbing” semantic and visual variation, the VLM
provides the policy a simplified, annotated “peek” of the
scene that gives the what and the where, while the policy only
needs to learn how to perform the low-level actions. This
intermediate representation helps policy execution inherit
many of the VLM’s semantic and visual generalization
capabilities. Our VLM-modulated representation is naturally
policy-agnostic, allowing it to be applied to arbitrary image-
input robot manipulation policies, including state-of-the-art
RGB and 3D manipulation policies [1], [3], [9].

To concretely instantiate this insight into a practical al-
gorithm, we introduce PEEK (Policy-agnostic Extraction
of Essential Keypoints), which proposes a unified, point-
based intermediate representation that trains VLMs to predict
what policies should do and where to focus on. Specif-
ically, we propose to finetune pretrained VLMs [10] to
predict a sequence of points corresponding to (1) a path
that guides the robot end-effector in what actions to take
and (2) a set of task-relevant masking points that show the
policy where to focus on (see Figure 1). During low-level
visuomotor policy training and inference, we modulate the
policy’s image observations by directly drawing these VLM-
predicted paths and masks onto the image, allowing the
policy to simply focus on how to act, rather than learning all

https://peek-robot.github.io

three simultaneously. Doing so significantly bolsters policy
generalization, combining the generality of high-level VLM
predictions with the precision of low-level policy learning.
In this paper, we instantiate a full-stack implementation of
PEEK, from devising a scalable data annotation scheme that
enables large-scale VLM finetuning on robotic datasets to
representation-modulated training of low-level robot policies
from simulation and real world data.

In 535 real-world evaluations across 17 task variations,
we demonstrate that PEEK consistently boosts zero-shot
policy generalization: a 3D policy (3DDA [9]) trained only
in simulation achieves 41.4× higher success in the real world
when guided by PEEK, and both large-scale vision-language-
action models (π0 [3]) and small transformer-based poli-
cies [1] see 2–3.5× success rate improvements. These results
demonstrate the power of using high-level VLMs to absorb
task complexity, providing low-level policies with exactly the
minimal cues they need for generalizable manipulation.

II. RELATED WORKS

Object-Centric Representations. One approach to improv-
ing the visual generalization of imitation learning (IL) poli-
cies is to build object-centric representations [11]–[17]. Ear-
lier works relied on human-selected abstractions or manual
annotation [11], while more recent methods leverage pre-
trained, open-vocabulary segmentation models to visually
isolate task-relevant objects [12]–[15], [17]. Among these,
ARRO [13] is closest to our work, proposing a policy-
agnostic masking scheme using GroundingDINO [18] to
filter images for task-relevant objects. However, we found in
Section IV that such object detectors often fail in cluttered,
realistic scenes. By contrast, PEEK queries a fine-tuned VLM
to predict task-relevant masking points directly, resulting
in more robust masks than using object-detection models
due to the VLM’s extensive pre-training. Another approach,
OTTER [16], implements implicit masking by filtering CLIP
image patches, but this approach is architecture specifc.
PEEK’s policy-agnostic explicit masking allows us to in-
tegrate it with far more powerful policy backbones than
OTTER, i.e., vision-language-action models like π0 [3]. Fi-
nally, while masking alone helps mitigate visual distractors, it
alone cannot handle semantic variation; PEEK also provides
explicit action guidance via predicted paths.

Another line of object-centric methods relies on learning
to decompose scenes into object-level representations in
a self-supervised manner, e.g., via slot-attention [19]–[22],
which learns to map visual features into a set of discrete,
object-centric “slots” through competitive attention mecha-
nisms. However, these methods have not been applied to
real-world robot manipulation settings and generally do not
work zero-shot. PEEK’s use of a pre-trained VLM helps it
predict task-relevant points on new objects and tasks.
Guiding Manipulation Policies. A separate line of work
improves generalization by explicitly guiding policies in
how to perform tasks via 2D gripper paths. RT-Trajectory
introduced this concept using human-drawn sketches at in-
ference time [23]. Later methods integrated 2D path predic-

tion into VLA training objectives [8], [24]–[26], but these
approaches are tied to specific architectures. More relevant
is HAMSTER [7], which trains a VLM to predict future
2D gripper paths that a lower-level 3D policy conditions on.
While this approach aids with policy understanding of what
high-level motions to perform, we found in Section IV that
HAMSTER-trained policies are easily confused by visual
variation. In contrast, PEEK’s VLM predicts a single point-
based representation that also includes masks helping the
policy understand where to focus on.

Other works propose guiding policies via relabeling lan-
guage instructions [27]–[31] or behavioral priors, i.e., latent
skills, learned from data [32]–[35]. These approaches are
complementary to PEEK’s image-based input representation.

III. PEEK: GUIDING AND MINIMAL IMAGE
REPRESENTATIONS

We study how to enhance the generalization capability
of arbitrary visuomotor policies to semantic and visual task
variation. To do so, PEEK proposes to offload high-level
task reasoning to VLMs to produce a guiding (what) and
minimal (where) image representation for a low-level policy,
which in turn actualizes how to actually perform the task
through real-world actions. Concretely, we instantiate this
representation via 1) 2D gripper paths and 2) task-relevant
masks (see Figure 1). This hierarchical approach shifts the
burden of generalization from the low-level policy to the
high-level VLM, allowing the policy to focus only on how
to execute low-level actions.

A. Conceptual Insight

Imitation learning methods train a policy π(at | ot, st, l)
predicting an action at given RGB observations ot, pro-
prioceptive and other sensory data (e.g., depth) st, and a
task instruction l. Given an expert-collected robot dataset
Dπ , π is trained with maximium likelihood estimation, i.e.,
maxπ E(ot,st,l,at)∼Dπ

[log π(at | ot, st, l)].
PEEK explores how to improve imitation learning methods

by training a VLM to map (l, ot) to a guiding but minimal
representation, op,mt , that enables zero-shot generalization to
significant visual and semantic variation beyond that in Dπ .
Downstream task variation can include any combination of,
e.g., new scenes, visual clutter not present during training,
new objects, and unseen language instructions.

