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Abstract: We introduce ReWiND, a framework for learning robot manipulation
tasks solely from language instructions without per-task demonstrations. Standard
reinforcement learning (RL) and imitation learning methods require expert super-
vision through human-designed reward functions or demonstrations for every new
task. In contrast, ReWiND starts from a small demonstration dataset to learn: (1)
a data-efficient, language-conditioned reward function that labels the dataset with
rewards, and (2) a language-conditioned policy pre-trained with offline RL using
these rewards. Given an unseen task variation, ReWiND fine-tunes the pre-trained
policy using the learned reward function, requiring minimal online interaction. We
show that ReWiND’s reward model generalizes effectively to unseen tasks, out-
performing baselines by up to 2.4× in reward generalization and policy alignment
metrics. Finally, we demonstrate that ReWiND enables sample-efficient adapta-
tion to new tasks, beating baselines by 2× in simulation and improving real-world
pretrained bimanual policies by 5×, taking a step towards scalable, real-world
robot learning. See website at https://rewind-reward.github.io/.
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1 Introduction

A great teacher does not just tell you if you are right or wrong. Instead, they guide you by providing
feedback when you make mistakes, highlighting progress as you learn something new, and adapting
to how you learn best. For deployed robots to learn new tasks in the wild, they need similarly
intelligent teachers. These teachers—in the form of robust reward models—should: (1) offer dense,
informative feedback, especially during failures; (2) generalize their guidance to unseen tasks; and
(3) remain robust to diverse robot behaviors during its learning process. Our paper leverages these
insights to develop reward models capable of teaching robots unseen tasks.

In this work, we introduce ReWiND (Rewards Without New Demonstrations), a framework de-
signed to teach robots unseen tasks in a sample-efficient manner using only a few grounding human
demonstrations for training tasks (see Figure 1). Typically, teaching robots involves large-scale imi-
tation learning [1, 2, 3, 4], where human experts provide demonstrations for each new task. However,
collecting task-specific demonstrations is expensive and time-consuming. Reinforcement learning
(RL) offers a more autonomous alternative by using reward functions as teachers, allowing robots
to learn through interaction. Yet, manually designing these reward functions demands substantial
manual effort and domain-specific expertise [5]. Recent progress in language-conditioned reward
learning [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] has aimed at addressing these challenges, but often
assumes unrealistic conditions such as availability of ground-truth states [7, 8, 9, 10, 11, 12], thou-
sands of demonstrations [13], or online training of reward models from scratch [14, 15], limiting
their practical applicability.

⋆Equal Contribution

https://rewind-reward.github.io/


Collect

Small Demo Dataset

+

Dispose Trash

Handover Cup

Pick up Mug

Robot Traj. Lang Instr.
Uncap Pen

1. Pre-Train

Policy

Reward Fn

2. Learn New Task

at

ot

Label 
Rew: rt

Ta
sk

 L
an

gu
ag

e

Reward Fn

Policy

Figure 1: Overview. We pre-train a policy and reward model from a small set of language-labeled
demos. Then, we solve unseen task variations via language-guided RL without additional demos.

ReWiND overcomes these challenges by instead assuming only a handful of demonstrations—e.g.,
five per task—to enable real-world robot learning of unseen task variations. ReWiND first trains a
language-conditioned reward model from these demonstrations, then uses it to pre-train a language-
conditioned policy via offline RL. When deployed, ReWiND efficiently fine-tunes the policy on new
task variations by reward-labeling online interaction episodes.

Our core contribution is in designing ReWiND’s reward model to capture three key properties out-
lined earlier: dense feedback, generalization, and robustness. First, to provide dense, informative
feedback, we design a cross-modal sequential aggregator that predicts progress within demonstra-
tion videos. Progress prediction offers a densely supervised training signal that naturally translates
into rewards. We also introduce video rewinding to automatically generate failure trajectories from
successful demos, allowing ReWiND to provide dense feedback even when the policy is making mis-
takes. Then, to encourage generalization across unseen tasks and robustness to diverse behaviors,
we train the cross-modal sequential aggregator with pre-trained vision and language embeddings,
selectively applied positional embeddings, and diverse robotics data from Open-X [16]. Focusing
on these properties enables ReWiND rewards to extrapolate to novel visual and language inputs.

We introduce reward metrics measuring the above properties on which ReWiND achieves 23-74%
relative improvements over reward learning baselines. Further, comprehensive success rate evalua-
tions on Metaworld manipulation tasks and a real-world bimanual robot setup demonstrate ReWiND
beats baselines by 2x in simulation and improves real-world pre-trained policies by 5x.

2 Related Works

Learning Reward Functions. Prior work in reinforcement learning has proposed various methods
for learning reward functions. Examples include inverse RL [17, 18, 19, 20], where reward functions
are learned from demonstrations, or methods where rewards are implicitly learned from expert or
goal state distributions [21, 22, 23]. However, these works require new target-task demonstrations to
reward unseen tasks. ReWiND instead trains a general, language-conditioned reward function from
an initial demonstration set to reward unseen task variations without further demos.

Another line of work learns reward functions directly from human feedback in the form of com-
parisons [24, 25, 26, 27, 28], reward sketches [29], preference rankings [30], scaled preferences
[31], critiques [32], corrections [33], interventions [34], and language [15]. While these feedback
types may require less human effort than demonstrations or manually written reward functions, these
works still require humans to provide extensive feedback for each unseen task.

Reward Generation with Pre-trained Models. Prior work has also explored using large pre-
trained models to generate reward functions instead of learning them from scratch. Some approaches
use LLMs to generate language-conditioned rewards [7, 8, 9, 10, 11, 12], but they typically rely on
ground-truth state information that is difficult to obtain in real-world settings. In contrast, ReWiND
generates rewards from just a task description and a policy execution video.

Other approaches use pre-trained vision models to derive rewards from visual observations [35, 36,
37, 38, 39, 6, 14, 13, 40, 41, 42, 43, 44, 45]. Among these, RoboCLIP [6], LIV [10], VLC [13],
and GVL [11]—like ReWiND—reward unseen robot manipulation tasks directly from language
without additional target-task demos or online tuning. We show in Section 4.1 that these baselines
underperform ReWiND in rewarding policies in our limited-data setting. Most similar to ReWiND,
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Figure 2: (a): We train a reward model Rψ(o1:t, z) on a small demonstration dataset Ddemos and a
curated subset of Open-X, Dopen-x, augmented with LLM-generated instructions and video rewind-
ing. Rψ(o1:t, z) predicts video progress rewards r̂1:T from pre-trained embeddings of image ob-
servations o1:T and language instructions z, and assigns 0 progress to misaligned video-language
pairs. (b): We use the trained Rψ(o1:t, z) to label Ddemos with rewards and pre-train a language-
conditioned policy using offline RL. (c): For an unseen task specified by znew, we fine-tune π with
online rollouts and reward labels from Rψ(o1:t, znew).

Foundation Actor-Critic (FAC) [46] enables efficient RL from language via potential-based shaping
rewards from a pre-trained VLM. However, FAC depends on predefined policy priors (e.g., code-
based primitives from LLMs), whereas ReWiND learns them through offline RL on non-target tasks.