Formally, PEEK fine-tunes a pre-trained VLM conditioned
on (l, ot) to produce a set of points, i.e., pt,mt ∼ VLM(· |
ot, l), corresponding to: (1) 2D gripper paths, pt, indicating
where the end-effector should move to solve the task, and
(2) a set of task-relevant masking points, mt, that indicate
objects and regions of relevance. 2D gripper paths are defined
as pt = [(x, y)t, ..., (x, y)T] where (x, y) ∈ [0, 1]2 are
normalized pixel locations of the end effector’s positions
at timestep t until trajectory end point T . Masking points
are defined as mt = {(x, y)i}Mi=1, an unordered set of pixel
locations (x, y) ∈ [0, 1]2 of task-relevant points.

Although any pre-trained text and image input VLM can
be used to predict these path and mask points, prior work

has found that even the best closed-source models struggle
with predicting robot gripper paths without fine-tuning [7],
[8], let alone masking points. Therefore, we need to fine-tune
a VLM on a large dataset that grounds it to a diverse set of
robot scenes and embodiments. PEEK introduces a scalable
data-labeling scheme which we use to create a dataset of over
2M VQA pairs, spanning 148k trajectories, 9 embodiments,
and 21 robotics datasets.

B. VLM Data Preparation

To finetune VLMs for PEEK we assemble a dataset
DVLM = {(o, l,ans)i}Vi=1 of image inputs o, instructions
l, and text-based responses ans depending on the dataset.
In this section, we introduce our datasets, and then we detail
our automatic robot data labeling pipeline.
Point Prediction and VQA Datasets. Like prior work [7],
[8], we first incorporate readily available pixel point pre-
diction and visual question answering (VQA) data into
DVLM to maintain the VLM’s general world knowledge
and object reasoning capabilities. We use the Robo-
Point dataset [36] with 770k pixel point prediction
tasks, e.g., l = “Point to the cushions,” and ans =
[(0.56, 0.69), (0.43, 0.67)], and 665k VQA examples, e.g.,
l = “What is the cat eating?,” and ans = “An apple.”
Robotics Datasets. Our main robotics dataset comes from
the Open X-Embodiment (OXE) dataset [37], where we label
20 datasets from the OXE “magic soup” [2]. Notably, our
data labeling pipeline works effectively on datasets with lots
of clutter or awkward viewpoints that make task-relevant
objects appear very small, such as DROID [38] (e.g., the
pen in Figure 6). In contrast, we found the pre-trained object
detection models [18] used by prior works to extract object-
centric representations [13], [17] to be ineffective. Finally, we
also include a robotics simulation dataset (LIBERO-90 [39])
in our training mix to broaden the visual feature coverage
of the VLM. Now we describe how we scalably label our
robotics datasets.
Automatically Labeling Robotic Datasets. PEEK’s VLM
needs to predict a list of 2D gripper path points pt and task-
relevant masking points mt given arbitrary task instructions
and robot observations. Prior works label their dataset using
calibrated 3D cameras (in simulation and the real world) or
human annotations [7], [8], limiting the scalability of data
annotation. In contrast, we devise an automatic and scalable
multi-step tracking pipeline that extracts how to solve the
task and what to focus on directly from robot videos.

First, our representation should be minimal, i.e., it should
encode task-relevant entities at each timestep t. To extract
this information from a video, we have to ask the following
question: What entities are relevant to the task? We answer
this question by tracking a grid of points through time
with a visual point tracking model [40]. Points that move
significantly throughout the trajectory correspond to the robot
arm or objects being manipulated. We define this set as
task-relevant points P task

t = {(x, y)i}Ni=1, tracked across
all timesteps of a trajectory t ∈ [1, T], as they capture the
minimal information needed by a policy to solve the task.

Second, our representation should be guiding, i.e., capture
information about the (1) future relevant object movement
and (2) robot gripper movement. (1) The tracking points tell
us the entities’ position at each timestep t. To capture how
they move and where they end up, e.g., object placement
locations, we include points at the last timestep P task

T . (2) We
additionally construct a set of end-effector points P grip

t =
[(x, y)]Tt by tracking the gripper throughout the video.

Finally, we process the data into subtrajectories sepa-
rated by when the robot manipulates an object, and con-
struct the 2D paths pt = P grip

t and masking points
mt = P task

t ∪ P task
T . The natural language prediction

target ans for the VLM is then a combination of the
shortened pt and mt: TRAJECTORY: [(0.25, 0.1),
...] MASK: [(0.30,0.57), ...]. See Section I-A
and Figure 6 for details regarding the data labeling pipeline.

C. VLM and Policy Training/Inference with PEEK

VLM Fine-tuning. We use VILA-1.5-3b [10] as our base
VLM, a 3B parameter VLM trained on interleaved image-
text datasets and video captioning data. We fine-tune our
VLM for one epoch using the combined datasets totalling
3.5M samples with a learning rate of 5e−2 and a batch size
of 16. Fine-tuning takes ∼ 20h on 8 NVIDIA A100 GPUs.
We fine-tune the VLM with a standard supervised prediction
objective to maximize the log-likelihood of the answers ans:
maxVLM E(o,l,ans)∼DVLM logVLM(ans | o, l).
VLM Inference. During deployment, PEEK’s VLM acts at
a higher level, absorbing the semantic complexity and visual
clutter of the scene and providing a lower-level policy with a
guiding and minimal representation. However, querying the
high-level VLM at every timestep is unnecessary because
the scene is unlikely to change significantly at the same
frequency as the policy is acting. Since frequent VLM
queries are expensive and must be run sequentially, we
run the VLM at a reduced frequency. While prior works
predict paths either at the start of a rollout [7] or at every
timestep [24], our hybrid approach strikes a balance between
inference speed and responsiveness. To minimize the gap
between training and deployment, our data labeling and
training scheme reflects this design choice by querying the
VLM at a fixed frequency of every H timesteps.
VLM / Policy Interface. During inference, the policy re-
ceives an augmented image input op,mt created by drawing
the path pt and mask mt onto the image observation ot.

We draw the 2D path pt by connecting each subsequent
point in pt with a colored line segment. This drawing guides
the policy for which path to follow to accomplish the task. To
indicate passage of time, the line segment changes from dark
to light red . To create masks, we start from a black
canvas and use the area around the predicted task-relevant
points to reveal parts of the image. For each predicted task-
relevant point (x, y) ∈ m, we create a square centered around
(x, y) with edge length 8% of the image’s size. See Figure 2
for a visual depiction of path and mask drawing.