3 ReWiND: Learning Rewards Without New Demonstrations

We study the problem of learning unseen, language-specified tasks in a target environment, formu-
lated as a Markov decision process (MDP). The target environment refers to the deployment scene
(e.g., a robot tabletop). We train a policy πθ(at | ot, z) that selects actions at based on images
ot and language instructions z.The policy is optimized to maximize rewards predicted by a learned
reward function Rψ(o1:t, z), which conditions on the frame sequence o1:t and instruction z to output
per-timestep estimated rewards r̂t. We assume access to a small demonstration dataset Ddemos in the
target environment containing 15–20 tasks with ∼5 demonstrations each. Following prior defini-
tions of generalization [47, 48], we define a task as unseen if it requires a novel action sequence, its
distribution of image observations has changed, or needs a new language instruction.

ReWiND consists of 3 phases (see Figure 2): (1) learning a reward function from limited target
environment demos, then (2) pre-training π with learned rewards on the demos, and finally (3) using
the reward function and pre-trained policy to learn a new language-specified task online.

3.1 Learning a Reward Function

Our primary objective for reward prediction is regressing directly to per-frame progress within an
observation sequence o1:T conditioned on instruction z. Unlike prior methods using relative tar-
gets [41, 13], our progress-based objective provides fixed targets that are more stable to train on, and
translates directly into a dense, [0, 1]-normalized reward for policy training. To ensure robustness
against mismatched observations and instructions, we also sample unrelated observation sequences
oother
1:T and train Rψ(o1:t, z) to predict zero progress. Our reward prediction loss is:

Lprogress(o1:T , z, o
other
1:T ) =

∑T
t=1(Rψ(o1:t, z)− t/T︸︷︷︸

matched seq. progress

)2 +
∑T
t=1 Rψ(o

other
1:t , z)2︸ ︷︷ ︸

mismatched seq. 0 progress

. (1)

However, simply training a neural network Rψ(o1:t, z) on Lprogress(o1:T , z, o
other
1:T ) with a small set of

demonstrations is unlikely to ensure that it can train a policy on unseen tasks. Rψ(o1:t, z) should:

D1 Generalize to new tasks, i.e., new policy execution videos and instructions not in Ddemos.
D2 Produce rewards aligned with policy rollouts, not just successful demonstration videos.
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D3 Be robust to input variations, i.e., different ways to solve or specify the task.

To this end, we introduce a set of design choices spanning the training dataset, model architecture,
and video and language augmentations that address all three desiderata. Specifically, we curate di-
verse off-the-shelf data from the Open-X dataset [16] to promote generalization (D1) and robustness
(D3); apply targeted video and language augmentations for better reward prediction and language in-
put robustness (D2, D3); and adopt specific network architectural modifications aimed at improving
generalization (D1). For a visual overview, see Figure 2a.

Incorporating Diverse Data (D1, D3). To help Rψ(o1:t, z) generalize to tasks unseen in Ddemos
(D1) and make it robust to diverse ways of executing and specifying tasks (D3), we subsample the
Open-X Dataset [16], denotedDopen-x. We specifically select Open-X trajectories with object-centric
language instructions, e.g., “pick coke can from fridge,” or directional instructions, e.g., “drag the
circle to the left of the star,” to help Rψ(o1:t, z) generalize to objects and directions not contained in
Ddemos. This dataset contains∼356k trajectories with∼59k unique task strings. For detailed dataset
information, see Appendix A.1.1.

3.1.1 Video and Language Augmentation (D2, D3)

Given our datasets Ddemos andDopen-x, we perform both video and language augmentations that help
the reward function accurately predict rewards for unsuccessful policy execution videos (D2) and
be robust to varied ways of specifying the task instructions z (D3). We call the video augmentation
video rewind and our text augmentation instruction generation.
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Figure 3: Video rewind. We split a demo
at intermediate timestep i into forward/reverse
sections. Here, the forward section shows the
robot approaching the cup; the reverse section
(oi−1, oi−2, . . .) resembles dropping it.

Video Rewind. Both Ddemos and Dopen-x con-
tain human demonstrations, which are assumed
to be successful and of high-quality. Train-
ing Rψ(o1:t, z) on Lprogress(o1:T , z, o

other
1:T ) only us-

ing these successful demonstrations, may result
in Rψ(o1:t, z) overfitting to these successful tra-
jectories. However, during online deployment,
Rψ(o1:t, z) will likely encounter failure trajecto-
ries (unseen during training) which such an over-
fit model may reward highly. This is undesirable
and prior works attempt to address this issue by ex-
plicitly training their reward model on failed trajec-
tories [13], but these trajectories add a great addi-
tional burden on demonstrators to collect and must be added post-hoc to any existing dataset, making
it harder to scale.

Instead, we address this problem in a scalable manner by randomly rewinding videos. Consider a
video of a robot picking up a cup. If we rewind the video for a few frames right when the robot
grabs the cup, it now looks like one in which the robot attempted to grasp the cup and then dropped
it.1 By training Rψ(o1:t, z) to predict rewards corresponding to reverse progress on the rewound
subsequence, it (1) is trained on observation sequences mimicking failed policy rollouts that will
occur during online RL, and (2) learns to decrease reward when necessary. Thus rewinding helps
Rψ(o1:t, z) reward a policy’s failures which will help with online RL (D2). See Figure 3 for a
visual example. Formally, rewinding means sampling a random split point i within an observation
sequence o1...oT , rewinding k (k is also sampled) frames, then concatenating those k frames to the
end of the original sequence to become o1...oi, oi−1, ..., oi−k. The remaining frames from i + 1 to
T are then unused. Our video rewind training objective follows:

Lrewind(o1:T , z) =

i∑
t=1

(Rψ(o1:t, z)−
t

T
)2︸ ︷︷ ︸

Loss for original trajectory until i

+

k∑
t=1

(Rψ([o1:i, oi−1:i−t], z)−
i− t

T
)2︸ ︷︷ ︸

Rewound video for k frames from i−1

. (2)

1Random rewinding may result in some physically implausible sequences. However, since they won’t
appear during inference, the rewards produced by Rψ(o1:t, z) for such sequences should not affect online RL.
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Instruction Generation. We also generate 5-10 additional language instructions for each task in
Ddemos by prompting an LLM. This augmentation helps Rψ(o1:t, z) with input robustness to pos-
sible new task instructions (D3). While training Rψ(o1:t, z), any time we sample an observation
sequence o1:T , its instruction z is uniformly randomly sampled from all available matching instruc-
tions, generated or original. We did not augment Dopen-x due to its instruction diversity.

3.1.2 Architecture (D1)

Due to the limited size of Ddemos, we carefully design the architecture for Rψ(o1:t, z) to maximize
generalization to new tasks (D1) while retaining the ability to optimize Lprogress(o1:T , z, o

other
1:T ) well.

Frozen Input Encoders. We use frozen image and language encoders as the backbone of
Rψ(o1:t, z): we use DINOv2 [49] for image encoding due to its strong object-centric representa-
tions and all-MiniLM-L12-v2 [50] for instruction encoding due to its small embedding size
(= 384). In Rψ(o1:t, z), we first encode images and instructions: oembed

1:t = DINO(o1:t), z
embed =

MiniLM(z). Then, we train a small cross-modal sequential aggregator transformer conditioned on
(oembed

1:t , zembed) that learns to aggregate frozen language and image embeddings to generate progress
rewards r̂t directly (see Figure 2(a) in the “Reward Function” box).

Positional Embeddings. Finally, the cross-modal sequential aggregator’s transformer requires po-
sitional information about the frames to properly predict rewards (e.g., for distinguishing “pull” vs.
“push”). However, if we naı̈vely add positional embeddings to each image, it can “cheat” by pre-
dicting progress using the positional embeddings. Therefore, similar to how Ma et al. [43] prompt
an LLM with the position of the first video frame, we add a positional embedding to the first image.

Reward Model Summary. In summary, ReWiND trains a reward function Rψ(o1:t, z) to predict
task progress, using data augmentation (video rewinding and instruction generation) and additional
Open-X data (Dopen-x) to improve generalization. Rψ(o1:t, z) combines pretrained vision and lan-
guage encoders with a lightweight cross-modal sequential aggregator that uses only first-frame po-
sitional embeddings. For full implementation details, see Appendix A.1.2. The final objective is:

minψ E(o1:T ,z,oother
1:T )∼Ddemos,Dopen-x

[
Lprogress(o1:T , z, o

other
1:T ) + Lrewind(o1:T , z)

]
. (3)

3.2 Policy Learning

Pre-training. After training Rψ(o1:t, z), we pre-train πθ(at | ot, z) on demonstrations Ddemos
labeled with rewards. This pre-training guides πθ(at | ot, z) toward reasonable behaviors during
exploration, even if downstream tasks differ from those inDdemos. Given a trajectory with instruction
z, {(ot, at)}T1 , we assign rewards r̂t = Rψ(o1:t, z) at each timestep and add a success bonus to the
final reward to encourage reaching the goal despite possibly noisy reward signals:

r̂off
t = Rψ(o1:t, z) + rsuccess · 1[t = T ]. (4)

We then train πθ(at | ot, z) via offline RL using tuples (ot, at, r̂t, ot+1, z). We use IQL [51] as prior
work has demonstrated it works on real robots [52, 53, 54]. See Figure 2(b) for an overview.

Learning Online. To learn a new task online, ReWiND only requires a language description
of the task, znew. ReWiND rolls out π(a | ot, znew) and fine-tunes it on rewards coming from
Rψ(o1:t, znew). Like prior work [13, 41], we assume access to a success signal during online RL.
We use this signal to give rsuccess bonuses similar to in pre-training.2 Our online rewards r̂on are:

r̂on
t = Rψ(o1:t, z) + rsuccess · 1[success at t]. (5)

See full implementation details in Appendix A.1 and pseudocode in Algorithm 1.
2Success bonuses can come from a human supervisor [55], learned function [23], or LLM [46]. Our ex-

periments assume a human supervisor because manual resets are required regardless. While we could thresh-
old Rψ(o1:t, z) outputs to automatically determine success, unseen evaluation task reward ranges can vary,
rendering this approach ineffective. Future work could integrate ReWiND with methods reducing human re-
sets [42, 56] and automatic success detectors for truly autonomous RL.
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Figure 4: Video-Language Reward Confusion Matrix. For each unseen Metaworld task, we
compute rewards for all combinations of demonstration videos and language descriptions. ReWiND
produces the most diagonal-heavy confusion matrix, indicating strong alignment between unseen
demos and instructions. See Appendix D.1 for train task results, Appendix D.3 for real-world results.

4 Experiments

Our experiments aim to study the efficacy of ReWiND as a reward learning pipeline, evaluate its
ability to train robots to learn new tasks efficiently, and analyze its design choices and limitations.
To this end, we organize our experiments to answer the following empirical questions, in order:

(Q1) Rewards: How well do ReWiND rewards correlate with task progress and success?
(Q2) Policy Learning: Can ReWiND quickly train policies for new tasks?
(Q3) Ablations and Analysis: Which ReWiND design decisions are most significant?

4.1 Q1: What Makes a Good Reward Function?

We repeat the desiderata from Section 3.1 that we set out to achieve with ReWiND: (1) generalization
to new tasks, (2) rewards aligned with videos from policy rollouts, and (3) robustness to diverse
inputs. We structure this section to demonstrate ReWiND’s ability to satisfy these criteria.

We compare ReWiND-learned rewards against all relevant reward learning baselines from Sec-
tion 2: LIV [57] is a robotics reward model pre-trained on EpicKitchens [58], we also fine-tune
LIV on Ddemos (LIV-FT); RoboCLIP [6] uses a pre-trained video language model, S3D [59]
trained on HowTo100M [60], to reward agents for language specified tasks; Video-Language Critic
(VLC) [13] fine-tunes a VLM with a sequential ranking objective to encourage frames later in the
video to have higher rewards. We train it on Ddemos; Generative Value Learning (GVL) [43]
prompts a pre-trained Gemini LLM [61] with shuffled frames to predict per-frame progress.

We conduct our primary reward analysis using the simulated Metaworld benchmark [62] because
it enables efficient collection of exemplar failed and partially successful rollout videos for analysis.
Smaller-scale real-world analyses, strongly aligned with simulation, are in Appendix D.3. Ddemos
here consists of 20 tasks with 5 expert demos each. For fair comparison, we include a variant of
ReWiND trained without Dopen-x (ReWiND w/o OXE). Results are evaluated on 17 unseen Meta-
world tasks. These tasks are visually similar to training tasks but require new motions to solve (e.g.,
Door-Open→ Door-Close). We average metrics across 5 demos per task.

Generalization. We first evaluate how effectively each reward model distinguishes unseen tasks
using confusion matrices of unseen task videos versus language instructions (Figure 4). Ideally,
a clear blue diagonal indicates correct video-instruction pairs, with low (white) values elsewhere.
ReWiND produces clearest disparity between the diagonal and off-diagonal elements, excelling
even without OXE due to architectural choices aimed at generalization, i.e., first frame positional
encodings and frozen pre-trained input embeddings.

Next, we evaluate how consistently rewards reflect progress over time in successful, unseen demon-
strations. We report Pearson correlation (r) of each model’s reward against time, and Spearman’s
rank correlation (ρ), which, unlike r, captures monotonicity regardless of linearity. As shown in
Table 1(a), ReWiND again outperforms all baselines—achieving a 30% relative improvement in r
and 27% in ρ over the best alternative (VLC).