We query the VLM every H steps to generate pt,mt based
on the current environment observation ot and apply the same

Training

Policy Input

VLM Response

p = [(0.25, 0.1), ...]
m = {(0.30,0.57), . . . }

Instruction: "put blue block
on red block"

ot

VLM Input

op,m
t

π(at ∣ op,m
t , st, l)

[EEF orientation,
depth, ...]

s =

Draw 2D
Path ✏

at:t+H

ot:t+H

PEEK VLM

Mask
Image ◼

 "put blue block
on red block"

l =

Inference

max
π

t+H

∑
i=t

log π(ai ∣ op,m
i , si, l)

Training Objective

ot+H

ot+H

Fig. 2: Policy Training and Inference Pipeline. The VLM is called every H steps to generate a path and task-relevant points. An (arbitrary) RGB-input
policy is conditioned on the path and masked image to either predict actions for inference or for training. The same path and mask is applied onto incoming
observations for H steps, after which the VLM is re-queried.

annotations pt and mt to all incoming observations op,mt:t+H

until H steps have passed.
Each VLM query takes about 4-6 seconds on an RTX 3090

without any explicit speed optimization, but until the next
VLM query, the policy π runs at its own inference speed.
Policy Training. Consequently, we annotate all the trajec-
tories in the policy training data Dπ to create an annotated
dataset Dp,m

π . We train π on the PEEK-labeled dataset Dp,m
π

using its original training objective, e.g., maximizing log-
likelihood of the actions: maxπ EDp,m

π
log π(at | op,mt , st, l).

We list policy and VLM query frequencies in Section I-C.

IV. EXPERIMENTAL SETUP

To demonstrate the broad applicability of PEEK, we
evaluate across two real-world robot embodiments, both
2D (π0 [3], ACT [1]) and 3D (3DDA [9]) policy classes,
fine-tuning and training policies from scratch. We evaluate
zero-shot generalization from publicly available [41] and
simulation-generated datasets to our custom setups, varying
the task semantics and introducing visual clutter.
Franka Sim-to-Real. To study the semantic generalization
and visual robustness induced by PEEK, we require a large-
scale robotic dataset to cover all possible motions the policy
might encounter during inference. Simulation offers a cheap,
scalable approach to generate such a dataset without going
through the effort of manual data collection.

We collect 2.5k trajectories of cube stacking with a motion
planner in MuJoCo environments with three colored cubes
(sampled from {red, green, blue, yellow}) placed randomly
on a 40× 40cm grid. See Figure 3 for a visualization of the
data. Our real-world setup consists of a Franka Emika Panda
robot [42], [43] with depth from processing RGB images
from a Zed 2 stereo camera with FoundationStereo [44].

In the real world, we first test policy transfer on four
fixed cube configurations (BASIC), then add visual CLUT-
TER to assess visual robustness, and finally evaluate three
SEMANTIC tasks requiring reasoning about unseen objects
and placements (Figure 3). Each policy is evaluated for 5
trials per task, totaling 220 evaluations across 4 methods and
11 variations.
WidowX BRIDGE. Our second environment uses a Wid-
owX250 robot with a single Logitech C920 RGB camera,
resembling the BRIDGE [41] environment, albeit without

exactly reproducing camera angles and with a different table,
objects, and background wall. We re-label the BRIDGE-v2
dataset [41] (single camera angle) with PEEK according to
Section III-C and zero-shot evaluate it on our setup.

We evaluate on a set of three tasks, representing basic
generalization (to our custom robot setup), visualized in the
BASIC column of Figure 4. We then evaluate CLUTTER,
which adds significant visual clutter to each of the three
BASIC tasks, and finally SEMANTIC, representing difficult
tasks that require visual-language reasoning to complete. We
perform 5 evals per task with randomized object locations.
Baselines. In our Sim-to-Real experiments, we evaluate
PEEK’s application to 3D policies. We use 3DDA [9] as our
base policy and implement all baselines on top of it.
• 3DDA [9]: A state-of-the-art language-conditioned 3D

policy conditioned on depth, RGB, and language.
• HAMSTER [7]: Fine-tunes a 13B parameter VLM to pre-

dict 2D gripper paths for a 3D policy to condition on.
• ARRO [13]: An explicit masking baseline using Ground-

ingDINO [18] to segment gripper and objects.
We apply masks from ARRO and PEEK to both the RGB
image and point clouds input to 3DDA.

To show PEEK also applies to 2D policies of different
architectures, we evaluate it on ACT [1] and π0 [3].
• ACT [1]: a small 90M parameter transformer policy we

additionally condition with language embeddings [45].
• π0 [3]: A 3.5B parameter VLA first pre-trained on a large

dataset, which we LoRA fine-tune on BRIDGE.
• OTTER [16]: A 400M parameter transformer which im-

plicitly masks observations by discarding image patches
with low CLIP-feature alignment to the task instruction.

• ARRO [13]: Explicit masking baseline introduced above.
We evaluate both ARRO and PEEK on top of both ACT and
π0 as they are both policy-agnostic.

V. EXPERIMENTAL RESULTS

Our evaluation aims to address the following questions:
(Q1) How much does PEEK improve semantic and visual
generalization across diverse policy architectures? (Q2) How
accurately does PEEK help with where and what? and (Q3)
How much does each component of PEEK contribute? We
answer these questions in order below.

Put the red cube on the
blue cube

Put the red cube on the
blue cube

Clutter

Put the blue cube on
the red cube

Put the red cube on the
blue cube

Put the blue cube on
the red cube

Basic (x4)
Ev

al
ua

tio
n

Ta
sk

s
 P

EE
K

Pr
ed

ic
tio

ns

Semantic

Put the basketball in
the bowl

Knock over the syrup
bottle

Put the blue cube next
to the healthy items

Simulation

Put the red cube on the
blue cube

Fig. 3: Franka Sim-to-Real Tasks. Zero-shot evaluation environments along with associated path-drawn and masked images produced by PEEK.
SIMULATION denotes the generated simulation data that the policies were trained on.

Basic Clutter Semantic

Press the button Put the carrot in the
drawer

Slide the pot to
the shrimp Press the button Put the carrot in the

drawer
Slide the pot to

the shrimp
Put the healthy food on

the plate
Give the banana to

Jensen Huang
Put the green pepper in

the green drawer

Ev
al

ua
tio

n
Ta

sk
s

 P
EE

K
Pr

ed
ic

tio
ns

Fig. 4: WidowX Tasks. Evaluation environments along with associated path-drawn and masked images produced by PEEK.