Policy Rollout Reward Alignment. We also find that ReWiND can properly reward failed policy
rollouts, which is important for rewarding RL policies on unseen tasks. For each task, we train
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Table 1: Combined Evaluation Metrics. Comparison of reward models across three axes: (1)
Demo Video Reward Alignment, (2) Policy Rollout Reward Ranking, and (3) Input Robustness.
Category Metric LIV LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE

(a) Demo Reward Alignment r ↑ -0.03 0.55 0.01 0.64 0.52 0.67 0.83
ρ ↑ -0.04 0.55 -0.01 0.62 0.57 0.64 0.79

(b) Policy Rollout Ranking Rew. Order ρ ↑ -0.32 0.47 0.00 -0.18 0.32 0.76 0.82
Rew. Diff. ↑ -0.16 0.26 0.06 -0.15 0.17 0.39 0.41

(c) Input Robustness Avg. ρ ↑ 0.03 0.27 0.00 0.60 0.58 0.55 0.74
ρ Variance ↓ 0.08 0.28 0.00 0.00 0.01 0.03 0.04

an SAC [63] policy from scratch and use trajectories collected from various points of training to
construct three evaluation video datasets: failure, near-success, and success containing
failed trajectories, trajectories where the policy was close to the goal state but did not succeed, and
successful trajectories, respectively. Each task has 2 trajectories of each type.

We evaluate each dataset’s relative alignment ranking (measured by Spearman’s ρ) with each re-
ward model. For example, for a given task, if the average reward for a failure video is 0.1, a
near-success video is 0.5, and success video is 0.9, then the rankings would be 1, 2, 3, re-
spectively, where 3 corresponds to the best ranking. Thus, ρ over the rankings tells us how often the
videos are correctly ranked. We report the ranking ρ in Table 1(b). We also report the average differ-
ence between rewards for success with near-success and near-success with failure
videos. Overall, likely due to video rewinding, ReWiND has a relative 74% improvement in reward
order and 58% improvement in reward differences over the best baseline, LIV-FT. Additionally,
we qualitatively demonstrate how these rankings translate into policy rollout rewards in Appendix
Figure 8 by plotting per-frame reward curve predictions of ReWiND against reward baselines for an
unsuccessful policy rollout.

Robustness to Varied Inputs. Finally, we demonstrate ReWiND’s robustness to diverse instruc-
tions. For each evaluation task, we manually create three additional language instructions (without
prior knowledge of ReWiND’s performance), resulting in four total instructions per task. For exam-
ple, “close the door” is an original instruction, and we add “shut the door.” Each set of instructions
is paired with a single demonstration video, and we compare the reward models by measuring their
average Spearman’s rank correlation (ρ) and output variance across these instructions in Table 1(c).
Higher variance indicates lower robustnes. Again, ReWiND outperforms baselines, achieving the
highest average correlation (0.74), 23% better than VLC, and near-zero variance, even without
OXE training—likely aided by our instruction augmentation approach (Section 3.1.1). RoboCLIP
and VLC show near-zero variance but achieve significantly lower correlation scores.

So far, our results demonstrate that ReWiND significantly outperforms all image-language-
conditioned reward baselines in terms of generalization, rewarding policy rollouts, and input
robustness. We next demonstrate how these results translate into sample-efficient policy learning.

4.2 Q2: Learning New Tasks with RL

0.00 0.25 0.50 0.75
Pre-train

Sparse
LIV-FT

VLC
ReWiND

IQM

Success Rate @ 100k

Figure 5: Meta-World final perfor-
mance. We plot inter-quartile means
(IQMs) of success rates after 100k en-
vironment steps on 8 unseen tasks in
Meta-World. ReWiND achieves 79%.

Simulation. We use the Meta-World simulation bench-
mark [62], where we pre-train reward models and policies
on 20 tasks, each with 5 per-task demos collected from a
scripted policy. We evaluate on 8 unseen tasks in Meta-
World, chosen for reasonable initial policy rollout behav-
iors, across 3 seeds each. We compare ReWiND against
the 2 language-conditioned reward model baselines that
performed best in reward alignment (VLC) and policy
rollout rankings (LIV-FT) from the reward analysis in
Section 4.1. We also compare against Sparse, which pre-
trains and fine-tunes on only the sparse success reward
bonus, and Pre-train, which pre-trains on sparse reward
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Figure 6: Real-robot RL. We present results on the Koch bimanual arms across in-distribution tasks
and visual, spatial, and linguistic generalization tasks. Online RL with ReWiND improves a pre-
trained policy by an absolute 56% across all five tasks.

and is evaluated zero-shot on new tasks. All baselines are image, proprioception (x, y, z, gripper),
and language conditioned. Each method uses the same policy pre-training and RL procedure as
ReWiND as outlined in Section 3.2, and is trained online for 100k timesteps. See Appendix B for
environment and policy training details.

As recommended by Agarwal et al. [64], we report the interquartile mean (IQM) and 95% confidence
intervals computed over all task success rates at 100k environment steps in Figure 5. Sparse reward
fine-tuning and Pre-train (no fine-tuning) result in near-zero success rates, highlighting the difficulty
of image-based new task learning under limited data. In fact, Sparse reward fine-tuning, which
relies purely on a sparse success bonus, performs worse than Pre-train after fine-tuning. Meanwhile,
ReWiND achieves an IQM success rate of 79%, a 97.5% improvement over the best baseline, VLC,
demonstrating that ReWiND effectively enables the policy to learn new tasks in Meta-World. These
results are well-aligned with our reward analysis in Section 4.1, demonstrating how they correlate
with policy learning performance. ReWiND is also more sample-efficient at timesteps less than
100k; see extended discussion in Appendix D.2 and sample efficiency curves in Figure 14i.

Real-World Robot Learning. We conduct real-world tabletop manipulation experiments with a
bimanual Koch v1.1 robot arm setup [65]. We use 5 demos to train the reward function, but 10 for
the policy, as we found policy learning to be a bottleneck on this difficult robot embodiment. Across
five tasks, we demonstrate in Figure 6 that an hour of real-world RL with ReWiND improves the
success rate over the base pre-trained policy from an average 12% success rate to 68%, a 5× im-
provement. Meanwhile, VLC only improves from 8% to 10%—ReWiND outperforms VLC, the best
simulation baseline, by 6.7×. RL for an hour of real-world experiment time corresponds to 50k envi-
ronment steps with our parallelized codebase that trains the policy while an older checkpoint gathers
data in the environment to avoid any training wait time. We select diverse tasks that demonstrate
real-world improvement based on generalization metrics defined in prior work [47, 48] on: an in-
distribution task, separate the blue and orange cups; an in-distribution difficult task,
fold the blue towel; an unseen task in terms of large amounts of visual clutter, open the
red trash bin; an unseen task in terms of spatial relationships between objects requiring new
action sequences, put the orange cup on the red plate; and an unseen task in terms
of language input, put the fruit-colored object in the box. Overall, ReWiND
enables real-world reinforcement learning on unseen tasks without requiring new demonstrations,
improving over the pretrained pre-trained policy, and outperforms the best baseline from simulation,
VLC. See Appendix C.1 for real-world experiment details and Figure 12 for policy rollout examples.

4.3 Q3: Ablation Study

We perform a thorough ablation study of ReWiND regarding how specific design choices influence
demonstration reward alignment, policy rollout ranking, and input robustness metrics introduced in
Section 4.1. We ablate: instruction generation and video rewinding (Section 3.1.1); using OXE data;
the need for target environment data Ddemos; and finally, the use of first frame vs. full frame posi-
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Table 2: Ablation Study: subtracting (−) and adding + various ReWiND components on Meta-
world training and evaluation task (a) demo reward alignment, evaluation task (b) policy rollout
ranking order and reward difference, and evaluation task (c) input robustness.

Model (a) Demo Reward Alignment (b) Policy Rollout Ranking (c) Input Robustness

Train Demos ρ ↑ Unseen Demo ρ ↑ Rew. Order ρ ↑ Rew. Diff. ↑ Avg. ρ ↑ ρ Variance ↓
Original ReWiND 1.00 0.79 0.82 0.41 0.74 0.04

− Targ. Env Data 0.55 0.77 0.18 0.08 0.78 0.04
− Open-X Subset 1.00 0.64 0.76 0.39 0.55 0.03
− Video Rewind 1.00 0.69 0.56 0.27 0.66 0.02
− Instr. Generation 1.00 0.66 0.62 0.30 0.52 0.07
+ Full Pos. Embeds 0.99 0.85 0.71 0.33 0.78 0.06
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Figure 7: ReWiND Failure Example. We collect a demonstration of the Koch arms picking up
a sponge, handing it over, and scrubbing a plate. We find that there is poor reward alignment to
this successful demonstration, likely due to the lack of bimanual data in Open-X, occlusion of the
sponge, and poor camera viewpoints.

tional embeddings on the input observation sequence o1:T in the cross-modal sequential aggregator
(Section 3.1.2). Overall, the original ReWiND model performs best across most metrics. Below, we
analyze the impact of each ablation:

Datasets. Removing target environment data (−Targ. Env Data)—i.e., using only Dopen-x data
without Ddemos—leads to poor alignment with training demonstrations (Table 2a) and fails to distin-
guish between failed, near-successful, and successful policy rollouts (Table 2b). However, it retains
strong input robustness due to the diversity of OXE data. Meanwhile, removing the Open-X subset
(−Open-X Subset) harms unseen task reward alignment (Table 2a) and input robustness (Table 2c),
highlighting the importance of OXE data for generalizing across varied language instructions.

Augmentation. Eliminating video rewinding (−Video Rewind) degrades rollout ranking perfor-
mance (Table 2b), showing that rewinding helps distinguish failed rollouts as intended. This variant
performs similarly to the single-image LIV-FT baseline in Table 1, indicating that video rewind-
ing more effectively captures the temporal information in the videos. Similarly, removing instruc-
tion generation (−Instruction Generation) reduces performance on language input robustness (Ta-
ble 2c), confirming that LLM-generated instructions enhance robustness to diverse inputs.

Architecture. Adding full positional embeddings (+Full Pos. Embeds) improves unseen demo
alignment (Table 2a) but worsens rollout ranking (Table 2b), likely due to overfitting—where the
model learns to predict increasing rewards regardless of input. To avoid overfitting, the main
ReWiND model uses only first-frame positional embeddings (Section 3.1.2).

5 Limitations

Here we discuss limitations of ReWiND and directions for future work.
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Initial Policy Performance. Firstly, we use a relatively simple policy architecture that is trained
from scratch for each of our domains. We expect better performance by combining ReWiND with
stronger policy architectures capable of ingesting more data (e.g., pre-trained vision-language-action
models [16, 66, 2, 67, 4]) that have better zero-shot performance on new tasks to enable even more
sample-efficient learning irrespective of reward function.

In fact, we confirmed experimentally that initial zero-shot performance was strongly indicative of
how well the policy will learn a new task in our real-world experiments. For instance, we did not
find ReWiND to help a policy that confidently performs the wrong task due to a combination of
the KL-constrained objective we use for offline to online learning in real world experiments (see
Appendix C.2 for details) and the fact that unlearning poor behaviors takes a significant amount of
time. If the ReWiND reward function could be combined with stronger policies that are easy to learn
online in the loop, we hope it will enable learning of many more difficult new tasks.

However, the best way to fine-tune these models with online rewards remains an open challenge [68,
69]. One bottleneck is simply that, even with low-rank adaptation techniques that prior work found
to help train large policy architectures more efficiently [70, 69, 66], fine-tuning these models takes a
lot of compute and real-world time that makes real-world online learning with reward difficult. We
plan to investigate blending ReWiND approaches with such policy architectures in the future.

Reward Analysis. One of the limitations of ReWiND lies in its inherent tradeoff using pre-trained
vision and language embeddings. We do not fine-tune these embeddings because our assumed
demonstration dataset Ddemos is very small, and in early experiments, we found that fine-tuning
sometimes hurts generalization performance. Not fine-tuning the frozen embeddings may result in
the reward model generally underfitting certain tasks, particular to robotics, on which the pre-trained
vision and language models were not trained. In Figure 7, we visualize an example of dish scrubbing
which ReWiND does not perform well on even though similar linguistic tasks exist in the Open-X
dataset. This poor result is likely due to Open-X not containing any bimanual data or partial oc-
clusion due to the camera viewpoint. Future work that pre-trains with even more robotics data or
incorporates intermediate representations or objectives with large-scale pre-training on internet data
(e.g., Li et al. [4], Team et al. [67]) could allow fine-tuning the input embeddings to ensure they can
better fit the Ddemos.

Resets. ReWiND, in its current form, requires a human operator to perform resets of the environ-
ment. This assumption prevents ReWiND from being fully autonomous. However, recent reset-free
RL works [42, 56, 71, 46] demonstrate promising solutions to address the need for humans to super-
vise learning. Regardless, human resets remain a roadblock to autonomous learning that is difficult
to address in the real world [72].

Success Detection. Another limitation comes from requiring success detection for the reward
bonus and terminating policy rollouts upon success. We add a success bonus (detailed in Section 3.2)
to account for potential noisy rewards and imperfect success detection by the reward model, given
that a human is already monitoring to reset the environment, and we subsequently terminate the
rollout upon success. Methods such as those introduced by Ye et al. [46], Zhou et al. [73], Yang
et al. [42], which utilize VLMs as success detectors, can remove the need for human supervision
during the online phase of ReWiND when combined with reset-free RL. In future work, we plan to
investigate the combination of ReWiND with reset-free approaches and automatic success detection
for truly autonomous learning.
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Unsuccessful Policy Rollout: Push the Button
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Figure 8: Unsuccessful policy rollout for the “Push the Button” task in Meta-World and its corre-
sponding rewards below it. ReWiND predicts calibrated rewards that reflect better partial progress
when the policy gets stuck near the button.

A Implementation Details

This section introduces implementation details for ReWiND in terms of the datasets, reward model,
policy training, and online RL.

A.1 ReWiND Implementation

Full pseudocode for ReWiND is listed in Algorithm 1. Individual implementation details follow.

A.1.1 Open-X Dataset

Below we list details of the OXE subset, Dopen-x, used for training the reward model Rψ(o1:t, z)
(mentioned in Section 3.1).