0.35

0.27

0.07

0.23

0.33

0.03
0.00

0.12

0.33 0.33

0.08

0.25

0.65

0.30

0.58

0.51
0.47

0.38

0.30
0.37

0.57

0.33

0.08

0.33

0.77
0.73

0.60

0.70

0

0.25

0.5

0.75

1

Basic Clutter Semantic Overall

OTTER ACT ACT+ARRO ACT+PEEK π π +ARRO π +PEEK

0.20
0.13

0.00

0.11

0.20

0.00 0.00
0.07

0.13
0.07

0.00
0.07

0.40

0.27

0.07

0.24

0.33

0.20

0.07

0.20

0.33

0.07 0.07

0.16

0.67

0.40 0.40

0.49

0

0.25

0.5

0.75

1

Basic Clutter Semantic Overall

Task Completion Task Success Rate

0.50

0.00
0.04

0.20

0.83

0.00

0.40 0.41
0.45

0.20 0.20

0.30

0.84
0.78

0.71
0.78

0

0.25

0.5

0.75

1

Basic Clutter Semantic Overall

3DDA 3DDA + HAMSTER 3DDA + ARRO 3DDA + PEEK

0.00 0.00
0.07

0.02

0.65

0.00

0.27
0.31

0.15

0.00 0.00
0.06

0.65
0.60

0.67 0.63

0

0.25

0.5

0.75

1

Basic Clutter Semantic Overall

0 00

F
ra

n
k

a
S

im
-t

o
-R

ea
l

W
id

o
w

X
 B

R
ID

G
E

Fig. 5: Real-World Zero-Shot Generalization Results. Task completion rates (including partial credit for grasping or reaching objects correctly) and task
success rates across 3 task variants: BASIC, CLUTTER, and SEMANTIC in our Franka Sim-to-Real experiments (top) and WidowX BRIDGE experiments
(bottom). Results are averaged over all trials and tasks within each variant. PEEK results are bolded for visibility. Full tables in Appendix Section I-E.

A. Q1: Real-World Zero-Shot Generalization Experiments

Franka Sim-to-Real. We plot results in Figure 5 (top).
Overall, 3DDA+PEEK improves vanilla 3DDA by 41.4× and
outperforms the best baseline, 3DDA+HAMSTER, by 2× in
overall success rates. While HAMSTER shows some semantic
generalization via drawing paths (40% partial success on
SEMANTIC), it fails catastrophically when distractor objects
are present in the scene (0% partial success on CLUTTER).
Instead, PEEK’s ability to also mask out irrelevant parts of

the image usually completely hides task-irrelevant objects,
allowing the policy to solve the task more often by only
focusing on low-level control.

Meanwhile, ARRO, which masks-in the robot end-effector
and task-relevant objects with pre-trained object detection
models, often also includes task-irrelevant objects, confusing
the 3DDA policy. PEEK’s VLM generalizes better to new ob-
jects and its paths help guide the policy even in cases where
parts of irrelevant objects are included in the observation.
The baseline results demonstrate that answering only one

of where to focus or what to do is not enough to achieve
semantic generalization and visual robustness. We visualize
example PEEK VLM predictions in Figure 3.
WidowX BRIDGE. Next, we plot the WidowX results in
Figure 5 (bottom). ACT+PEEK and π0+PEEK outperform
their base models by 3.4× and 2.5× in overall success rates.
ARRO does not improve overall success rates of either base
model as its pre-trained object detection module often fails
to identify correct objects in clutter, and almost always fails
to detect the robot gripper. PEEK’s use of a VLM allows
it to consistently mask-in the correct object and draw paths
accurately starting from the gripper. The VLM predictions
visualized in Figure 4 show how PEEK’s VLM provides
effective paths and masks even in the face of distractors and
tasks that require semantic and visual reasoning.

Meanwhile, OTTER performs poorly—better than ACT but
worse than standard π0, and far worse than either PEEK
variation—π0+PEEK overall achieves a 4.5× better success
rate. This result highlights the importance of a policy-
agnostic approach, such as PEEK, that can provide explicit
path and mask guidance even to already strong base policies.

B. Q2: Does PEEK answer the where and what?

Comparing the first columns of Franka Sim-to-Real (Fig-
ure 3) in SIMULATION, BASIC, and CLUTTER, the benefits
of paths and masking become apparent: masks remove dis-
tractors from the image—showing where to attend to—and
the paths guide the policy to pick up the object—showing
what to do. Similar findings hold for the WidowX (Figure 4).

While the masks tell the policy what to focus on, they
alone are insufficient for solving semantic variation. Take,
for example, the SEMANTIC tasks; the policies’ training data
does not contain demonstrations featuring celebrities (“Give
the banana to Jensen Huang” in Figure 4) or various kinds
of sweet treats (“Knock over the syrup bottle”, “Put the blue
cube next to the healthy items” in Figure 3). By letting
the high-level VLM absorb the semantic generalization—
proposing guiding paths—the policy can simply actualize the
path into low-level actions to solve the task.

C. Q3: How does each component contribute?

Paths p Masks m Success (%)

✗ ✗ 33.5± 3.1
✓ ✗ 52.8± 2.9
✗ ✓ 65.6± 3.1
✓ ✓ 73.6± 3.9

TABLE I: Ablation of paths and
masks on success rate.

Ablating Paths and
Masks. We ablate the
contributions of paths
p and masks m on
the performance of a
language-conditioned 3D
policy (3DDA) on the
simulated cube stacking
task in Table I. While the language-conditioned base policy
can stack cubes, it often ignores instruction order, e.g.,
placing the blue cube on the red instead of the reverse.
Adding only paths or only masks improves performance by
+19.3% and +32.1%, respectively. Masks outperform paths
since they simplify the scene by removing the distractor
cube, while paths alone leave ambiguity. Yet both remain
limited: cube stacking highlights the insufficiency of purely

predictive or minimal representations. Combining paths and
masks, PEEK achieves gains of +7.9% over paths, +20.8%
over masks, and +40.1% over the base policy.
VLM Design Choices. To study VLM design choices, we
evaluate on 1k holdout samples from BRIDGE-v2 [41],
using Dynamic Time Warping (DTW) for paths [46] and
Intersection over Union (IoU) for masks. Reducing the base
model from 13B to 3B yields no loss in accuracy (both
have DTW 0.12, IoU 0.68) while enabling faster closed-loop
inference. Adding RoboPoint slightly improves these metrics
and preserves semantic reasoning ability [7]. Finally, joint
prediction of paths and masks improves performance, giving
a +19.3% relative gain over a mask-only model (IoU 0.57)
without degrading path accuracy (DTW 0.12). Full results in
Appendix Section I-D.