We select a subset of datasets from the Open-X Dataset [16]. The subset includes Bridge-V2 [74],
BC-Z [75], Fractal [1], CLVR Jaco Play [76], Berkeley Autolab UR5 [77], Berkeley Fanuc Manip-
ulation [78], CMU Stretch [79, 80], Stanford Hydra [81], UCSD Kitchen [82], Austin BUDS [83],
and Austin Sirius [84]. These datasets were selected for their high-quality, task-oriented manipu-
lation trajectories (i.e., no play data or extremely high-level annotations). These datasets provide
around 350k trajectories and 58k total unique task annotations. To ensure meaningful trajectories
for training the ReWiND reward model, we postprocess the data to remove trajectories with less
than 5 timesteps. We subsample the videos in the datasets to 16 frames for reward model training,
as we did not see a noticeable benefit from training it with longer videos.

A.1.2 Reward Function

We picture the overall architecture of the reward function in Figure 9. We encode input images with
the pre-trained DINO-V2 base model (86M params) with 768 embedding size. Similarly, we encode
language with the pre-trained ALL-MINILM-L12-V2 model with a 384 embedding size. We project
image and language embeddings to 512 dimensions with a single linear layer. We treat the language
embedding as a single input token and we evenly downsample DINO-v2 image embeddings for
every observation sequence to 16 frames.

The cross-modal sequential aggregator takes these tokens as input and produces a per-image em-
bedding used by an MLP to produce per-timestep rewards. The cross-modal sequential aggregator
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Algorithm 1 ReWiND Algorithm, Section 3.

Require: Demo dataset Ddemos, Pre-trained LLM, Open-X subset Dopen-x, Reward Model
Rψ(o1:t, z), Policy π. Ddemos includes video trajectories o1:t and language embedding z.

1: /* Train the Reward Model Section 3.1 */
2: REWARDMODELTRAINING(Rψ(o1:t, z), Ddemos, Dopen-x)
3: /* Policy Pretraining Section 3.2 */
4: OFFLINEPOLICYPRETRAINING(Rψ(o1:t, z), Ddemos, π)
5: /* Learn New Task Online Section 3.2 */
6: ONLINERL(znew, Rψ(o1:t, z), π )
7:
8: procedure REWARDMODELTRAINING(Rψ(o1:t, z), Ddemos, Dopen-x)
9: Augment instruction labels with LLM

10: Sample a video clip and annotation ot1:t2 , z from Ddemos or Dopen-x.
11: Choose to keep the original video or perform REWINDAUGMENTATION.
12: if perform REWINDAUGMENTATION then
13: orewound ← REWINDAUGMENTATION(ot1:t2)
14: Optimize Rψ(o1:t, z) with Lrewind(o

rewound, z) ▷ Equation (2)
15: else
16: Sample a different video clip oother

t′1:t
′
2

17: Optimize Rψ(o1:t, z) with Lprogress(ot1:t2 , z, o
other
t′1,t

′
2
) ▷ Equation (1)

18: end if
19: end procedure
20:
21: procedure OFFLINEPOLICYPRETRAINING(Rψ(o1:t, z), Ddemos, π)
22: Relabel Ddemos with r̂off coming from Rψ(o1:t, z). ▷ Equation (4)
23: Train π with offline RL on relabeled Ddemos.
24: end procedure
25:
26: procedure ONLINERL(Rψ(o1:t, z), π)
27: For every rollout label the trajectories with r̂on from Rψ(o1:t, z). ▷ Equation (5)
28: Optimize π with online RL Algorithm
29: end procedure
30:
31: procedure REWINDAUGMENTATION(ot1:t2 ) ▷ Section 3.1.1
32: Sample random split point i between t1 and t2.
33: Sample # frames to rewind for, k
34: Reverse oi−k:i and concat with ot1:i
35: Return [ot1:i−1, oi:i−k]
36: end procedure

is a causally masked transformer (PyTorch nn.TransformerEncoder) composed of 4 lay-
ers, each with 8 heads with a combined hidden dimension of 2048. We add a learnable positional
embedding to only the first frame of the video sequence embedding. In the ReWind reward function
training phase, we trained 2k steps for Meta-World and 10k steps for Real-World robot experiments,
with a batch size of 1024. Each batch includes 80% data from Dopen-x and 20% target environment
data fromDdemos. Each video in the batch has an 80% probability of having video rewind augmenta-
tion, and independently, a 20% percent probability of having a mismatched video-language pairing
with 0 progress target (see Section 3.1). In order to better policy execution videos that look close to
success, 10% of the rewound videos will only have their last 3 frames rewound. No extensive tun-
ing was performed on these per-sample rewind and mismatch probabilities; they were heuristically
chosen during initial small-scale experimentation and then fixed for all experiments.
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Figure 9: ReWiND’s Reward Model Architecture. It’s composed of frozen language and image
input embeddings projected to a shared hidden dimension of 512. These embeddings are treated as
input tokens to the cross-modal sequential aggregator transformer composed of 4 causally masked
transformer layers composed of 8 multi-head attention blocks each. Per-timestep embeddings for
each input observation are fed into an MLP to predict rewards for each timestep.

A.1.3 Policy Training

Specific architectural and training details are discussed per-environment in the corresponding sec-
tions Appendix B.2 and Appendix C.2. Below we talk about high level algorithmic details for policy
training along with shared implementation details across environments.

Policy Input. Similar to the reward model, we condition the policy on frozen pre-trained im-
age and language embeddings: DINO-v2-base image embeddings (86M params, 768 embedding
size) [49] along with ALL-MINILM-L12-V2 language embeddings of size 384 from the Sentence
Transformers python package [50]. We also include proprioceptive information in both of our en-
vrionments.

Offline RL. We use Implicit Q Learning (IQL) [51] as prior work found it performant and easy to
tune for robot manipulation with action-chunked policies [53, 54, 85]. IQL trains on in-distribution
(s, a, s′, r, a′) tuples from the dataset, avoiding using next actions a′ sampled from a policy, to en-
sure the critic functions accurately reflect returns restricted to dataset actions. The value function
is optimized with expectile regression, controlled by a hyperparameter τ : τ = 0.5 recovers mean
squared error, while τ → 1 yields a more optimistic estimate, helping the value function “stitch”
together distant rewards in sparse settings. The policy is trained via advantage-weighted regres-
sion [86], maximizing

eβ(Q(s,a)−V (s)) log π(a|s),
where β is a temperature hyperparameter controlling how “spiky” the policy loss is. To prevent
numerical instability, the exponential term is capped at a maximum value in practice (for us, this is
100).

Online RL. We use a custom soft-actor critic (SAC) [63] implementation initialized with the pre-
trained policy from offline RL along with the Q and target Q functions. We follow best practices
from recent offline-online RL fine-tuning work [87, 88], namely:

• 5-10 critics instead of 2, with random sampling of critics

• LayerNorm in the critic and possibly LayerNorm in the policy

• A higher update-to-data ratio in the critics

• “Warm-starting” online RL by running with the frozen pre-trained policy for the first few
thousand environment steps [87, 89]
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• Possibly sampling offline pre-training data at a 50% ratio during online RL

• Removing the SAC entropy term from the target critic

We found that by default, efficient offline-online learning algorithms did not work very well “out of
the box” for learning new tasks on our real robot. This is perhaps because they focus specifically on
offline-online fine-tuning on the same task while we are trying to learn new tasks, or perhaps due to
additional challenges of real-robot RL. Therefore, we make some per-environment design decisions
for online RL detailed in the respective environment training sections.

B MetaWorld Experiments

B.1 Simulation Setup

Training/Eval Task Selection. We manually select 20 training tasks from MT50 benchmark in
the Metaworld environment. These tasks are used for both reward model training and policy pre-
training. The training tasks include: Button-Press, Button-Press-Topdown-Wall,
Coffee-Pull, Dial-Turn, Door-Open, Door-Unlock, Drawer-Close,
Faucet-Open, Handle-Press, Handle-Pull-Side, Peg-Insert-Side,
Pick-Place, Plate-Slide, Plate-Slide-Back-Side, Push, Reach,
Stick-Push, Stick-Pull, Window-Open, Hand-Insert.

We also choose another 17 tasks from the MT50 benchmark for reward model eval-
uation and 8 of tasks are selected for downstream policy finetuning.3 The evalu-
ation tasks include Window-Close, Sweep-Into, Soccer, Reach-Wall,
Push-Back, Plate-Slide-Side, Plate-Slide-Back, Pick-Place-Wall,
Handle-Pull, Handle-Press-Side, Faucet-Close, Door-Lock,
Door-Close, Coffee-Push, Coffee-Button, Button-Press-Wall,
Button-Press-Topdown. These tasks are visually similar to the training tasks, but the
tasks are different. The 8 tasks used for downstream policy training are Window-Close,
Reach-Wall, Handle-Pull, Coffee-Button, Button-Press-Wall,
Door-Lock, Handle-Press-Side, Sweep-into.

Figure 10: Example camera
viewpoint in Metaworld.

Environment Details. We use Metaworld [62] with the default
3rd-person camera viewpoint, pictured in Figure 10, and also 4-
dimension proprioception input (x, y, z, gripper). The policy ac-
tion space is the default one from Metaworld represented as a 4-
dimensional relative action space for (∆x,∆y,∆z, gripper). Un-
like the Metaworld environment setups in prior reward learning pa-
pers, we do not include goal/ground truth state information. We
also terminate the environment on success. Both of these choices
were made to mimic a real-world robot learning setup. The time
horizon of each episode is limited to 128 steps. The success bonus
for online and offline RL used in Equation (4) and Equation (5) is
200 for ReWiND and all baselines.

B.2 Training Details

For Ddemos, we select 20 tasks from the MT-50 benchmark. Each task consists of one human-
labeled annotation, four augmented annotations (Section 3.1.1), and five optimal demonstrations
produced by the MetaWorld built-in planner. We render images at the default resolution of 640x480,
centercrop to 224x224 and embed the image with DINOv2 encoder.

3These 17 tasks were chosen for sharing at least some characteristic with a training task.
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Side Camera

Top Camera

Figure 11: Real World Bimanual Robot Setup. Our real-world setup consists of a top-down and
side camera mounted to a table where two Koch v1.1 low-cost arms are mounted. This setup allows
us to perform bimanual tasks and easily collect data with another pair of low-cost “leader” arms
mounted to the same table.

We pre-train the policy with IQL [51] for 100K steps with learning rate 0.001, gamma 0.99. We
use a three layer MLP of size [768, 512, 256] for both the policy and value function network. The
general training procedure is described in (Appendix A.1.3)

For the various hyperparameters for online policy learning we used in MetaWorld as described in
Section A.1.3. We use 10 critics and sample 2 of them during training, LayerNorm in both the critic
and policy, and an update-to-data ratio of 4 for the critics. We are not sampling from offline pre-
training data during online training nor are we training the target critic with the entropy term, so the
implementation is identical to Warm-Start RL [87]. We warm-start online RL for 4000 steps.

C Real Robot Experiments

C.1 Robot Experiment Setup

We use the Koch1.1 bimanual arm setup for data collection and learning [65].4 Altogether, four total
arms (2 for data collection) cost∼$1000, letting us demonstrate ReWiND enables real-world online
RL of new tasks even with very low-cost hardware and noisy control. The observations consist of
RGB images from a Logitech C930e top camera and side camera (pictured in Figure 11). We control
the robot with absolute joint position control at a frequency of 30Hz. We collect a small dataset of
10 demonstrations over 20 tasks, and then use 5 demos per-task for the reward function. We found
the offline-trained policy to be the primary bottleneck to optimizing rewards in unseen tasks, so we
used 10 demos per-task for offline policy training. We have an episode timeout of 250 steps and
provide a success bonus of 125 upon success (from Equation (4) and Equation (5)). Proprioceptive
information in this environment includes 12 robot joint states, 6 for each arm. These represent the
rotation of each joint and gripper..

C.2 Real Robot Training Details

We use a small, instruction-tuned, open-source LLM, Mistral-7B-Instruct-v0.3 [90], to
generate 9 additional instructions for each task for instruction augmentation.

For the small dataset in real robot experiments, we manually choose 15 tasks in the Koch tabletop
setting, and each task includes 5 trajectories and 10 annotations. The evaluation set is 5 other random
tasks, which are irrelevant with the tasks in the small dataset. We use this evaluation set for offline
metrics and validating various design choices.

Unlike the MetaWorld experiments that use an MLP-based policy, we use an action-chunked policy
with temporal ensembling for the real robot. We found chunking to lead to more stable bimanual

4https://github.com/jess-moss/koch-v1-1
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manipulation on the Koch arms. We implement the action chunking with a Transformer policy that
predicts 60 actions at each timesteps corresponding to 2 seconds of actions. We also implement a
Transformer-based critic. During rollouts, we then use temporal ensembling [91]. Here, the current
action is ensembles with the last 60 timesteps’ predictions according to an exponential weighting
scheme wi = exp(−m ∗ i), where we use m = 0.01 or m = 0.1 depending on the task. We found
m = 0.1 to work well for tasks requiring grasping solid objects as it weights recent actions more
heavily, necessary for ensuring the policy actually commits to the grasp, and m = 0.01 to work well
for non-grasping tasks as it results in a smoother policy.

The policy is a Transformer decoder with 1 layer and 8 heads with 1.5M params. The critic is a
Transformer encoder with 8 heads and 1 layer. We train each policy for 20k steps offline on our
offline dataset using IQL with AWR for policy extraction. We train using a batch size of 256, use
5 critics, and subsample 2 critics at each training step. We use LayerNorm only in the critics as we
found that LayerNorm in the action-chunked policy could potentially hurt RL performance. We also
warm-start online RL for 3000 steps. We do not sample actions during policy rollouts as we found
action sampling to conflict with temporal ensembling.