Overall, we see that both paths and masks are essential
to PEEK’s ability to enhance policy generalization, and our
choice of a small VLM model that jointly predicts a unified
path and mask representation great performance without
sacrificing inference speed.

VI. CONCLUSION AND LIMITATIONS

We presented PEEK (Policy-agnostic Extraction of
Essential Keypoints), a framework that leverages VLMs
to offload high-level reasoning in robot manipulation. By
predicting point-based intermediate representations—paths
that specify what to do and masks that indicate where to
attend—PEEK provides policies with simplified, annotated
observations, allowing them to focus on how to act. Real-
world evaluations demonstrate substantial improvements in
zero-shot generalization across various policies.

However, PEEK still inherits the biases and limitations of
the underlying VLMs, which may fail in out-of-distribution
scenarios or produce incorrect annotations. Our current rep-
resentation is also limited to 2D point paths and masks;
extending it to richer 3D or multimodal cues is an exciting
direction. Moreover, although our annotation pipeline scales
across existing robotics datasets, future work could explore
how to bootstrap from a much broader corpus of video data.

ACKNOWLEDGEMENTS

We thank Abrar Anwar for helping create the PEEK
logo, Helen Wang for lending us a difficult-to-obtain, official
Labubu doll, Raymond Yu for help setting up the initial
BRIDGE table and FoundationStereo pipeline, Markus Grotz
for assistance in setting up the Franka controller stack
(robits), Yi Li for HAMSTER baseline help, Andy Tang
for assisting with initial BRIDGE camera alignment, and
William Chen for providing exact measurements for us to
align the BRIDGE camera positions as best as possible. We
also thank Yondu.ai for hosting the Los Angeles Lerobot
hackathon where we tried an early version of PEEK, and
Yutai Zhou and Minjune Hwang for joining us in the
competition.

Additionally, we acknowledge funding from the Army
Research Lab and compute resources from the University of
Southern California’s Center for Advanced Research Com-
puting (CARC).

REFERENCES

[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” in Robotics:
Science and Systems XIX, Daegu, Republic of Korea, July 10-14,
2023, K. E. Bekris, K. Hauser, S. L. Herbert, and J. Yu, Eds., 2023.

[2] M. J. Kim, K. Pertsch, S. Karamcheti, et al., “Openvla:
An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

[3] K. Black, N. Brown, D. Driess, et al., “pi 0: A vision-language-
action flow model for general robot control,” arXiv preprint
arXiv:2410.24164, 2024.

[4] G. Yan, J. Zhu, Y. Deng, et al., “Maniflow: A dexterous manipulation
policy via flow matching,” in Conference on Robot Learning (CoRL),
2025.

[5] J. Gao, S. Belkhale, S. Dasari, A. Balakrishna, D. Shah, and D.
Sadigh, “A taxonomy for evaluating generalist robot policies,” 2025.

[6] P. Atreya, K. Pertsch, T. Lee, et al., “Roboarena: Distributed real-
world evaluation of generalist robot policies,” in Proceedings of the
Conference on Robot Learning (CoRL 2025), 2025.

[7] Y. Li, Y. Deng, J. Zhang, et al., “HAMSTER: Hierarchical action
models for open-world robot manipulation,” in The Thirteenth Inter-
national Conference on Learning Representations, 2025.

[8] J. Lee, J. Duan, H. Fang, et al., Molmoact: Action reasoning models
that can reason in space, 2025.

[9] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki, “3d diffuser actor:
Policy diffusion with 3d scene representations,” in First Workshop on
Vision-Language Models for Navigation and Manipulation at ICRA
2024, 2024.

[10] J. Lin, H. Yin, W. Ping, P. Molchanov, M. Shoeybi, and S. Han,
“Vila: On pre-training for visual language models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2024, pp. 26 689–26 699.

[11] J. Shi, J. Qian, Y. J. Ma, and D. Jayaraman, “Plug-and-play object-
centric representations from what and where foundation models,”
ICRA, 2024.

[12] D. Emukpere, R. Deffayet, B. Wu, et al., Disentangled object-centric
image representation for robotic manipulation, 2025.

[13] R. Mirjalili, T. Jülg, F. Walter, and W. Burgard, “Augmented reality
for robots (arro): Pointing visuomotor policies towards visual robust-
ness,” arXiv preprint arXiv:2505.08627, 2025.

[14] A. J. Hancock, A. Z. Ren, and A. Majumdar, “Run-time observation
interventions make vision-language-action models more visually
robust,” in 2025 IEEE International Conference on Robotics and
Automation (ICRA), 2025, pp. 9499–9506.

[15] C. Yuan, S. Joshi, S. Zhu, H. Su, H. Zhao, and Y. Gao, “Roboengine:
Plug-and-play robot data augmentation with semantic robot segmen-
tation and background generation,” arXiv preprint arXiv:2503.18738,
2025.

[16] H. Huang, F. Liu, L. Fu, et al., “Otter: A vision-language-
action model with text-aware feature extraciton,” arXiv preprint
arXiv:2503.03734, 2025.

[17] P. Li, Y. Wu, Z. Xi, et al., “Controlvla: Few-shot object-centric
adaptation for pre-trained vision-language-action models,” arXiv
preprint arXiv:2506.16211, 2025.

[18] S. Liu, Z. Zeng, T. Ren, et al., “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023.

[19] F. Locatello, D. Weissenborn, T. Unterthiner, et al., “Object-centric
learning with slot attention,” in Advances in Neural Information
Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.
Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020,
pp. 11 525–11 538.

[20] O. Biza, S. van Steenkiste, M. S. M. Sajjadi, G. F. Elsayed, A.
Mahendran, and T. Kipf, “Invariant slot attention: Object discovery
with slot-centric reference frames,” in ICML, 2023.

[21] Y. Zhang, D. W. Zhang, S. Lacoste-Julien, G. J. Burghouts, and
C. G. M. Snoek, “Unlocking slot attention by changing optimal trans-
port costs,” in Proceedings of the 40th International Conference on
Machine Learning, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., ser. Proceedings of Machine Learning
Research, vol. 202, PMLR, 23–29 Jul 2023, pp. 41 931–41 951.

[22] M. Mosbach, J. N. Ewertz, A. Villar-Corrales, and S. Behnke,
“Sold: Slot object-centric latent dynamics models for relational
manipulation learning from pixels,” in International Conference on
Machine Learning (ICML), 2025.

[23] J. Gu, S. Kirmani, P. Wohlhart, et al., Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches, 2023.

[24] D. Niu, Y. Sharma, G. Biamby, et al., “LLARVA: Vision-action in-
struction tuning enhances robot learning,” in 8th Annual Conference
on Robot Learning, 2024.

[25] C.-P. Huang, Y.-H. Wu, M.-H. Chen, Y.-C. F. Wang, and F.-E. Yang,
“Thinkact: Vision-language-action reasoning via reinforced visual
latent planning,” arXiv preprint arXiv:2507.16815, 2025.

[26] R. Zheng, Y. Liang, S. Huang, et al., “TraceVLA: Visual trace
prompting enhances spatial-temporal awareness for generalist robotic
policies,” in The Thirteenth International Conference on Learning
Representations, 2025.

[27] T. Xiao, H. Chan, P. Sermanet, et al., “Robotic skill acquistion via
instruction augmentation with vision-language models,” in Proceed-
ings of Robotics: Science and Systems, 2023.

[28] J. Zhang, J. Zhang, K. Pertsch, et al., “Bootstrap your own skills:
Learning to solve new tasks with large language model guidance,”
in 7th Annual Conference on Robot Learning, 2023.

[29] J. Zhang, K. Pertsch, J. Zhang, and J. J. Lim, “Sprint: Scalable policy
pre-training via language instruction relabeling,” in International
Conference on Robotics and Automation, 2024.

[30] L. Smith, A. Irpan, M. G. Arenas, et al., “Steer: Flexible robotic
manipulation via dense language grounding,” in 2025 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2025,
pp. 16 517–16 524.

[31] W. Chen, S. Belkhale, S. Mirchandani, et al., “Training strategies for
efficient embodied reasoning,” in 9th Annual Conference on Robot
Learning, 2025.

[32] K. Pertsch, Y. Lee, and J. J. Lim, “Accelerating reinforcement
learning with learned skill priors,” in Conference on Robot Learning
(CoRL), 2020.

[33] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine,
“Parrot: Data-driven behavioral priors for reinforcement learning,”
in International Conference on Learning Representations, 2021.

[34] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum, “{opal}:
Offline primitive discovery for accelerating offline reinforcement
learning,” in International Conference on Learning Representations,
2021.

[35] J. Zhang, M. Heo, Z. Liu, et al., “EXTRACT: Efficient policy
learning by extracting transferrable robot skills from offline data,”
in Conference on Robot Learning, 2024.

[36] W. Yuan, J. Duan, V. Blukis, et al., “Robopoint: A vision-language
model for spatial affordance prediction in robotics,” in 8th Annual
Conference on Robot Learning, 2024.

[37] O. X.-E. Collaboration, A. O’Neill, A. Rehman, et al., Open X-
Embodiment: Robotic learning datasets and RT-X models, 2023.

[38] A. Khazatsky, K. Pertsch, S. Nair, et al., “Droid: A large-scale in-
the-wild robot manipulation dataset,” 2024.

[39] B. Liu, Y. Zhu, C. Gao, et al., “Libero: Benchmarking
knowledge transfer for lifelong robot learning,” arXiv preprint
arXiv:2306.03310, 2023.

[40] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C.
Rupprecht, “Cotracker: It is better to track together,” in European
Conference on Computer Vision, Springer, 2025, pp. 18–35.

[41] H. Walke, K. Black, A. Lee, et al., “Bridgedata v2: A dataset for
robot learning at scale,” in Conference on Robot Learning (CoRL),
2023.

[42] M. Grotz, M. Shridhar, Y.-W. Chao, T. Asfour, and D. Fox, “Per-
act2: Benchmarking and learning for robotic bimanual manipulation
tasks,” in CoRL 2024 Workshop on Whole-body Control and Biman-
ual Manipulation: Applications in Humanoids and Beyond.

[43] K. Zakka, Mink: Python inverse kinematics based on MuJoCo,
version 0.0.11, May 2025.

[44] B. Wen, M. Trepte, J. Aribido, J. Kautz, O. Gallo, and S. Birchfield,
“Foundationstereo: Zero-shot stereo matching,” in Proceedings of
the Computer Vision and Pattern Recognition Conference, 2025,
pp. 5249–5260.

[45] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Nov. 2019.

[46] M. Memmel, J. Berg, B. Chen, A. Gupta, and J. Francis, “Strap:
Robot sub-trajectory retrieval for augmented policy learning,” arXiv
preprint arXiv:2412.15182, 2024.

[47] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, De-
tectron2, https : / / github . com / facebookresearch /
detectron2, 2019.

APPENDIX I

A. Data Annotation Pipeline Details

Tracking Points. Given a trajectory of image observations
o1:T , we apply CoTracker3 [40] to the video to track all
moving points within the scene. Points are initialized in a
uniform grid across the entire pixel space (a 15 × 15 grid
to 30 × 30 grid depending on how far objects are from the
camera). We initialize this point grid from the middle of
the trajectory because in many datasets, the gripper is not
visible at the first timestep. Running CoTracker returns a set
of all points and their normalized image locations across the
trajectory. We discard any point that does not move much
throughout the trajectory, i.e., less than 5% of the image
size, because they are unlikely to be task-relevant. The N
remaining points at each timestep t, [{(x, y)i}Ni=1]

T
t=1 with

(x, y) ∈ [0, 1]2, indicate both objects that move at some point
during the trajectory and the robot gripper location. There-
fore, these are the task-relevant points P task

t = {(x, y)Ni=1}t.
See Figure 6 (1) for an overview of point tracking.
Tracking the Gripper. To track the end-effector, we apply
an object detection model (Detectron2 [47] fine-tuned by [24]
for end-effector detection) at every timestep.