Then, we train the policy online as described in Section 3.2. We train online for 50k environment
steps, which takes approximately 1 hour as there is minimal waiting time for policy training due to a
threaded implementation that trains the policy while the last iteration’s policy checkpoint is used for
rollouts. This parallelization nearly doubles the rate at which we are able to collect policy rollouts.
Specifically, during online training, we collect a single rollout corresponding to 250 environment
steps while simultaneously training the policy for 75 gradient steps. We keep a relatively low policy
to environment update ratio in order to ensure that we do not have to wait for offline training to finish
in order to start the next online rollout. At each gradient step, we sample our buffer such that 50% is
the offline training data, 25% is online failure trajectories, and 25% is online successful trajectories.
This sampling approach helps upsample successful online trajectories. For every actor gradient step,
we do 5 critic update steps to more quickly train the critic online.

During real-world policy rollouts, it is important for the robot to take safe actions that will not crash
into other objects or the table. However, we found that when regularizing the policy’s KL diver-
gence against a max-entropy prior as is the case in the entropy maximization objective in standard
SAC [63], the growing entropy term would cause the policy to produce largely random actions.
Therefore, we regularize against the pretrained policy’s distribution to encourage reasonable behav-
iors throughout the process of learning, similar to the SAC update rules from Pertsch et al. [92].
Thus the π and Q updates follow:

π ← max
π

Eπ
[
Q(o, z)− αKL(π(·|o, z) || πpretrained(·|o, z)︸ ︷︷ ︸

pre-trained policy guidance

]
(6)

Q← min
Q

Q(o, z) = r + γ
[
Q(o′, z)− αKL (π(·|o, z) || πpretrained(·|o, z))︸ ︷︷ ︸

pre-trained policy guidance

]
(7)

We set α in both equations to a fixed value of 10.0 on tasks where grasping solid objects is not
required. For others, we set it to 20.0 to ensure the policy doesn’t degenerate from its grasping
action early in training. We found that lower KL penalties could result in the policy falling into
locally optimal but globally suboptimal behaviors, such as moving a cup with the arm instead of
actually picking it up.

C.3 Real Robot Tasks

We collected 10 demos per-task over 20 tasks on the Koch arms. We train the reward function on 5
demos per-task and the policy on 10 demos per-task. We list these training tasks below.

Move the orange cup from the left to the right, Move the orange cup
from the right to the left, Put the orange cup on the red plate, Put
the red cup on the red plate, Separate the blue and red cups, Fold
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separate the blue and orange 
cups 

fold the blue towel 

open the red trash bin 

put the orange cup in the red 
plate

put fruit-colored object in 
the box 

Figure 12: We present rollouts for the 5 tasks we use for online RL. The first two tasks are in-
distribution to the policy, while the latter 3 tasks are out-of-distribution with respect to visual, spatial,
or semantic generalization.

the blue towel, Open the green trash bin, Open the blue trash bin,
Throw the banana away in the green trash bin, Throw the banana away
in the blue trash bin, Put the red marker in the red trash can, Put
the pink marker in the green trash can, Put the blue tape in the
box on the left, Put the banana in the box, Put the orange cup in
the box, Put the blue cup on the red plate, Separate the orange and
blue cups, Open the red trash bin, Throw the banana away in the red
trash bin, Put the red tape in the box on the right.

In addition, we present rollouts of the five online tasks in Figure 12. We also provide additional
descriptions of these tasks below:

• Separate the blue and orange cups: the robot must separate the two cups in
the middle

• Fold the blue towel: the robot must fold the towel in half.

• Open the red trash bin: the robot is surrounded by clutter compared to the train-
ing data above and must open the trash bin

• Put the orange cup in the red plate: the robot picks an orange cup and
must place it on a plate that is further away from the training data distribution

• Put fruit-colored object in the box: we refer to a “fruit-colored” object
to test the robot’s ability to handle semantic generalization.
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Figure 13: Metaworld Reward Confusion Matrix on 20 Training Tasks. For each training
task, we compute rewards for all combinations of demonstration videos and language descriptions.
ReWiND produces the most diagonal-heavy confusion matrix, indicating strong alignment between
unseen demos and instructions.

D Additional Results

D.1 Additional Metaworld Reward Analysis

In Figure 13 we plot the confusion matrices of different reward models on training tasks in addition
to the evaluation task plots of Metaworld in Figure 4. LIV, RoboCLIP and GVL are not pretrained or
fine-tuned on the etraining tasks while VLC, LIV-FT and ReWiND are. We can see both ReWiND
w/ OXE data Dopen-x and ReWiND w/o OXE data Dopen-x are the best, having the clearest disparity
between the diagonal and off-diagonal elements. LIV-FT also works well with a diagonal-heavy
matrix. However, its disparity is not as clear as ReWiND.

D.2 MetaWorld Sample Efficiency Results

In this section, we analyze the sample efficiency of ReWiND against baselines in Metaworld. Fig-
ure 14 plots the learning curves for all downstream policy training tasks. Each panel corresponds to
one specific task. And Figure 14i displays the average of all 8 downstream tasks we used for policy
fine-tuning. We can see from the average IQM plot that ReWiND achieves higher success rate than
other baselines with the same number of timesteps and ReWiND is generally more sample-efficient
at any timestep.

D.3 Real-World Reward Analysis

Table 3: Evaluation Metrics on Real-world Unseen
Tasks: Comparsion between reward models in real-world
unseen tasks with rank correlation ρ and r.

Model LIV LIV-FT RoboCLIP VLC GVL ReWiND

ρ ↑ 0.22 -0.18 0.04 0.20 0.57 0.91
r ↑ 0.23 -0.13 0.04 0.19 0.52 0.91

We evaluated the performance of
ReWiND in Metaworld in Sec-
tion 4.1. In this section, we analyze
how ReWiND works with real-world
data. For the real-world setup, we use
both views of each trajectory, treated
as separate videos (but from the same
demonstration) to train and evaluate
all models. It can be seen from Ta-
ble 3 that ReWiND has the highest Spearman’s rank correlation (ρ) and Pearson’s rank correlation
(r) among all reward models. Also, in Figure 15 and Figure 16, ReWiND has the best alignment
between true-paired video and language instruction in both training tasks and unseen tasks, display-
ing strong generalization in new tasks. Note that LIV, GVL, and RoboCLIP are not trained on these
training tasks as they are zero-shot models.
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(f) Door Lock
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(i) All Tasks IQM and 95% CI

Figure 14: Metaworld success curves. Task-level success rate learning curves plotting mean and
shaded standard deviations. The bottom right figure plots the overall average across all tasks in
terms of IQM and 95% confidence intervals.
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Figure 15: Real-world Koch Reward Confusion Matrix on 5 Unseen Tasks. For each unseen
task, we compute rewards for all combinations of demonstration videos and language descriptions.
ReWiND produces the most diagonal-heavy confusion matrix, indicating strong alignment between
unseen demos and instructions.
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Figure 16: Real-world Koch Reward Confusion Matrix on 15 Training Tasks. For each training
task, we compute rewards for all combinations of demonstration videos and language descriptions.
LIV-FT, VLC and ReWiND are pretrained or fine-tuned with these training task while LIV , GVL
and RoboCLIP are not
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