However, we found that naı̈vely applying the gripper
detector resulted in noisy predictions that often did not
include the robot. To reduce the noise, we only keep pixels
in ot around the significant points P task

t , essentially masking
out distractions irrelevant to the task. We apply the detector
to this reduced representation to obtain per-timestep gripper
bounding boxes (filling in frames with no detected gripper
with the average of adjacent detections) and average across
them to obtain the end-effector points P grip

t = [(xt, yt)]t.
See Figure 6 (2) for a visual depiction.
Segmenting into Subtrajectories. Because masks mt in-
clude points at the final timestep T , mt = P task

t ∪ P task
T ,

constructing mt from long-horizon trajectories can violate
the minimality principle. For example, the policy does not
have to know the placement location of an object until it
has actually picked it up. Therefore, we automatically break
down the trajectories into subtrajectories. Our key insight is
that when many task-relevant points stop moving, the robot is
likely to be manipulating an object. Vice versa, when those
points start moving again, the robot is likely reaching or
carrying an object. This creates a natural approach to splitting
a trajectory: by how many points in P task stop moving.

For each frame, ot, we track how many points in P task
t

don’t move for the next 5 frames (3 for BRIDGE due to
its higher control frequency). This creates a list of length T
containing the number of “stopped points” for each timestep,
t. On this list, we perform K-Means clustering with K = 2,
where the cluster with the smaller mean (fewer stopped
points) corresponds to significant movement, e.g., the robot
arm reaching an object, and the cluster with the larger mean

corresponds to the robot performing fine-grained manipula-
tion, e.g., grasping. Finally, we use these cluster assignments
to find continuous sections i, i + 1, .., j − 1, j where the
robot is manipulating an object, and use the middle frame
of these sections (j+ i)/2 as subtrajectory split points. This
procedure results in a split of subtrajectories that end when
the robot finishes a manipulation and start before it moves
onto the next object manipulation. These subtrajectories
create natural, shorter-horizon VLM prediction targets (see
Figure 6 (3)).

B. VLM Dataset Details

OXE. We augment the dataset by re-sampling the start
and end of each subtrajectory within the first and last 20%
of the trajectory, repeating this procedure 5×. Additionally,
we discard the first 20% of each full trajectory as most of
them don’t feature the gripper or show very little move-
ment. Finally, we exclude FurnitureBench, Roboturk, Dobbe,
BerkeleyCableRouting, LangTable, Kuka, and FMB.

LIBERO-90. We re-render LIBERO-90 [39] to 256x256
from 128x128 following [2], consisting of 3958 successfully
replayed and re-rendered demonstrations across 50 tasks.

Postprocessing. Due to the autoregressive nature of trans-
formers, the inference time grows linearly with the number
of tokens predicted. To further reduce inference time, we
follow [7] in reducing the number of points in pt and
mt by applying the Ramer–Douglas–Peucker algorithm with
tolerance thresholds ϵ = 0.05 and ϵ = 0.1, respectively.

C. VLM and Policy Implementation Details

For policy training, path and masks are labeled with VLM
queries every H = 30 and H = 32 timesteps for BRIDGE
and Franka Sim-to-Real. During rollouts, PEEK’s VLM is
queried every H = 25 and H = 32 timesteps for BRIDGE
and Sim-to-Real respectively, and the policies all predict
action chunks of length 5 and 8 respectively.

D. VLM Ablation Results

We ablate the VLM model size (3B and 13B parameters),
training dataset mixtures (OXE labeled with Section I-A
(OXE), the BRIDGE training split from our labeled OXE
(BRIDGE), and the RoboPoint dataset [36]), and prediction
target (p, m, p + m) in Table II. The metrics recorded are
DTW distance (DTW L2 distance between predicted and
ground truth p), First Point L2 (L2 distance between the
first point in predicted and ground truth p), Last Point L2
(L2 distance between the last point in predicted and ground
truth p) for path p predictions, intersection over union (IoU)
for mask predictions m. Models are evaluated on 1k holdout
samples from the BRIDGE test split from our labeled OXE.

Overall, there is a minimal difference in performance
between the 3B and 13B parameter models; hence, we
chose to use the 3B parameter VILA model for PEEK for
its faster inference speed. The combination of predicting
both paths and masks with the same model improves the
performance on paths alone or masks alone on the 3B
parameter model. Finally, including the full OXE dataset

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

s

i s

Mask out areas without points🎨 Cotracker3 keep if movement > 5% of image size

s

Significant Movement

2-Clustering of # of stopped points at each to determine subtrajectory boundaries:t # stopped points

Stopped for Grasp Moving Again

t

t
Stopped for Grasp Split

Su
bt

ra
j 1

:

...
 Put the marker from the mug to

the table
l :

 Put the marker from the mug to
the table

l :

p : [(0.12,0.14), (0.27,0.21), . .]

m : [(0.21,0.34), (0.2,0.56), . .]Su
bt

ra
j 2

:

...

p : [(0.1,0.34), (0.3,0.56), . .]

m : [(0.1,0.16), (0.45,0.12), . .]

 makes target object
placement area visible

Ptask
T

Apply

1. Tracking Points: Ptask 2. Tracking the Gripper: Pgrip

3. Segmenting into Subtrajectories 4. Constructing p & m

Fig. 6: Data Labeling Pipeline. A detailed overview of the data labeling pipeline as described in Section I-A: We (1) use CoTracker3 [40] to detect
moving points across each trajectory, points are discarded if they do not move significantly, and the rest become task-relevant points P task; (2) mask areas
without P task to black and apply a pre-trained gripper detector to construct 2D gripper path points P grip; (3) segment each trajectory into subtrajectories;
and (4) construct gripper paths p and task-relevant masking points m for each subtrajectory. Notice in (4) that target object placement areas become visible
beforehand through including points from the last timestep P task

T .

Model Size Prediction Target Training Dataset(s) DTW Distance ↓ (p) First Point L2 ↓ (p) Last Point L2 ↓ (p) IoU ↑ (m)

3B p OXE+RoboPoint 0.1239 0.0445 0.1479 N/A
13B p OXE+RoboPoint 0.1197 0.0450 0.1447 N/A
3B m OXE+RoboPoint N/A N/A N/A 0.5799

13B m OXE+RoboPoint N/A N/A N/A 0.5858
3B p+m OXE+RoboPoint 0.1229 0.0426 0.1422 0.6863

13B p+m OXE+RoboPoint 0.1219 0.0419 0.1491 0.6885

3B p+m OXE (inc. BRIDGE) 0.1237 0.0426 0.1467 0.6785
13B p+m OXE (inc. BRIDGE) 0.1222 0.0435 0.1494 0.6835
3B p+m BRIDGE+RoboPoint 0.1249 0.0444 0.1430 0.6792

13B p+m BRIDGE+RoboPoint 0.1208 0.0428 0.1459 0.6855
3B p+m BRIDGE 0.1237 0.0435 0.1438 0.6727

13B p+m BRIDGE 0.1263 0.0437 0.1447 0.6798

TABLE II: VLM Ablations. Evaluation on 1000 hold-out BRIDGE dataset samples for paths and masks from our data
labeling pipeline compared across VLM model size (3B and 13B parameters), prediction target (path p, mask m), and
training datasets (OXE, BRIDGE, RoboPoint). The top half of the table ablates the model and prediction target, the bottom
half ablates the training dataset.

and including RoboPoint VQA/Pointing data overall helps
performance on the BRIDGE evaluation dataset over just
using BRIDGE alone.

E. Full Results Tables

We display full results tables for the Franka Sim-to-Real
experiments in Table III and for the BRIDGE experiments
in Table IV.

Basic Tasks 3DDA 3DDA+HAMSTER 3DDA+ARRO 3DDA+PEEK

Put the red cube on the blue cube 0.50 0.95 0.25 1.00
Put the blue cube on the red cube 0.50 1.00 0.20 0.85
Put the red cube on the blue cube 0.50 0.40 0.80 0.70
Put the blue cube on the red cube 0.50 0.80 0.35 0.80
Average 0.50 0.82 0.45 0.83

Vis & Obj Clutter

Put the red cube on the blue cube 0.00 0.00 0.10 1.00
Put the blue cube on the red cube 0.00 0.00 0.00 0.70
Put the red cube on the blue cube 0.00 0.00 0.50 0.60
Put the blue cube on the red cube 0.00 0.00 0.20 0.80
Average 0.00 0.00 0.20 0.77

Semantic

Knock over the syrup bottle 0.20 0.20 0.50 0.80
Put the basketball in the bowl 0.00 0.7 0.00 0.60
Put the blue cube next to the healthy items 0.00 0.13 0.26 0.80
Average 0.04 0.40 0.20 0.71

(a) Partial completion rates per task.

Basic Tasks 3DDA 3DDA+HAMSTER 3DDA+ARRO 3DDA+PEEK

Put the red cube on the blue cube 0.00 0.80 0.20 1.00
Put the blue cube on the red cube 0.00 1.00 0.20 0.60
Put the red cube on the blue cube 0.00 0.40 0.20 0.40
Put the blue cube on the red cube 0.00 0.40 0.20 0.60
Average 0.00 0.65 0.15 0.65

Vis & Obj Clutter

Put the red cube on the blue cube 0.00 0.00 0.10 1.00
Put the blue cube on the red cube 0.00 0.00 0.00 0.70
Put the red cube on the blue cube 0.00 0.00 0.50 0.60
Put the blue cube on the red cube 0.00 0.00 0.20 0.80
Average 0.00 0.00 0.20 0.77

Semantic

Knock over the syrup bottle 0.20 0.20 0.00 0.60
Put the basketball in the bowl 0.00 0.60 0.00 0.60
Put the blue cube next to the healthy items 0.00 0.00 0.00 0.80
Average 0.06 0.26 0.00 0.71

(b) Success rates per task.

TABLE III: Franka Sim-to-Real Results Table. All task success/completion rates for each baseline are averaged over 5
trials.

Basic Tasks OTTER ACT ACT+ARRO ACT+PEEK π0 π0+ARRO π0+PEEK

Slide the pot to shrimp 0.20 0.70 0.40 0.70 0.50 0.50 1.00
Push the button 0.70 0.30 0.40 0.80 0.50 0.60 0.50
Put carrot in drawer 0.15 0.00 0.20 0.45 0.40 0.60 0.80
Average 0.35 0.33 0.33 0.65 0.33 0.57 0.77

Obj & Vis Clutter

Slide the pot to shrimp 0.20 0.10 0.30 0.50 0.40 0.50 0.70
Push the button 0.60 0.00 0.40 0.70 0.40 0.10 0.80
Put carrot in drawer 0.00 0.00 0.30 0.55 0.20 0.65 0.70
Average 0.27 0.03 0.33 0.58 0.33 0.42 0.73

Semantic

Put pepper in box 0.00 0.00 0.10 0.65 0.50 0.05 0.60
Give banana to Jensen 0.10 0.00 0.15 0.15 0.20 0.20 0.70
Put food on plate 0.10 0.00 0.00 0.10 0.20 0.00 0.50
Average 0.07 0.00 0.08 0.30 0.30 0.08 0.60

(a) Partial completion rates per task.

Basic Tasks OTTER ACT ACT+ARRO ACT+PEEK π0 π0+ARRO π0+PEEK

Slide the pot to shrimp 0.00 0.40 0.00 0.40 0.20 0.40 1.00
Push the button 0.60 0.20 0.40 0.60 0.40 0.40 0.40
Put carrot in drawer 0.00 0.00 0.00 0.20 0.40 0.20 0.60
Average 0.20 0.20 0.13 0.40 0.33 0.33 0.67

Obj & Vis Clutter

Slide the pot to shrimp 0.00 0.00 0.00 0.40 0.20 0.20 0.40
Push the button 0.40 0.00 0.20 0.40 0.20 0.00 0.60
Put carrot in drawer 0.00 0.00 0.00 0.00 0.20 0.40 0.20
Average 0.13 0.00 0.07 0.27 0.20 0.20 0.40

Semantic

Put pepper in box 0.00 0.00 0.00 0.20 0.00 0.00 0.20
Give banana to Jensen 0.00 0.00 0.00 0.00 0.00 0.20 0.60
Put food on plate 0.00 0.00 0.00 0.00 0.20 0.00 0.40
Average 0.00 0.00 0.00 0.07 0.07 0.07 0.40

(b) Success rates per task.

TABLE IV: WidowX BRIDGE Results Table. All task success/completion rates for each baseline are averaged over 5
trials.

	Introduction
	Related Works
	PEEK: Guiding and Minimal Image Representations
	Conceptual Insight
	VLM Data Preparation
	VLM and Policy Training/Inference with PEEK

	Experimental Setup
	Experimental Results
	Q1: Real-World Zero-Shot Generalization Experiments
	Q2: Does PEEK answer the where and what?
	Q3: How does each component contribute?

	Conclusion and Limitations
	Appendix I
	Data Annotation Pipeline Details
	VLM Dataset Details
	VLM and Policy Implementation Details
	VLM Ablation Results
	Full Results Tables

